Halo EFT: an effective bridge between ab initio nuclear-structure calculations and nuclear-reaction modelling

Pierre Capel, Laura Moschini, Jiecheng Yang, Chloë Hebborn, Live-Palm Kubushishi, Daniel Phillips and Hans-Werner Hammer

Halo nuclei

Halo nuclei are found far from stability Exhibit peculiar quantal structure :

- Light, n-rich nuclei
- Low S_n or S_{2n}

With large matter radius

due to strongly clusterised structure:

neutrons tunnel far from the core and form a diffuse halo

One-neutron halo ¹¹Be \equiv ¹⁰Be + n ¹⁵C \equiv ¹⁴C + n Two-neutron halo ⁶He \equiv ⁴He + n + n ¹¹Li \equiv ⁹Li + n + n

This exotic structure challenges nuclear-structure models

Reactions with halo nuclei

Halo nuclei are fascinating objects

Some have been calculated *ab initio* [Calci *et al.* PRL 117, 242501 (2016)] However difficult to study experimentally $[\tau_{1/2}(^{11}Be)=13 \text{ s}]$

How can one probe their structure? test the *ab initio* predictions?

- \Rightarrow require indirect techniques, like reactions :
 - breakup : 11 Be + Pb/C \rightarrow 10 Be + n + Pb/C
 - transfer: 10Be(d,p)11Be
 - knockout : ${}^{11}\text{Be} + \text{Be} \rightarrow {}^{10}\text{Be} + \text{X}$

Need good understanding of the reaction mechanism (i.e. a good reaction model)

to know what nuclear-structure information is probed

Here, we couple precise reaction models with Halo EFT

(For a short review, see [P.C. Few Body Syst 63, 14 (2022)])

We consider ¹¹Be, the archetypical one-neutron halo nucleus

- Introduction : halo nuclei
- Description of ¹¹Be
 - Ab initio calculation of ¹¹Be
 - EFT description
- Reactions with ¹¹Be
 - Breakup
 - Role of core excitation
 - Transfer
 - KO
- Summary

Ab initio description of ¹¹Be

NCSMC calculation of ¹¹Be

[Calci et al. PRL 117, 242501 (2016)]

FIG. 2. NCSMC spectrum of 11 Be with respect to the $n+^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

•
$$\frac{1}{2}^+$$
 ground state : $\epsilon_{\frac{1}{2}^+} = -0.500 \text{ MeV}$ $C_{\frac{1}{2}^+} = 0.786 \text{ fm}^{-1/2}$ $S_{1s\frac{1}{2}} = 0.90$

•
$$\frac{1}{2}^{-}$$
 bound excited state : $\epsilon_{\frac{1}{2}^{-}} = -0.184 \text{ MeV}$ $C_{\frac{1}{2}^{-}} = 0.129 \text{ fm}^{-1/2}$ $S_{0p\frac{1}{2}} = 0.85$

Calci et al. also predict the ¹⁰Be-n phaseshift

¹⁰Be-n Halo-EFT potential

Replace ¹⁰Be-n interaction by effective potential in each partial wave Use Halo EFT: clear separation of scales (in energy or in distance) ⇒ provides an expansion parameter (small scale / large scale) along which the low-energy behaviour is expanded

[C. Bertulani, H.-W. Hammer, U. Van Kolck, NPA 712, 37 (2002)]
[H.-W. Hammer, C. Ji, D. R. Phillips JPG 44, 103002 (2017)]

Use narrow Gaussian potentials @ NLO

$$V_{lj}(r) = V_0^{lj} e^{-\frac{r^2}{2\sigma^2}} + V_2^{lj} r^2 e^{-\frac{r^2}{2\sigma^2}}$$

- In $s\frac{1}{2}$ and $p\frac{1}{2}$: fit V_0^{lj} and V_2^{lj} to reproduce
 - ϵ_{nlj} (known experimentally)
 - ► *C*_{nlj} (predicted *ab initio*)

[Calci et al. PRL 117, 242501 (2016)]

- $V_{p3/2} = 0$ to reproduce ab initio $\delta_{3/2^-} \sim 0$
- For $l > 1 : V_{li} = 0$ @ NLO

 σ = 1.2, 1.5 or 2 fm evaluates the sensitivity to short-range physics

$s^{1\over 2}$: @ NLO potentials fitted to $\epsilon_{rac{1}{2}^{+}}$ and $C_{rac{1}{2}^{+}}$

Potentials fitted to $\epsilon_{1s\frac{1}{2}}=-0.503$ MeV and $C_{1s\frac{1}{2}}=0.786$ fm^{-1/2}

- Wave functions: same asymptotics but different interior
- $\delta_{s\frac{1}{2}}$: all effective potentials are in good agreement with *ab initio* up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p^{\frac{1}{2}}$ (excited bound state)

Breakup: ${}^{11}\text{Be+Pb/C} \rightarrow {}^{10}\text{Be+n+Pb/C} @ \sim 70A \text{ MeV}$

Exp: [Fukuda *et al.* PRC 70, 054606 (2004)] Th.: [P.C., Phillips & Hammer, PRC 98, 034610]

