

ENERGY-RECYCLING IN A MULTI-TURN ENERGY-RECOVERY LINAC AND PROSPECTS FOR PHOTONUCLEAR REACTIONS

Norbert Pietralla

Michaela Arnold, Jonny Birkhan, Adrian Brauch, Jochim Enders, Ruben Grewe, Johann Isaak, Lars Jürgensen, Jörn Kleemann, Maximilian Meier, Felix Schliessmann, Dominic Schneider, Volker Werner + Norbert Pietralla

Bundesministerium für Bildung und Forschung

nstitut für Kernphysik **DALINAC** Technische Universität Darmstadt

Work supported by DFG (GRK 2128, GRK 2891), BMBF (05H21RDRB1), and the State of Hesse (Cluster Project ELEMENTS)

MOTIVATION FOR MULTI-TURN ENERGY RECOVERY

illin open

COLUMN TWO IS NOT

MOTIVATION

Potential future for CERN beyond 2045

- Collide LHC beam with high power electron beam
- Optimum emittance via use of LINAC
- 50 GeV and 200 mA \rightarrow 10 GW of (virtual) beam power
- Largest nuclear reactor facility in Europe ca. 8 GW

→ Need for sustainable technology
 → Energy-recovery LINACs

P. Agostini et al,. J. Phys. G: Nucl. Part. Phys. 48, 110501 (2021)

MOTIVATION

CERN Yellow Reports: Monographs, CERN-2022-001

6 Energy-recovery linacs

6.1 Executive summary

Energy Recovery is at the threshold of becoming a key means for the advancement of accelerators. Recycling the kinetic energy of a used beam for accelerating a newly injected beam, i.e. reducing the power consumption, utilising the high injector brightness and dumping at injection energy: these are the key elements of a novel accelerator concept, invented half a century ago [1]. The potential of this

M. Klein, A. Hutton *et int.*, N.P., *et int*. F. Zimmermann, in European Strategy for Particle Physics - Accelerator R&D Roadmap,N. Mounet (ed.), CERN-2022-001 (CERN, Geneva, 2022), pp. 185–228.

Nuclear Photonics

ENERGY RECOVERY LINACS (ERLS) WORLDWIDE

M. Klein, A. Hutton *et int.*, N.P., *et int*. F. Zimmermann, in European Strategy for Particle Physics - Accelerator R&D Roadmap,N. Mounet (ed.), CERN-2022-001 (CERN, Geneva, 2022), pp. 185–228.

Nuclear Muclear Muclear

Technische Universität Darmstadt

纝

EL EM

EN TS

Bundesministerium für Bildung und Forschung TECHNISCHE

UNIVERSITÄT DARMSTADT

ENERGY RECOVERY LINACS (ERLS) WORLDWIDE

M. Klein, A. Hutton et int., N.P., et int. F. Zimmermann, in European Strategy for Particle Physics - Accelerator R&D Roadmap, N. Mounet (ed.), CERN-2022-001 (CERN, Geneva, 2022), pp. 185-228.

ACCELENCE

SRF-ERL

(2020).

A. Bartnik et al.,

TECHNISCHE

UNIVERSITÄT DARMSTADT

ENERGY RECOVERY LINACS (ERLS) WORLDWIDE

@S-DALINAC

For the first time, measured energy-recycling directly in multi-turn SRF-ERL.

measured energy-recycling of 87%

ture physics	
cle	https://doi.org/10.1038/s41567-022-01856-w
ealization of ccelerator	of a multi-turn energy recovery
ived: 28 March 2022	Felix Schliessmann 🛛 🖂, Michaela Arnold 🛈 , Lars Juergensen 🛈 ,
pted: 26 October 2022	Norbert Pietralla © , Manuel Dutine © , Marco Fischer © , Ruben Grewe © , Manuel Steinhorst © , Lennart Stobbe © & Simon Weih ©
thed online: 26 January 2023	

EL EM

EN TS

緣

MULTI-TURN ERL @ S-DALINAC AND PROSPECTS FOR PHOTONUCLEAR REACTIONS

OUTLINE

1 Motivation for Multi-Turn Energy Recovery 2 Multi-Turn Energy Recovery at the S-DALINAC 3 Perspectives for ERL Applications Prospects for Photonuclear Reactions

15.12.2023

Bundesministeriu für Bildung und Forschung

9

MULTI-TURN ENERGY RECOVERY AT THE S-DALINAC

SUPERCONDUCTING DARMSTADT LINEAR ACCELERATOR

illin open

THE R.

