MOTIVATION
 The method

 000
 0000000

Results: even-even nuclei 000000 Results: even-odd nucle 0000000 Conclusions 0000

UNIVERSIDAD DE GRANADA

Study of isotope chains in a mean field model with deformation

Marta Anguiano (mangui@ugr.es)

Dpto de Física Atómica, Molecular y Nuclear (UGR)

V Gogny Conference Paris, December 11, 2024

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

Work in colaboration with

Antonio M. Lallena (lallena@ugr.es)

Universidad de Granada (Spain)

Giampaolo Co' (gpco@le.infn.it)
 Università del Salento (Italy)

	Motivation The method	lei Conclusions
000 000000 000000 000000	0000000	0000

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

	Motivation The method	lei Conclusions
000 000000 000000 000000	0000000	0000

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

	Motivation The method	lei Conclusions
000 000000 000000 000000	0000000	0000

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

	Motivation The method	lei Conclusions
000 000000 000000 000000	0000000	0000

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

	Motivation The method	lei Conclusions
000 000000 000000 000000	0000000	0000

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
●00	000000	000000	0000000	0000

Overview

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

MOTIVATION	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

► HF+BCS using finite range interactions with tensor force

M.A et al. Eur. Phys. J. A (2016) 52: 183

Only for spherical even-even nuclei

- How to extend the model to study deformed even-even and odd nuclei?
- ► S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis ⇒ m
- ▶ For a fixed value of *j_k*, states with smaller value of |*m_k*| are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- ► Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level ⇒ blocking effect.

- Only for spherical even-even nuclei
- How to extend the model to study deformed even-even and odd nuclei?
- ► S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis ⇒ m
- ▶ For a fixed value of *j_k*, states with smaller value of |*m_k*| are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- ► Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level ⇒ blocking effect.

- Only for spherical even-even nuclei
- How to extend the model to study deformed even-even and odd nuclei?
- ► S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis ⇒ m
- ▶ For a fixed value of *j_k*, states with smaller value of |*m_k*| are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- ► Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level ⇒ blocking effect.

- Only for spherical even-even nuclei
- How to extend the model to study deformed even-even and odd nuclei?
- S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis $\implies m$
- ► For a fixed value of *j_k*, states with smaller value of |*m_k*| are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- ► Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level ⇒ blocking effect.

- Only for spherical even-even nuclei
- How to extend the model to study deformed even-even and odd nuclei?
- S.p. wave functions whose radial parts depend on the projection of the angular momentum on the quantisation axis $\implies m$
- ► For a fixed value of *j_k*, states with smaller value of *|m_k|* are more bound in case of prolate deformations, and the inverse happens in oblate nuclei.
- ► Slater determinant of the odd-even nucleus by adding one single nucleon on a specific s.p. level ⇒ blocking effect.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

Overview

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1, 2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})$$

- $\blacktriangleright \ O_p(1,2) \text{ indicates } \mathbb{1}, \ \vec{\sigma_1} \cdot \vec{\sigma_2}, \ \vec{\tau_1} \cdot \vec{\tau_2}, \ \vec{\sigma_1} \cdot \vec{\sigma_2}, \ \vec{\tau_1} \cdot \vec{\tau_2}, \ S_{12}, \ S_{12}, \ \vec{\tau_1} \cdot \vec{\tau_2}.$
- V_{SO} and V_{DD} , terms of zero-range.
- ▶ $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1, 2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})$$

- $O_p(1,2)$ indicates $1, \vec{\sigma_1} \cdot \vec{\sigma_2}, \vec{\tau_1} \cdot \vec{\tau_2}, \vec{\sigma_1} \cdot \vec{\sigma_2}, \vec{\tau_1} \cdot \vec{\tau_2}, S_{12}, S_{12}, \vec{\tau_1} \cdot \vec{\tau_2}.$
- ► *V*_{SO} and *V*_{DD}, terms of zero-range.
- ▶ $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1, 2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})$$

