[Motivation](#page-7-0) [The method](#page-14-0) [Results: even-even nuclei](#page-35-0) [Results: even-odd nuclei](#page-41-0) [Conclusions](#page-52-0) 0000000

 000

000000

0000000

0000

UNIVERSIDAD DEGRANADA

Study of isotope chains in a mean field model with deformation

Marta Anguiano (mangui@ugr.es)

Dpto de Física Atómica, Molecular y Nuclear (UGR)

V Gogny Conference **Paris, December 11, 2024**

Work in colaboration with

▶ Antonio M. Lallena (lallena@ugr.es) **Universidad de Granada (Spain)**

I Giampaolo Co' (gpco@le.infn.it) **Università del Salento (Italy)**

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

OVERVIEW

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

▶ HF+BCS using finite range interactions with tensor force

M.A *et al.* Eur. Phys. J. A (2016) 52: 183 5/30

\triangleright Only for spherical even-even nuclei

- I How to extend the model to study deformed even-even and odd nuclei?
- \triangleright S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis \Longrightarrow *m*
- If For a fixed value of j_k , states with smaller value of $|m_k|$ are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- \triangleright Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level \Longrightarrow blocking effect.

- \triangleright Only for spherical even-even nuclei
- \blacktriangleright How to extend the model to study deformed even-even and odd nuclei?
- \triangleright S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis \Longrightarrow *m*
- If For a fixed value of j_k , states with smaller value of $|m_k|$ are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- \triangleright Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level \Longrightarrow blocking effect.

- \triangleright Only for spherical even-even nuclei
- \blacktriangleright How to extend the model to study deformed even-even and odd nuclei?
- \triangleright S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis \Longrightarrow *m*
- If For a fixed value of j_k , states with smaller value of $|m_k|$ are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- \triangleright Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level \Longrightarrow blocking effect.

- \triangleright Only for spherical even-even nuclei
- \blacktriangleright How to extend the model to study deformed even-even and odd nuclei?
- ▶ S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis \Longrightarrow *m*
- \blacktriangleright For a fixed value of *j_k*, states with smaller value of $|m_k|$ are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- \triangleright Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level \Longrightarrow blocking effect.

- \triangleright Only for spherical even-even nuclei
- \blacktriangleright How to extend the model to study deformed even-even and odd nuclei?
- \blacktriangleright S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis \Longrightarrow *m*
- \blacktriangleright For a fixed value of *j_k*, states with smaller value of $|m_k|$ are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- \triangleright Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level \Longrightarrow blocking effect.

OVERVIEW

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$
V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1,2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})
$$

- \rightharpoonup *O*_{*p*}(1, 2) indicates 1, σ₁ · σ₂, τ₁ · τ₂, σ₁ · σ₂ τ₁ · τ₂, *S*₁₂, *S*₁₂ $\vec{\tau}_1$ · τ₂.
- \triangleright *V*_{SO} and *V*_{DD}, terms of zero-range.
- \blacktriangleright $V_n(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$
V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1,2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})
$$

- ► $O_p(1, 2)$ indicates $1\!\!1$, $\vec{\sigma_1} \cdot \vec{\sigma_2}$, $\vec{\tau_1} \cdot \vec{\tau_2}$, $\vec{\sigma_1} \cdot \vec{\sigma_2} \cdot \vec{\tau_1} \cdot \vec{\tau_2}$, S_{12} , $S_{12} \vec{\tau_1} \cdot \vec{\tau_2}$.
- \triangleright *V*_{SO} and *V*_{DD}, terms of zero-range.
- \blacktriangleright $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$
V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1,2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})
$$

- ► $O_p(1, 2)$ indicates 1, $\vec{\sigma_1} \cdot \vec{\sigma_2}$, $\vec{\tau_1} \cdot \vec{\tau_2}$, $\vec{\sigma_1} \cdot \vec{\sigma_2} \cdot \vec{\tau_1} \cdot \vec{\tau_2}$, S_{12} , $S_{12} \vec{\tau_1} \cdot \vec{\tau_2}$.
- \triangleright *V*_{SO} and *V*_{DD}, terms of zero-range.
- $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$
V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1,2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})
$$