TECHNISCHE UNIVERSITÄT DARMSTADT

MULTI-TURN ERL MODE OF THE S-DALINAC | INTRODUCTION

Thrice Recirculating Operation					
Energy Gain Injector	7.6 MeV				
Energy Gain Linac	30.4 MeV				
Beam Current	20 µA				

MULTI-TURN ERL MODE OF THE S-DALINAC | INTRODUCTION

Bundesministerium für Bildung und Forschung

2015/16 NEW BEAM LINE

- 500 cables
- 15 km cables
- 500 m copper-pipes for water
- 250 m flexible tubes

MULTI-TURN ERL MODE OF THE S-DALINAC | INTRODUCTION

- Path length adjustment system (PLAS) in arcs ٠ of the recirculation beam lines
- PLAS in 1st and 2nd recirculation tunable for •
 - Beam acceleration •
 - Phase change up to 360° •
 - Beam deceleration (Energy Recovery)
- Enables single-fold and two-fold ERL mode •

für Bildung und Forschung

A THIRD RECIRCULATION WITH ERL-OPTION FOR THE S-DALINAC - DESIGN AND IMPLEMENTATION

Fall 2015

Summer 2016

Separation Dipole

- Particle tracking of all beam energies (CST Particle Studio)
- Acceptance
 - Beam diameter: up to 10 mm
 - Energy spread: up to 1.10-3
 - Angular spread: up to 0.1°

M. Arnold (PhD thesis, TU Darmstadt, 2016).

für Bildung und Forschung

Modification lattice 2015/2016

Photonics

Commissioning of modes followed beam time schedule

Technische Universität Darmstadt

EN TS

MULTI-TURN ERL MODE OF THE S-DALINAC | INTRODUCTION

- Path length adjustment system (PLAS) in arcs • of the recirculation beam lines
- PLAS in 1st and 2nd recirculation tunable for •
 - Beam acceleration
 - Phase change up to 360°
 - Beam deceleration (Energy Recovery)
- Enables single-fold and two-fold ERL mode •
- Research on ERL modes since 2016, e.g.: •
- 1. M. Arnold *et al.* First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac. Phys. Rev. Accel. Beams 23, 020101 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.020101
- 2. F. Schliessmann *et al.* Realization of a multi-turn energy recovery accelerator. Nat. Phys. 19, 597 (2023). https://doi.org/10.1038/s41567-022-01856-w

für Bildung

und Forschung

- Modification lattice 2015/2016
- Commissioning of modes followed beam time schedule

Data taken in four phases:

- Phase 1 (ERL Operation): one accelerated and one decelerated beam
- Phase 2 (no beam): RF operation of cavity without beam
- Phase 3 (1x acc.): one accelerated beam
- Phase 4 (2x acc.): two accelerated beams

ONCE-RECIRCULATING ERL OPERATION

"Cavity beam-load" difference between

forward RF power and reflected power

TECHNISCHE UNIVERSITÄT DARMSTADT

1st ERL in Germany, August 2017

M. Arnold et al.,

First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams 23, 020101 (2020).

Operation	Mean Beam Power in W			
No Beam	0.00 ± 0.01			
One Beam (acc.)	4.51 ± 0.16			
Two Beams (acc. + acc.)	8.59 ± 0.01			
ERL (acc. + dec.)	0.45 ± 0.03			

RF-recovery effect:

$$\varepsilon_{RF} = (90.1 \pm 0.3)\%$$

Value and uncertainty take correlations between fit parameters into account.