- $\blacktriangleright \ O_p(1,2) \text{ indicates 1 }, \ \vec{\sigma_1} \cdot \vec{\sigma_2}, \ \vec{\tau_1} \cdot \vec{\tau_2}, \ \vec{\sigma_1} \cdot \vec{\sigma_2}, \ \vec{\tau_1} \cdot \vec{\tau_2}, \ S_{12}, \ S_{12}, \ \vec{\tau_1} \cdot \vec{\tau_2}.$
- ► *V*_{SO} and *V*_{DD}, terms of zero-range.
- \blacktriangleright $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

(G. Co', M.A and A.M. Lallena, Phys. Rev. C104 (2021) 014313)

$$V(\vec{r_1}, \vec{r_2}) = \sum_{p=1}^{6} V_p(\vec{r_1}, \vec{r_2}) O_p(1, 2) + V_{\text{SO}}(\vec{r_1}, \vec{r_2}) + V_{\text{DD}}(\vec{r_1}, \vec{r_2}) + V_{\text{Coul}}(\vec{r_1}, \vec{r_2})$$

- $O_p(1,2)$ indicates 11, $\vec{\sigma_1} \cdot \vec{\sigma_2}$, $\vec{\tau_1} \cdot \vec{\tau_2}$, $\vec{\sigma_1} \cdot \vec{\sigma_2} \cdot \vec{\tau_1} \cdot \vec{\tau_2}$, S_{12} , S_{12} , $\vec{\tau_1} \cdot \vec{\tau_2}$.
- V_{SO} and V_{DD} , terms of zero-range.
- ▶ $V_p(\vec{r_1}, \vec{r_2})$, finite range terms: Gaussians, Yukawians, etc.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$\phi_k(x) = R_k(r) \ket{\tilde{k}} \chi_{t_k}$$

x ⇒ generalized coordinate, including **r**, spin and isospin.
The radial part of the s.p. wave function,

$$R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,$$

• The part of the s.p. wave function depending on the angular coordinates, $\Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$| ilde{k}
angle \,\equiv\, |l_krac{1}{2}j_km_k
angle \,=\, \sum_{\mu_ks_k} \langle l_k\mu_krac{1}{2}s_k|j_km_k
angle\, Y_{l_k\mu_k}(\Omega_k)\, \chi_{s_k}\,,$$

▶ Time-reversal invariance $\implies R_{n_k l_k j_k, m_k}^{t_k}(r) = R_{n_k l_k j_k, -m_k}^{t_k}(r) \implies$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$\phi_k(x) \,=\, R_k(r) \ket{ ilde{k}} \chi_{t_k}$$

x ⇒ generalized coordinate, including **r**, spin and isospin.
The radial part of the s.p. wave function,

$$R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,$$

• The part of the s.p. wave function depending on the angular coordinates, $\Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$| ilde{k}
angle \,\equiv\, |l_k rac{1}{2} j_k m_k
angle \,=\, \sum_{\mu_k s_k} \left\langle l_k \mu_k rac{1}{2} s_k | j_k m_k
ight
angle \, Y_{l_k \mu_k}(\Omega_k) \, \chi_{s_k} \,,$$

▶ Time-reversal invariance $\implies R_{n_k l_k j_k, m_k}^{t_k}(r) = R_{n_k l_k j_k, -m_k}^{t_k}(r) \implies$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$\phi_k(x) \,=\, R_k(r) \ket{ ilde{k}} \chi_{t_k}$$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin.

► The radial part of the s.p. wave function,

$$R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,$$

• The part of the s.p. wave function depending on the angular coordinates, $\Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$| ilde{k}
angle \,\equiv\, |l_krac{1}{2}j_km_k
angle \,=\, \sum_{\mu_ks_k} raket{l_k\mu_krac{1}{2}s_k|j_km_k
angle \, Y_{l_k\mu_k}(\Omega_k) \, \chi_{s_k} \,,$$

▶ Time-reversal invariance $\implies R_{n_k l_k j_k, m_k}^{t_k}(r) = R_{n_k l_k j_k, -m_k}^{t_k}(r) \implies$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We assume that the s.p. wave functions, $\phi_k(x)$, can be factorized:

$$\phi_k(x) \,=\, R_k(r) \ket{ ilde{k}} \chi_{t_k}$$

 $x \Longrightarrow$ generalized coordinate, including **r**, spin and isospin.