- ► $O_p(1, 2)$ indicates 1, $\vec{\sigma_1} \cdot \vec{\sigma_2}$, $\vec{\tau_1} \cdot \vec{\tau_2}$, $\vec{\sigma_1} \cdot \vec{\sigma_2} \cdot \vec{\tau_1} \cdot \vec{\tau_2}$, S_{12} , $S_{12} \vec{\tau_1} \cdot \vec{\tau_2}$.
- \triangleright *V*_{SO} and *V*_{DD}, terms of zero-range.
- \blacktriangleright $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

 \blacktriangleright We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

 $\phi_k(x) = R_k(r) \ket{\tilde{k}} \chi_{t_k}$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin. \triangleright The radial part of the s.p. wave function,

$$
R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,
$$

 \triangleright The part of the s.p. wave function depending on the angular $\mathrm{coordinates}, \Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$
|\tilde{k}\rangle \, \equiv \, |l_k \frac{1}{2} j_k m_k \rangle \, = \, \sum_{\mu_k s_k} \langle l_k \mu_k \frac{1}{2} s_k | j_k m_k \rangle \, Y_{l_k \mu_k}(\Omega_k) \, \chi_{s_k} \, ,
$$

▶ Time-reversal invariance $\Longrightarrow R_{n_kl_kj_k, m_k}^{t_k}(r) = R_{n_kl_kj_k, -m_k}^{t_k}(r) \Longrightarrow$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

 \blacktriangleright We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$
\phi_k(x) = R_k(r) \ket{\tilde{k}} \chi_{t_k}
$$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin. \blacktriangleright The radial part of the s.p. wave function,

$$
R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,
$$

 \triangleright The part of the s.p. wave function depending on the angular $\mathrm{coordinates}, \Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$
|\tilde{k}\rangle \, \equiv \, |l_k \frac{1}{2} j_k m_k \rangle \, = \, \sum_{\mu_k s_k} \langle l_k \mu_k \frac{1}{2} s_k | j_k m_k \rangle \, Y_{l_k \mu_k}(\Omega_k) \, \chi_{s_k} \, ,
$$

▶ Time-reversal invariance $\Longrightarrow R_{n_kl_kj_k, m_k}^{t_k}(r) = R_{n_kl_kj_k, -m_k}^{t_k}(r) \Longrightarrow$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

 \blacktriangleright We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$
\phi_k(x) = R_k(r) \ket{\tilde{k}} \chi_{t_k}
$$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin.

 \blacktriangleright The radial part of the s.p. wave function,

$$
R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,
$$

 \blacktriangleright The part of the s.p. wave function depending on the angular $\text{coordinates, } \Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$
|\tilde{k}\rangle \, \equiv \, |l_k \frac{1}{2} j_k m_k \rangle \, = \, \sum_{\mu_k s_k} \langle l_k \mu_k \frac{1}{2} s_k | j_k m_k \rangle \, Y_{l_k \mu_k}(\Omega_k) \, \chi_{s_k} \, ,
$$

▶ Time-reversal invariance $\Longrightarrow R_{n_kl_kj_k, m_k}^{t_k}(r) = R_{n_kl_kj_k, -m_k}^{t_k}(r) \Longrightarrow$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

 \blacktriangleright We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$
\phi_k(x) = R_k(r) \ket{\tilde{k}} \chi_{t_k}
$$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin.