8.59 W: about 10% less than 2 x 4.51 W

Incomplete transmission due to abstaining from beamline optimization

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

- Modification lattice 2015/2016
- Commissioning of modes followed beam time schedule

Bundesministerium für Bildung und Forschung

緣

EL EM

EN TS

nstitut für Kernphysik

Technische Universität Darmstadt

MULTI-TURN ERL MODE OF THE S-DALINAC | CONVENTIONAL TWO-FOLD ACCELERATION

Conventional two-fold Acceleration (CTA)(1)Injection5.00 MeV/c

(2)	1 st acceleration	23.66 MeV/c
(3)	1 st recirculation	0° phase shift
(4)	2 nd acceleration	41.61 MeV/c
(5)	2 nd recirculation	0° phase shift
(6)	Beam dump	

MULTI-TURN ERL MODE OF THE S-DALINAC | TWO-FOLD ENERGY RECOVERY

Two-fold Energy Recovery (TER)						
(1) – (6)	As before	41.61 MeV/c				
(7)	2 nd recirculation	180° phase shift				
(8)	1 st deceleration	23.66 MeV/c				
(9)	3 rd recirculation	0° phase shift				
(10)	2nd deceleration	5 MeV/c				
(11)	Low energy beam dump					

MULTI-TURN ERL MODE OF THE S-DALINAC | CHALLENGES

- Eight accelerating cavities
- Two recirculation arcs
- Degrees of freedom:
 - Amplitudes \vec{A} •
 - Phases $ec{\phi}$ •
 - Path lengths \vec{L} •
 - Longitudinal dispersions \vec{R}_{56} •

MULTI-TURN ERL MODE OF THE S-DALINAC | CHALLENGES

Concept based on: R. Koscica et al., Phys. Rev. Accel. Beams 22, 091602 (2019)

MULTI-TURN ERL MODE OF THE S-DALINAC | CHALLENGES

Simplified model of energy gain

reference phase = 0

More complex model of energy gain

- Phase slippage not negligible
- Simplified model of energy gain not applicable
- Numerical simulations of interaction between electrons and EM fields required

für Bildung und Forschung

$$\begin{pmatrix} \bar{p}_{1 \text{x acc.}} \\ \bar{p}_{2 \text{x acc.}} \\ \bar{p}_{1 \text{x dec.}} \\ \bar{p}_{2 \text{x dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \,\text{MeV/c}$$

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} := \sum_i x_i$$

sene
$$(V_1, V_2, T) = \begin{cases} 0, & |V_1 - V_2| \le T \\ ((|V_1 - V_2| - T)/T)^2, & |V_1 - V_2| > T \end{cases}$$
 $T = 1 \text{ eV/c}$

$$\min \|\cdots\|_{1^*}$$

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} := \sum_i x_i$$

sene
$$(V_1, V_2, T) = \begin{cases} 0, & |V_1 - V_2| \le T \\ ((|V_1 - V_2| - T)/T)^2, & |V_1 - V_2| > T \end{cases}$$
 $T = 1 \text{ eV/c}$

$$\min \sigma_{\delta}(s) \qquad \text{s.t.} \begin{cases} R_{56,\mathrm{I}} \in [-0.7, 0.4] \,\mathrm{m} \\ R_{56,\mathrm{F}} \in [-0.1, 0.8] \,\mathrm{m} \\ R_{56,\mathrm{S}} \in [-0.7, 0.7] \,\mathrm{m} \end{cases}$$

 $\min \|\cdots\|_{1^*}$ and $\min \sigma_{\delta}(s)$

 $\min \left\| \cdots \right\|_{1^*}$

LINAC Cavity	#1	#2	#3	#4	#5	#6	#7	#8	R _{56,I} = -0.01 m
Off-crest phase (°) (during 1st LINAC pass)	-9.7	-5.7	13.2	4.0	6.1	7.2	5.6	3.2	$R_{56,F}$ = +0.33 m $R_{56,S}$ = +0.18 m
Off-crest momentum gain (MeV/c) (during 1st LINAC pass)	2.34	2.32	2.29	2.34	2.33	2.33	2.35	2.36	
On-crest momentum gain (MeV/c) (during 1st LINAC pass)	2.37	2.33	2.35	2.35	2.34	2.34	2.36	2.37	