► The radial part of the s.p. wave function,

$$R_k(r) \equiv R_{n_k l_k j_k, m_k}^{t_k}(r) ,$$

• The part of the s.p. wave function depending on the angular coordinates, $\Omega_k \equiv (\theta_k, \phi_k)$, and on the spin third component, s_k ,

$$| ilde{k}
angle \,\equiv\, |l_krac{1}{2}j_km_k
angle \,=\, \sum_{\mu_ks_k} raket{l_k\mu_krac{1}{2}s_k|j_km_k
angle \, Y_{l_k\mu_k}(\Omega_k) \, \chi_{s_k} \, ,$$

► Time-reversal invariance $\implies R_{n_k l_{kj_k, m_k}}^{t_k}(r) = R_{n_k l_{kj_k, -m_k}}^{t_k}(r) \implies$ nucleus is an ellipsoid with the *z* axis as the symmetry axis.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We solve, in coordinate space, a set of equations of the type:

$$\left[\langle \tilde{k}| - \frac{\hbar^2}{2m} \nabla^2 |\tilde{k}\rangle + \mathcal{U}_k(r_1) + \mathcal{K}(r_1)\right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)$$

► Hartree (Direct) term

$$\mathcal{U}_k(r_1) = \sum_{i=1}^A v_i^2 \int \mathrm{d}r_2 r_2^2 R_i^2(r_2) \langle \tilde{k}\tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{k}\tilde{i} \rangle$$

► Fock-Dirac term

$$\mathcal{W}_k(r_1, r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k}\tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{i}\tilde{k} \rangle \right]$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We solve, in coordinate space, a set of equations of the type:

$$\left[\langle \tilde{k}| - \frac{\hbar^2}{2m} \nabla^2 |\tilde{k}\rangle + \mathcal{U}_k(r_1) + \mathcal{K}(r_1)\right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)$$

Hartree (Direct) term

$$\mathcal{U}_k(r_1) = \sum_{i=1}^A v_i^2 \int \mathrm{d}r_2 \, r_2^2 \, R_i^2(r_2) \, \langle \tilde{k}\tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{k}\tilde{i} \rangle$$

► Fock-Dirac term

$$\mathcal{W}_k(r_1, r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k}\tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{i}\tilde{k} \rangle \right]$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

• We solve, in coordinate space, a set of equations of the type:

$$\left[\langle \tilde{k}| - \frac{\hbar^2}{2m} \nabla^2 |\tilde{k}\rangle + \frac{\mathcal{U}_k(r_1)}{2m} + \mathcal{K}(r_1)\right] R_k(r_1) - \int dr_2 r_2^2 \mathcal{W}_k(r_1, r_2) R_k(r_2) = \epsilon_k R_k(r_1)$$

► Hartree (Direct) term

$$\mathcal{U}_{k}(r_{1}) \,=\, \sum_{i=1}^{A}\, v_{i}^{2} \int \mathrm{d}r_{2}\, r_{2}^{2}\, R_{i}^{2}(r_{2})\, \langle ilde{k} ilde{i} | V(\mathbf{r}_{1},\mathbf{r}_{2}) | ilde{k} ilde{i}
angle$$

Fock-Dirac term

$$\mathcal{W}_k(r_1, r_2) = \sum_{i=1}^A v_i^2 \left[R_i^*(r_2) R_i(r_1) \langle \tilde{k}\tilde{i} | V(\mathbf{r}_1, \mathbf{r}_2) | \tilde{i}\tilde{k} \rangle \right]$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

Density-dependent term:

$$\begin{aligned} \mathcal{K}(r_1) \ &= \ \frac{1}{4\pi} \ \sum_{i,j=1}^A \ v_i^2 \ v_j^2 \int \mathrm{d}r_2 \ r_2^2 \ \left[R_i^*(r_1) \ R_j^*(r_2) \ \langle \widetilde{ij} | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \widetilde{ij} \rangle \ R_i(r_1) \ R_j(r_2) \right. \\ &\left. - R_i^*(r_1) \ R_j^*(r_2) \ \langle \widetilde{ij} | \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \widetilde{ji} \rangle \ R_j(r_1) \ R_i(r_2) \right] \end{aligned}$$