 \blacktriangleright The radial part of the s.p. wave function,

$$
R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,
$$

 \blacktriangleright The part of the s.p. wave function depending on the angular $\mathrm{coordinates}, \Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$
|\tilde{k}\rangle \, \equiv \, |l_k \frac{1}{2} j_k m_k \rangle \, = \, \sum_{\mu_k s_k} \langle l_k \mu_k \frac{1}{2} s_k | j_k m_k \rangle \, Y_{l_k \mu_k}(\Omega_k) \, \chi_{s_k} \, ,
$$

▶ Time-reversal invariance $\Longrightarrow R_{n_k l_k j_k, m_k}^{t_k}(r) = R_{n_k l_k j_k, -m_k}^{t_k}(r) \Longrightarrow$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

 \triangleright We solve, in coordinate space, a set of equations of the type:

$$
\left[\langle \tilde{k} | - \frac{\hbar^2}{2m} \nabla^2 | \tilde{k} \rangle + \mathcal{U}_k(r_1) + \mathcal{K}(r_1) \right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)
$$

 \blacktriangleright Hartree (Direct) term

$$
\mathcal{U}_k(r_1) = \sum_{i=1}^A v_i^2 \int \mathrm{d}r_2 \, r_2^2 \, R_i^2(r_2) \, \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{k} \tilde{i} \rangle
$$

 \blacktriangleright Fock-Dirac term

$$
\mathcal{W}_k(r_1,r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1,\mathbf{r}_2) | \tilde{i} \tilde{k} \rangle \right]
$$

 \blacktriangleright We solve, in coordinate space, a set of equations of the type:

$$
\left[\langle \tilde{k} | -\frac{\hbar^2}{2m} \nabla^2 | \tilde{k} \rangle + \mathcal{U}_k(r_1) + \mathcal{K}(r_1) \right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)
$$

▶ Hartree (Direct) term

$$
\mathcal{U}_k(r_1) = \sum_{i=1}^A v_i^2 \int \mathrm{d}r_2 \, r_2^2 \, R_i^2(r_2) \, \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{k} \tilde{i} \rangle
$$

 \blacktriangleright Fock-Dirac term

$$
\mathcal{W}_k(r_1,r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1,\mathbf{r}_2) | \tilde{i} \tilde{k} \rangle \right]
$$

 \blacktriangleright We solve, in coordinate space, a set of equations of the type:

$$
\left[\langle \tilde{k} | -\frac{\hbar^2}{2m} \nabla^2 | \tilde{k} \rangle + \mathcal{U}_k(r_1) + \mathcal{K}(r_1) \right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)
$$

Independent Hartree (Direct) term

$$
\mathcal{U}_k(r_1) = \sum_{i=1}^A v_i^2 \int \mathrm{d}r_2 \, r_2^2 \, R_i^2(r_2) \, \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{k} \tilde{i} \rangle
$$

 \blacktriangleright Fock-Dirac term

$$
\mathcal{W}_k(r_1,r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k} \tilde{i} | V(\mathbf{r}_1,\mathbf{r}_2) | \tilde{i} \tilde{k} \rangle \right]
$$

Density-dependent term:

$$
\mathcal{K}(r_1) = \frac{1}{4\pi} \sum_{i,j=1}^{A} v_i^2 v_j^2 \int dr_2 r_2^2 \left[R_i^*(r_1) R_j^*(r_2) \langle \tilde{ij} | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{ij} \rangle R_i(r_1) R_j(r_2) - R_i^*(r_1) R_j^*(r_2) \langle \tilde{ij} | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{ji} \rangle R_j(r_1) R_i(r_2) \right]
$$

 \triangleright Total energy of an even-even nucleus:

$$
E(A, Z) = \sum_{k} v_k^2 \epsilon_k - \frac{1}{2} \sum_{k} v_k^2 \int_0^{\infty} dr_1 r_1^2 \left[\mathcal{U}_k(r_1) + 2 \mathcal{K}(r_1) \right] R_k^2(r_1)
$$

+ $\frac{1}{2} \sum_{k} v_k^2 \int_0^{\infty} dr_1 dr_2 r_1^2 r_2^2 \mathcal{W}_k(r_1, r_2) \times R_k(r_1) R_k(r_2)$