LONGITUDINAL PHASE SPACE

9.7 m, Cavity (1,1)	11.3 m, Cavity (1,2)	13.1 m, Cavity (1,3)	14.7 m, Cavity (1,4)	16.5 m, Cavity (1,5)	18.1 m, Cavity (1,6)	19.9 m, Cavity (1,7)	21.5 m, Cavity (1,8)

Photonics

MULTI-TURN ERL MODE OF THE S-DALINAC | CHALLENGES

Photonics

CCELENCE

- Measurement of beam loadings of two-fold acceleration $P_{b,CTA}$ and two-fold ERL $P_{b,TER}$
- Energy recovery efficency is then given by

$$\eta = \frac{P_{\rm b,CTA} - P_{\rm b,TER}}{P_{\rm b,CTA}}$$

• Stable operation with a beam current of 2.3 μ A:

Mode	Beam loading
СТА	86.3 ± 0.3 W
TER	13.8 ± 1.1 W

$$\blacktriangleright$$
 $\eta = 84.0 \pm 1.2\%$

F. Schliessmann *et al.* Realization of a multi-turn energy recovery accelerator. *Nat. Phys.* **19**, 597 (2023).

https://doi.org/10.1038/s41567-022-01856-w

Efficiency

100

80

60

20

0

7

Energy-recycling efficiency (%)

F. Schliessmann *et al.* Realization of a multi-turn energy recovery accelerator. *Nat. Phys.* **19**, 597 (2023).

https://doi.org/10.1038/s41567-022-01856-w

6

MULTI-TURN ERL MODE OF THE S-DALINAC | RECOVERY EFFICIENCY

- Beam loading measured for inital (injection) beam currents from 0.2 to above 7 μA
- Recovery efficiency up to 87 % for low currents
- 1x acc. and TER beam in shared beam pipe
- Increase in transverse emittance
- TER beam not fully kept in acceptance
- Efficiency decreasing with higher currents
- Extended measurements of beam properties as a function of beam intensity planned
- *individual* beam transport for future ERL accelerators under investigation

F. Schliessmann et al. Nat. Phys. (2023)

15.12.2023

ERL – Applications

An ERL is the optimum collider

- best possible emittance
- high beam current with low beam load
- faint target => high beam current to be recovered

ERL – Applications

An ERL is the optimum collider

- best possible emittance
- high beam current with low beam load
- faint target => high beam current to be recovered

e.g. Laser-Compton backscattering

nearly monochromatic,

tunable,

completely polarized

Bundesministerium für Bildung und Forschung Technische Universität Darmstadt

15.12.2023

Bundesministerium für Bildung und Forschung

緣

51

TECHNISCHE

UNIVERSITÄT DARMSTADT

Photon Scattering (Nuclear Resonance Fluorescence)

Observables

- Excitation Energy E_r
- Spin J
- Parity π
- Decay Energies E_{γ}
- Partial Widths Γ_i / Γ_0
- K-quantum numbers
- Multipole Mixing δ
- Decay Strengths $B(\pi\lambda)$
- Level Width Γ (eV)
 - Lifetime τ (ps as)

OVERVIEW ON MEV-RANGED GAMMA-RAY SOURCES - LASER-COMPTON BACKSCATTERING (LCB)

photos from Sept. 2023

OK-5: this is a lamp!