E (MeV)

Exp : [Fukuda *et al.* PRC 70, 054606 (2004)] Th. : [P.C., Phillips & Hammer, PRC 98, 034610]

- All calculations provide very similar results ∀σ
 despite the difference in the internal part of the wave function
 ⇒ reaction is peripheral [P.C. & Nunes PRC 75, 054609 (2007)]
- Excellent agreement with data on Pb (no fitting parameter)
 ⇒ confirms ab initio ANC and phaseshift
- On C, breakup strength missing at the $5/2^+$ and $3/2^+$

$drac{5}{2}$: potentials fitted to $\epsilon^{ m res}_{rac{5}{2}^+}$ and $\Gamma_{rac{5}{2}^+}$

- Identical $\delta_{d^{\frac{5}{2}}}$ up to 1.5 MeV up to 5 MeV for the narrow potentials ($\sigma = 1.2$ or 1.5 fm)
- Excellent agreement with ab initio results up to 2 MeV

11 Be+C \rightarrow 10 Be+n+C @ 67AMeV (beyond NLO)

Total breakup cross section and dominant contributions

Folded with energy resolution [Fukuda *et al.* PRC 70, 054606 (2004)]

- In nuclear breakup, resonances play significant role [P.C., Goldstein & Baye PRC 70, 064605 (2004)]
- Still, resonant breakup not correctly described degrees of freedom [¹⁰Be(2⁺)] missing in the effective model [Moro & Lay PRL 109, 232502 (2012)]

Simulating core excitation with 3-b force

Virtual excitation of ${}^{10}\mathrm{Be}(2^+)$ can be simulated by 3 body force :

- 3-b force can efficiently simulate 10 Be excitation [P.C., Phillips & Hammer PLB 825, 136847 (2022)]
- Range in the c-T distance should equal that of V_{cT} $R_0 = 3.5$ fm
 - ▶ too small $(R_0 = 2 \text{ fm})$: no effect
 - ▶ too large $(R_0 = 6 \text{ fm})$: erroneous angular distribution

Including core excitation in Halo-EFT (PhD Kubushishi)

To account for core excitation within Halo-EFT:

- ¹⁰Be seen as deformed rotor [Nunes *et al.* NPA 596, 171 (1996)]
- ullet deformation eta treated perturbatively to couple 0^+ and 2_1^+ states
- equations solved with R-matrix using Lagrange radial mesh
 [L.-P. Kubushishi & P.C. (in preparation)]

• $\beta \sim 0.5$ improves agreement with *ab initio* radial wave function

(similar results $\forall \sigma$)

- improves $\delta_{1/2^+}$ up to 4 MeV
 - Stay tuned for reaction calculations...

10 Be(d,p) 11 Be

- This idea can be extended to transfer [Yang & P.C. PRC 98, 054602 (2018)]
- Various descriptions of 11 Be (@ LO) with $\sigma = 0.4 2.0$ fm show that 10 Be(d,p) 11 Be is peripheral at fwd angle and low E_d
- This enables to reliably infer ¹¹Be ANC Provides a value identical to ab initio
- Excellent agreement with data
 Schmidt et al. PRL 108, 192701 (2012)]

11 Be+ 9 Be→ 10 Be+X @ 60AMeV

Using Halo-EFT within eikonal model of KO gives also good results [Hebborn & P.C. PRC 100, 054607 (2019), ibid 104, 024616 (2021)]

- Excellent agreement with experiment [Aumann PRL 84, 35 (2000)]
- Wave functions with same ANC give same $\sigma_{\mathrm{KO}} \Rightarrow$ peripheral
- Insensitive to description of continuum ⇒ good probe of ANC
- For deeply bound projectile $\sigma_{\rm KO} \propto r_{\rm rms}^2 \Rightarrow {\rm not \ SF...}$

[Hebborn & P.C. PLB 848, 138413 (2024)]

Summary and prospect

- Halo nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood
 How to relate *ab initio* calculations to reaction observables?
 Halo EFT: [P.C., Phillips, Hammer, PRC 98, 034610 (2018)]
 Efficient way to include the significant degrees of freedom
- Using one Halo-EFT description of ¹¹Be, we reproduce
 - Breakup: [P.C., Phillips, Hammer, PRC 98, 034610 (2018)]
 - ★ On Pb : only ANC and δ_{lj} matter
 - On C: effect of core excitation [Kubushishi, P.C. in preparation]
 - → ¹⁰Be(d,p): [Yang & P.C., PRC 98, 054602 (2018)]
 - KO: [Hebborn, P.C., PRC 104, 024616 (2021)]
- Validate the ab initio predictions
- Same results on ¹⁵C: [Moschini, Yang & P.C., PRC 100, 044615 (2019)]
- Future :
 - Include Halo EFT with core excitation in reaction models
 - ► Extend to other nuclei (e.g., ³¹Ne)

Thanks to my collaborators

Hans-Werner Hammer Achim Schwenk

Daniel Phillips Live-Palm Kubushishi

Laura Moschini

Jiecheng Yang

Filomena Nunes Chloë Hebborn