I Density-dependent term:

$$
\mathcal{K}(r_1) = \frac{1}{4\pi} \sum_{i,j=1}^{A} v_i^2 v_j^2 \int dr_2 r_2^2 \left[R_i^*(r_1) R_j^*(r_2) \langle \tilde{i}j | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{i}j \rangle R_i(r_1) R_j(r_2) \right. \\ - R_i^*(r_1) R_j^*(r_2) \langle \tilde{i}j | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{j}i \rangle R_j(r_1) R_i(r_2) \right]
$$

 \triangleright Total energy of an even-even nucleus:

$$
E(A, Z) = \sum_{k} v_k^2 \epsilon_k - \frac{1}{2} \sum_{k} v_k^2 \int_0^{\infty} dr_1 r_1^2 \left[U_k(r_1) + 2 K(r_1) \right] R_k^2(r_1)
$$

+
$$
\frac{1}{2} \sum_{k} v_k^2 \int_0^{\infty} dr_1 dr_2 r_1^2 r_2^2 W_k(r_1, r_2) \times R_k(r_1) R_k(r_2)
$$

^I Nuclear density [⇒] Multipole expansion:

$$
\rho^{\alpha}(\mathbf{r}) = \sum_{k} |\phi_k(x)|^2 = \sum_{L} \rho_L^{\alpha}(r) Y_{L0}(\Omega)
$$

 \triangleright Radii:

$$
R_{\alpha} = \left[\frac{\int d^3 r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3 r \, \rho^{\alpha}(\mathbf{r})} \right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)} \right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}
$$

 \blacktriangleright Nuclear deformation:

$$
Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}
$$

^I Nuclear density [⇒] Multipole expansion:

$$
\rho^{\alpha}(\mathbf{r}) = \sum_{k} |\phi_k(x)|^2 = \sum_{L} \rho_L^{\alpha}(r) Y_{L0}(\Omega)
$$

$$
\blacktriangleright
$$
 Radii:

$$
R_{\alpha} = \left[\frac{\int d^3r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3r \, \rho^{\alpha}(\mathbf{r})}\right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)}\right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}
$$

 \blacktriangleright Nuclear deformation:

$$
Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}
$$

^I Nuclear density [⇒] Multipole expansion:

$$
\rho^{\alpha}(\mathbf{r}) = \sum_{k} |\phi_k(x)|^2 = \sum_{L} \rho_L^{\alpha}(r) Y_{L0}(\Omega)
$$

▶ Radii:

$$
R_{\alpha} = \left[\frac{\int d^3r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3r \, \rho^{\alpha}(\mathbf{r})}\right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)}\right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}
$$

 \blacktriangleright Nuclear deformation:

$$
Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}
$$

- \blacktriangleright The contribution of the two space coordinates \mathbf{r}_1 and \mathbf{r}_2 , separated by considering the Fourier transform of the effective nucleonnucleon interaction.
- \triangleright The radial HF differential equations are solved by using the plane wave expansion technique.
- \blacktriangleright After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- \triangleright The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$
V_{\text{WS}}(r,\Omega) = \frac{U_0}{1+\exp(\frac{r-R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r-R_0}{a})}{\left[1+\exp(\frac{r-R_0}{a})\right]^{-2}} \mathbf{1} \cdot \mathbf{s} + V_{\text{C}} - \Lambda Y_{20}(\Omega)
$$

- \blacktriangleright The contribution of the two space coordinates \mathbf{r}_1 and \mathbf{r}_2 , separated by considering the Fourier transform of the effective nucleonnucleon interaction.
- \triangleright The radial HF differential equations are solved by using the plane wave expansion technique.
- \blacktriangleright After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- \triangleright The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$
V_{\text{WS}}(r,\Omega) = \frac{U_0}{1+\exp(\frac{r-R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r-R_0}{a})}{\left[1+\exp(\frac{r-R_0}{a})\right]^{-2}} \mathbf{1} \cdot \mathbf{s} + V_{\text{C}} - \Lambda Y_{20}(\Omega)
$$