OVERVIEW ON MEV-RANGED GAMMA-RAY SOURCES - LASER-COMPTON BACKSCATTERING (LCB)

collimators

15.12.2023

OVERVIEW ON MEV-RANGED GAMMA-RAY SOURCES - LASER-COMPTON BACKSCATTERING (LCB)

γ-raydetectorsin thetarget room

Looking at the HIGS Gamma-Ray Beam

nstitut für Kernphysik

Bundesministeriun für Bildung und Forschung

Looking at the Target

nstitut für Kernphysik

Technische Universität Darmstadt

Bundesministerium für Bildung und Forschung NUCLEAR RESONANCE FLUORESCENCE (NRF)

- Elastic scattering distribution not isotropic about incident polarization plane.
- No intensity along oscillating dipole vector
- Azimuthal rotation by 90° for M1 and E1 distributions
- Observable only for linearly polarized beam

für Bildung

und Forschung

HIγS 2001

HIγS 2023

Bundesministerium für Bildung und Forschung

S DALINAC

Technische Universität Darmstadt

TECHNISCHE

UNIVERSITÄT DARMSTADT

Introduction to Photonuclear Reactions | Prof. Norbert Pietralla | TU Darmstadt, Institute for Nuclear Physics

15.12.2023

HIγS 2001

N.Pietralla et al., Nucl.Instrum.Methods A483, 556 (2002).

Challenge to my PhD student Jörn Kleemann:

units S(n) Electric Dipole Strength in arb. Pygmy Dipole Giant Dipole Two-Phonon State Resonance Resonance ✦ 10 15 20 5 0 Energy in MeV

"Study the γ -decay of the GDR in a deformed nucleus as a function of excitation energy!"

Particle unbound

- ≈ 99% n-decay
- ≈ 1% γ-decay

J. R. Beene *et al.*, Phys. Rev. C **41**, 920 (1990) K. Boretzky *et al.*, Phys. Lett. B **384**, 30 (1996)

TECHNISCHE

Photonics

EN TS

Technische Universität Darmstadt

Interference effects in the GDR

E. G. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962)

• Thomson scattering interferes with GDR's γ -decay to 0_1^+

$$\sigma_{\text{Elastic}}(E) = \left| f_{\text{Th}} + f_{0_1^+ \text{ NRF}}(E) \right|^2$$

- \Rightarrow Need scattering amplitudes $f(E) \in \mathbb{C}$ for both processes for correction
- \Rightarrow Obtainable from σ_{Abs} through optical theorem and dispersion relations

$$\sigma_{Abs}(E) = \sum_{k \in \{0,1\}} \sigma_k \frac{E^2 \Gamma_k^2}{\left(E_k^2 - E^2\right)^2 + E^2 \Gamma_k^2}$$

 \Rightarrow Corrections up to 35%

- Measured the γ -decay behavior of the GDRs of ¹⁵⁴Sm and ¹⁴⁰Ce $\rightarrow \gamma$ -decay of GDR very sensitive to SLO parameters of GDR
- $E_{K=0} = 12.367(21) \text{ MeV}$, $\Gamma = 3.27(6) \text{ MeV}$, $\sigma_{tot, K=0} = 0.644(15) \text{ MeV}$ b for ¹⁵⁴Sm
- $E_{K=1} = 16.119(20) \text{ MeV}$, $\Gamma = 5.05(5) \text{ MeV}$, $\sigma_{tot, K=1} = 1.052(17) \text{ MeV}$ b for ¹⁵⁴Sm

- Simultaneous activation of natural Ce, Sm and Au samples
 - → γ /n branching ("≈ 1%") and absolute cross-sections from activation
- Additional data on GDRs of ¹⁶⁴Dy, ²³²Th & ²⁰⁸Pb measured in April 2023

Jörn Kleemann

M. MEIER, M. ARNOLD, V. BAGNOUD, J. ENDERS & N. PIETRALLA

LASER-COMPTON BACKSCATTERING SOURCE AT THE S-DALINAC

Accelence Workshop 2023 | TU Darmstadt | Institut für Kernphysik | Maximilian Meier

