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Introduction

I HF+BCS using finite range interactions with tensor force
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Introduction

I Only for spherical even-even nuclei

I How to extend the model to study deformed even-even and odd
nuclei?

I S.p. wave functions whose radial parts depend on the projection
of the angular momentum on the quantisation axis =⇒ m

I For a fixed value of jk, states with smaller value of |mk| are more
bound in case of prolate deformations, and the inverse happens in
oblate nuclei.

I Slater determinant of the odd-even nucleus by adding one single
nucleon on a specific s.p. level =⇒ blocking effect.
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Our mean-field (HFBCS) approximation

(G. Co’, M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

I We considere as effective nucleon-nucleon interaction a
finite-range two-body force of the type:

V(~r1, ~r2) =
6∑

p=1
Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 11, ~σ1 · ~σ2, ~τ1 · ~τ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.
I VSO and VDD, terms of zero-range.
I Vp(~r1, ~r2), finite range terms: Gaussians, Yukawians, etc.
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Our mean-field approximation: HFBCS
I We assume that the s.p. wave functions, φk(x), can be factorized:

φk(x) = Rk(r) |k̃〉χtk

x =⇒ generalized coordinate, including r, spin and isospin.
I The radial part of the s.p. wave function,

Rk(r) ≡ Rtk
nk lk jk,mk

(r) ,

I The part of the s.p. wave function depending on the angular
coordinates, Ωk ≡ (θk, φk), and on the spin third component, sk,

|k̃〉 ≡ |lk
1
2 jkmk〉 =

∑
µksk

〈lkµk
1
2 sk|jkmk〉Ylkµk(Ωk)χsk ,

I Time-reversal invariance =⇒ Rtk
nk lk jk,mk

(r) = Rtk
nk lk jk,−mk

(r) =⇒
nucleus is an ellipsoid with the z axis as the symmetry axis.
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Our mean-field approximation: HFBCS

I We solve, in coordinate space, a set of equations of the type:[
〈k̃| − ~2

2m∇
2|k̃〉+ Uk(r1) + K(r1)

]
Rk(r1)−

∫
dr2r22Wk(r1, r2)Rk(r2) = εk Rk(r1)

I Hartree (Direct) term

Uk(r1) =

A∑
i=1

v2i
∫

dr2 r22 R2
i (r2) 〈k̃̃i|V(r1, r2)|k̃̃i〉

I Fock-Dirac term

Wk(r1, r2) =

A∑
i=1

v2i
[
R∗
i (r2)Ri(r1) 〈k̃̃i|V(r1, r2)|̃ik̃〉

]
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Our mean field approximation: HFBCS

I Density-dependent term:

K(r1) =
1
4π

A∑
i,j=1

v2i v2j
∫

dr2 r22
[
R∗i (r1)R∗j (r2) 〈̃ĩj|

∂V(r1, r2)
∂ρ

|̃ĩj〉Ri(r1)Rj(r2)

−R∗i (r1)R∗j (r2) 〈̃ĩj|
∂V(r1, r2)

∂ρ
|̃j̃i〉Rj(r1)Ri(r2)

]

I Total energy of an even-even nucleus:

E(A,Z) =
∑
k

v2k εk −
1
2
∑
k

v2k
∫ ∞
0

dr1 r21 [Uk(r1) + 2K(r1)] R2
k(r1)

+
1
2
∑
k

v2k
∫ ∞
0

dr1 dr2 r21 r22 Wk(r1, r2)× Rk(r1)Rk(r2)
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∂V(r1, r2)
∂ρ

|̃ĩj〉Ri(r1)Rj(r2)

−R∗i (r1)R∗j (r2) 〈̃ĩj|
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Our mean field approximation: HFBCS

I Nuclear density⇒Multipole expansion:

ρα(r) =
∑
k

|φk(x)|2 =
∑
L
ραL (r)YL0(Ω)

I Radii:

Rα =


∫

d3r r2 ρα(r)∫
d3r ρα(r)


1
2

=


∫

dr r4 ρα0 (r)∫
dr r2 ρα0 (r)


1
2

, α ≡ p,n

I Nuclear deformation:

Q20 =

√
16π
5

∫
dr r4ρ2(r) β2 =

√
5π
9

1
AR2

0
Q20 R0 = 1.2A1/3
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Numerical procedure

I The contribution of the two space coordinates r1 and r2, separated
by considering the Fourier transform of the effective nucleon-
nucleon interaction.

I The radial HF differential equations are solved by using the plane
wave expansion technique.

I After each HF iteration, the s.p. wave functions just obtained are
used in BCS equations in order to modify their occupation proba-
bilities.

I The iterative procedure starts by using the s.p. wave functions
obtained by solving the Schrödinger equation for a deformed
Woods-Saxon potential:

VWS(r,Ω) =
U0

1 + exp( r−R0
a )

+
Uso

r
exp( r−R0

a )[1 + exp( r−R0
a )
] 2 l·s+VC −ΛY20(Ω)
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Binding energies
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Comparison with experimental data
Brookhaven National Laboratory =⇒ http://www.nndc.bnl.gov/
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Comparison with experimental data
H. De Vries, C.W. De Jager and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).
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Comparison with experimental data
P. Möller et al., At. Data and Nucl. Data Tab. 109 (2016) 1
Brookhaven National Laboratory =⇒ http://www.nndc.bnl.gov/
I. Angeli, K. P. Marinova, At. Data and Nucl. Data Tab. 99 (2013) 69
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Single particle spectra
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Approximation for even-odd nuclei

I Solving HF =⇒ obtaining s.p. wave functions.
I Blocking =⇒ forcing a full occupation of the odd nucleon s.p.

wave function.
I Values of v2k =⇒ by solving BCS equations after each HF iteration.

I BCS equations modify the v2k of the other s.p. states.
I Preliminary results for some light nuclei isotopic chains: O, Ne,

Mg, Si, Ar and Ca.
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Binding and separation energies
D1S Interaction
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Binding and separation energies
D1S Interaction
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Binding and separation energies
D1S Interaction
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Nuclear radii
D1S Interaction
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Nuclear radii
D1S Interaction
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Main results

I Model to describe open shell nuclei, even-even and even-oddones,
using finite range efective interactions including tensor terms.

I Variational principle + Slater determinants built with s.p wave
functions whose radial part depends on m =⇒ deformation.

I Two steps in the iterative procedure of the method, HFBCS:
I Solving HF equations to generate the s.p. wave functions.
I Solving BCS equations to obtain the occupation probabilities of the

s.p. states.

I For each nucleus, oblate and prolate solutions =⇒ optimal solu-
tion, the smallest energy value.

I Optimal solutions with tensor force are less deformed.
I Very small values of the deformation parameter |β2|.
I Concerning binding energies, separation energies and radii, good

results for even-odd nuclei.
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Future work

I A global fit of the effective force containing tensor terms is needed
to have a good accuracy of the experimental data on binding en-
ergies, charge radii and distributions.

I Our HFBC approach shows s.p. properties still well recognizable.

I Set of s.p. wave functions with their occupation probabilities
=⇒ starting point to build up a Deformed Quasi-Particle Random
Phase Approximation.

I Extension of the method to study odd-odd nuclei.
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Thank you for your attention!

Patio Arrayanes Charles Nègre, Le Stryge
Alhambra (Granada) ©Musée Orsay (Paris)

...and we will see in the VI Gogny Conference
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