- \blacktriangleright The contribution of the two space coordinates \mathbf{r}_1 and \mathbf{r}_2 , separated by considering the Fourier transform of the effective nucleonnucleon interaction.
- \blacktriangleright The radial HF differential equations are solved by using the plane wave expansion technique.
- \blacktriangleright After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- \triangleright The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$
V_{\text{WS}}(r,\Omega) = \frac{U_0}{1+\exp(\frac{r-R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r-R_0}{a})}{\left[1+\exp(\frac{r-R_0}{a})\right]^{-2}} \mathbf{1} \cdot \mathbf{s} + V_{\text{C}} - \Lambda Y_{20}(\Omega)
$$

- \blacktriangleright The contribution of the two space coordinates \mathbf{r}_1 and \mathbf{r}_2 , separated by considering the Fourier transform of the effective nucleonnucleon interaction.
- \blacktriangleright The radial HF differential equations are solved by using the plane wave expansion technique.
- \blacktriangleright After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- \blacktriangleright The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$
V_{\text{WS}}(r,\Omega) = \frac{U_0}{1+\exp(\frac{r-R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r-R_0}{a})}{\left[1+\exp(\frac{r-R_0}{a})\right]^{-2}} \mathbf{1} \cdot \mathbf{s} + V_{\text{C}} - \Lambda \, Y_{20}(\Omega)
$$

OVERVIEW

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

Binding energies

Comparison with experimental data

Brookhaven National Laboratory =⇒ **<http://www.nndc.bnl.gov/>**

COMPARISON WITH EXPERIMENTAL DATA

H. De Vries, C.W. De Jager and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

Comparison with experimental data

P. Möller *et al.***, At. Data and Nucl. Data Tab. 109 (2016) 1 Brookhaven National Laboratory** =⇒ **<http://www.nndc.bnl.gov/> I. Angeli, K. P. Marinova, At. Data and Nucl. Data Tab. 99 (2013) 69**

CAUTION!!! Exp. β_2 considering first 2^+ excited state due to a rotation of the nucleus described by a liquid drop model $\Longrightarrow \beta_2 = 0.353$ for ¹⁶O: 2⁺ state at 6.917 MeV _{18/30}

OVERVIEW

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

\triangleright Solving HF \Longrightarrow obtaining s.p. wave functions.

- ▶ Blocking \Rightarrow forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of v_k^2 \Longrightarrow by solving BCS equations after each HF iteration.
- \blacktriangleright BCS equations modify the v_k^2 of the other s.p. states.
- \triangleright Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

- \triangleright Solving HF \Longrightarrow obtaining s.p. wave functions.
- ▶ Blocking \Rightarrow forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of v_k^2 \Longrightarrow by solving BCS equations after each HF iteration.
- \blacktriangleright BCS equations modify the v_k^2 of the other s.p. states.
- \triangleright Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

- \triangleright Solving HF \Longrightarrow obtaining s.p. wave functions.
- ▶ Blocking \Rightarrow forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of v_k^2 \Longrightarrow by solving BCS equations after each HF iteration.
- \blacktriangleright BCS equations modify the v_k^2 of the other s.p. states.
- \triangleright Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

- \triangleright Solving HF \Longrightarrow obtaining s.p. wave functions.
- ▶ Blocking \Rightarrow forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of v_k^2 \Longrightarrow by solving BCS equations after each HF iteration.
- \blacktriangleright BCS equations modify the v_k^2 of the other s.p. states.
- \triangleright Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

- $▶$ Solving HF \Longrightarrow obtaining s.p. wave functions.
- ▶ Blocking \Rightarrow forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of v_k^2 \Longrightarrow by solving BCS equations after each HF iteration.
- \blacktriangleright BCS equations modify the v_k^2 of the other s.p. states.
- **Preliminary results for some light nuclei isotopic chains: O, Ne,** Mg, Si, Ar and Ca.