Photonics

81

TECHNISCHE **COUPLING CHAMBER OF LCB-SOURCE** UNIVERSITÄT DARMSTADT 1.7 mm opening (Laser reflectivity 98 %) Off-Axis Parabolic Mirror Laser Alignment target Electron Beam deposition < 1% CB X-rays Electron beam Interaction point Beam size $\sigma_0 \leq 100 \ \mu m$ Nuclear 🔌 🗽 E ACCELENCE 15.12.2023 CCELENCE

MAMAA

COUPLING CHAMBER OF LCB-SOURCE

Maximilian Meier

15.12.2023

Accelence Workshop 2023 | TU Darmstadt | Institut für Kernphysik | Maximilian Meier

E

15.12.2023

Photonics

LASER BEAM TRANSPORT

85
LASER BEAM TRANSPORT

Nuclear Photonics

ACCELENCE

STAY TUNED!

Thank you very much!

ACCELENCE

Jörn Kleemann

Maximilian Meier

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
	M²x		1.08
1012	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Doom diamotor	2Wmax	mm	3.26
Deam diameter	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

adt -

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
M2	M²x		1.08
	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Beam diameter	2Wmax	mm	3.26
	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

Laser power stability 120 100 -80 Power [W] 60 40 20 Average power: 103.4 W Power RMS stability: 0.1 % Specification : 100.0 W 0 10 0 2 6 8 12 4 Time [h]

- the

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
M2	M²x		1.08
IVI *	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Beam diameter	2Wmax	mm	3.26
	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

90

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
M2	M²x		1.08
M²	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Beam diameter	2Wmax	mm	3.26
	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

Profile area, 'I'n, 'O'ut, 'R'eset, Middle button [or Shift Left button) to position profile NEW!, Drag mouse to measure.

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
N/2	M²x		1.08
IVI-	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Beam diameter	2Wmax	mm	3.26
	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

Laser Parameter		Unit	Measurement
Center wavelength		nm	1030.2
Bandwidth FWHM		nm	1.8
Average power		W	103.4
Energy per pulse		μJ	517.0
Short-term energy stability	RMS	%	0.89
Long-term energy stability	RMS	%	0.99
Pulse duration		fs	740
M2	M²x		1.08
	M²y		1.11
Astigmatism		%	11.6
Waist asymmetry		%	0.5
Beam diameter	2Wmax	mm	3.26
	2Wmin	mm	3.11
Beam ellipticity		%	4.6
Short-term pointing stability	Radial	µrad	4.5
Short-term position stability	Radial	μm	1.58
Absolute timing jitter		fs	175.0
Long term jitter on 12h		fs	192.9
Repetition rate adjustibility			Single shot – 40 MHz

ed (µ

Xc nor

-4

-6

-8

TECHNISCHE

UNIVERSITÄT DARMSTADT

15.12.2023

94

LASER BEAM TRANSPORT

Beam wavelength is 1,03000 µm in the media with index 1,00000 at 0,0000 (deg) Display X Width = 3,0766E-01, Y Height = 3,0767E-01 Millimeters Peak Irradiance = 1,3439E+04 Watts/Millimeters^2, Total Power = 9,8445E+01 Watts Pilot: Size= 6,7106E-02, Waist= 5,3623E-02, Pos= 6,5988E+00, Rayleigh= 8,7703E+00

Simulation:

- Zemax OpticStudio
 - Physical optics propagation
- 40 m beam transport
- Telescopes and "relay imaging"
- Off-axis parabolic mirror with hole

Physical optics propagation @ IP:

- Total power: 94.5 W (100 W)
- Waist size: 53.6 µm (12 mm)
- Rayleigh length: 8.8 mm

LASER COMPTON BACKSCATTERING @ S-DALINAC

Parameters	Values		
Electron Beam			
Electron Energy (E_e)	39 MeV – 98.8 Me V		
Rel. Error of Electron Energy (ΔE_e)	< 10 ⁻³		
Beam Current (<i>I</i>)	10 µA		
Beam normalized emittance	$5 \cdot 10^{-6}$ m rad		
Electron Beam Size ($\sigma_{e,rms}$)	$\leq 100 \ \mu m$		
Laser Beam			
Wavelength (λ)	1030 nm		
Photon Energy (E _L)	1.2 eV		
Error Photon Energy (ΔE_L)	$1 \cdot 10^{-3} eV$		
Pulse Energy (<i>E_{pulse}</i>)	0.25 mJ		
Repetition Rate (f_{rep})	200 kHz		
Beam Size ($\sigma_{pulse,rms}$)	≤ 100 µm		
Scattered Photon – Results for Head-On Collision			
Energy	28 keV – 179 keV		
Min. rel. Energy Bandwidth, FWHM	0.7 %		
Total Flux	$6 \cdot 10^{3} Ph/_{s}$		
Spectral Flux at min. Bandwidth	38 Ph/s		

E

MULTI-TURN ERL MODE OF THE S-DALINAC | RELATED PROJECTS AKBP 16.4: Design and Status of the Laser-Compton Backscattering Source at the S-DALINAC

MULTI-TURN ERL MODE OF THE S-DALINAC | RELATED PROJECTS

- 1. AKBP 1.2: Automated Activation Procedure for GaAs Photocathodes
- 2. AKBP 8.4: Sensitivity Analysis and Online Surrogate Construction at the S-DALINAC Using Polynomial Chaos and Neural Networks
- 3. AKBP 9.6: Design of a Solenoid Magnet for the S-DALINAC
- 4. AKBP 14.1: System for Bunch Length Measurements behind the Injector of S-DALINAC
- 5. AKBP 14.2: Simulationen zur Optimierung von Vakuumsystemen für Beschleunigerstrahlführungen
- 6. AKBP 16.4: Design and Status of the Laser-Compton Backscattering Source at the S-DALINAC
- 7. AKBP 16.5: Development of a 6 GHz Cavity BPM for the Multi-Turn ERL Operation at the S-DALINAC

für Bildung

und Forschun

MULTI-TURN ERL MODE OF THE S-DALINAC | RELATED PROJECTS AKBP 16.5: Development of a 6 GHz Cavity BPM for the Multi-Turn ERL Operation at the S-DALINAC

Nuclear 🜙

MULTI-TURN ERL MODE OF THE S-DALINAC | RELATED PROJECTS

- 1. AKBP 1.2: Automated Activation Procedure for GaAs Photocathodes
- 2. AKBP 8.4: Sensitivity Analysis and Online Surrogate Construction at the S-DALINAC Using Polynomial Chaos and Neural Networks
- 3. AKBP 9.6: Design of a Solenoid Magnet for the S-DALINAC
- 4. AKBP 14.1: System for Bunch Length Measurements behind the Injector of S-DALINAC
- 5. AKBP 14.2: Simulationen zur Optimierung von Vakuumsystemen für Beschleunigerstrahlführungen
- 6. AKBP 16.4: Design and Status of the Laser-Compton Backscattering Source at the S-DALINAC
- 7. AKBP 16.5: Development of a 6 GHz Cavity BPM for the Multi-Turn ERL Operation at the S-DALINAC
- 8. AKBP 16.15: The Scraper System at S-DALINAC and ERL application

für Bildung

und Forschun

MULTI-TURN ERL MODE OF THE S-DALINAC | RELATED PROJECTS AKBP 16.15: The Scraper System at S-DALINAC and ERL application

- Machine protection
- Improving beam quality
- Background reduction
- Beam cleaning
- Simulation of an ERL interaction point with possible scraper placement

Nuclear 🗸

Photonics 7

- We successfully implemented a two-fold energy recovery (TER) mode at the S-DALINAC with an efficiency of up to 87 % (at low currents)
 - > RF power required for a given beam current is substantially reduced
- Methods to increase the efficiency under investigation
- Implementation of a three-fold energy recovery mode in planning
- We have many projects related to the ERL operation of the S-DALINAC or future ERL accelerators, some of them presented at this DPG Spring Meeting

für Bildung

THANK YOU FOR YOUR ATTENTION

15.12.2023

110000

COLUMN TWO IS NOT