Binding and separation energies **D1S Interaction**

Binding and separation energies **D1S Interaction**

Binding and separation energies **D1S Interaction**

NUCLEAR RADII

J.-P. Delaroche *et al.* Phys. Rev. C81 (2010) 014303:

 $R_{\rm p}^2$ = $R_{\rm ch}^2$ – $(0.8775 \,\rm fm)^2$ + 0.1148 $\frac{N}{Z}$ $\frac{N}{Z}$ fm² – 0.033 fm²

D1S Interaction

25/30

NUCLEAR RADII

D1S Interaction

OVERVIEW

[Motivation](#page-7-0)

[The method](#page-14-0)

[Results: even-even nuclei](#page-35-0)

[Results: even-odd nuclei](#page-41-0)

- \triangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \triangleright Variational principle $+$ Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.

If Two steps in the iterative procedure of the method, **HFBCS**:

-
-
- ▶ For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \triangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- If Two steps in the iterative procedure of the method, **HFBCS**:
	-
	-
- **►** For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \triangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- If Two steps in the iterative procedure of the method, **HFBCS**:
	- \triangleright Solving HF equations to generate the s.p. wave functions.
	- In Solving BCS equations to obtain the occupation probabilities of the
- **►** For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \triangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- \triangleright Solving HF equations to generate the s.p. wave functions.
	- \triangleright Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \triangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- Solving HF equations to generate the s.p. wave functions.
	- Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \blacktriangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- Solving HF equations to generate the s.p. wave functions.
	- \triangleright Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \Rightarrow **optimal solution**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \triangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \blacktriangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- Solving HF equations to generate the s.p. wave functions.
	- \triangleright Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \implies optimal solu**tion**, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- \triangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \blacktriangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- Solving HF equations to generate the s.p. wave functions.
	- \triangleright Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \implies optimal solu**tion**, the smallest energy value.
- ▶ Optimal solutions with tensor force are less deformed.
- \blacktriangleright Very small values of the deformation parameter $|\beta_2|$.
- \triangleright Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

- \blacktriangleright Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- \blacktriangleright Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \Longrightarrow$ deformation.
- \blacktriangleright Two steps in the iterative procedure of the method, **HFBCS**:
	- Solving HF equations to generate the s.p. wave functions.
	- \triangleright Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- **►** For each nucleus, oblate and prolate solutions \implies optimal solu**tion**, the smallest energy value.
- ▶ Optimal solutions with tensor force are less deformed.
- ► Very small values of the deformation parameter $|\beta_2|$.
- **In Concerning binding energies, separation energies and radii, good** results for even-odd nuclei.

- \blacktriangleright A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- \triangleright Our HFBC approach shows s.p. properties still well recognizable.
- \triangleright Set of s.p. wave functions with their occupation probabilities \Rightarrow starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- \triangleright Extension of the method to study odd-odd nuclei.

- \blacktriangleright A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- \triangleright Our HFBC approach shows s.p. properties still well recognizable.
- \triangleright Set of s.p. wave functions with their occupation probabilities \Rightarrow starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- \triangleright Extension of the method to study odd-odd nuclei.

- \blacktriangleright A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- \triangleright Our HFBC approach shows s.p. properties still well recognizable.
- \triangleright Set of s.p. wave functions with their occupation probabilities \Rightarrow starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- \triangleright Extension of the method to study odd-odd nuclei.

- \blacktriangleright A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- \triangleright Our HFBC approach shows s.p. properties still well recognizable.
- \triangleright Set of s.p. wave functions with their occupation probabilities \implies starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- \blacktriangleright Extension of the method to study odd-odd nuclei.

Alhambra (Granada) ©Musée Orsay (Paris)

Patio Arrayanes Charles Nègre, Le Stryge

...and we will see in the VI Gogny Conference