► Total energy of an even-even nucleus:

$$E(A,Z) = \sum_{k} v_{k}^{2} \epsilon_{k} - \frac{1}{2} \sum_{k} v_{k}^{2} \int_{0}^{\infty} dr_{1} r_{1}^{2} \left[\mathcal{U}_{k}(r_{1}) + 2 \mathcal{K}(r_{1}) \right] R_{k}^{2}(r_{1}) + \frac{1}{2} \sum_{k} v_{k}^{2} \int_{0}^{\infty} dr_{1} dr_{2} r_{1}^{2} r_{2}^{2} \mathcal{W}_{k}(r_{1},r_{2}) \times R_{k}(r_{1}) R_{k}(r_{2})$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

Density-dependent term:

$$\begin{aligned} \mathcal{K}(r_1) \ = \ \frac{1}{4\pi} \ \sum_{i,j=1}^A \ v_i^2 \ v_j^2 \int \mathrm{d}r_2 \ r_2^2 \ \left[R_i^*(r_1) \ R_j^*(r_2) \ \langle \tilde{i}\tilde{j}| \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{i}\tilde{j} \rangle \ R_i(r_1) \ R_j(r_2) \right. \\ \left. - R_i^*(r_1) \ R_j^*(r_2) \ \langle \tilde{i}\tilde{j}| \frac{\partial V(\mathbf{r}_1, \mathbf{r}_2)}{\partial \rho} | \tilde{j}\tilde{i} \rangle \ R_j(r_1) \ R_i(r_2) \right] \end{aligned}$$

Total energy of an even-even nucleus:

$$E(A,Z) = \sum_{k} v_{k}^{2} \epsilon_{k} - \frac{1}{2} \sum_{k} v_{k}^{2} \int_{0}^{\infty} dr_{1} r_{1}^{2} \left[\mathcal{U}_{k}(r_{1}) + 2\mathcal{K}(r_{1}) \right] R_{k}^{2}(r_{1}) + \frac{1}{2} \sum_{k} v_{k}^{2} \int_{0}^{\infty} dr_{1} dr_{2} r_{1}^{2} r_{2}^{2} \mathcal{W}_{k}(r_{1},r_{2}) \times R_{k}(r_{1}) R_{k}(r_{2})$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

► Nuclear density ⇒ Multipole expansion:

$$\rho^{\alpha}(\mathbf{r}) = \sum_{k} \left|\phi_{k}(x)\right|^{2} = \sum_{L} \rho_{L}^{\alpha}(r) Y_{L0}(\Omega)$$

► Radii:

$$R_{\alpha} = \left[\frac{\int d^3 r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3 r \, \rho^{\alpha}(\mathbf{r})}\right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)}\right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}$$

► Nuclear deformation:

$$Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

► Nuclear density ⇒ Multipole expansion:

$$\rho^{\alpha}(\mathbf{r}) = \sum_{k} |\phi_{k}(x)|^{2} = \sum_{L} \rho_{L}^{\alpha}(r) Y_{L0}(\Omega)$$

$$R_{\alpha} = \left[\frac{\int d^3 r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3 r \, \rho^{\alpha}(\mathbf{r})}\right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)}\right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}$$

► Nuclear deformation:

$$Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

► Nuclear density ⇒ Multipole expansion:

$$\rho^{\alpha}(\mathbf{r}) = \sum_{k} |\phi_{k}(x)|^{2} = \sum_{L} \rho_{L}^{\alpha}(r) Y_{L0}(\Omega)$$

► Radii:

$$R_{\alpha} = \left[\frac{\int d^3 r \, r^2 \, \rho^{\alpha}(\mathbf{r})}{\int d^3 r \, \rho^{\alpha}(\mathbf{r})}\right]^{\frac{1}{2}} = \left[\frac{\int dr \, r^4 \, \rho_0^{\alpha}(r)}{\int dr \, r^2 \, \rho_0^{\alpha}(r)}\right]^{\frac{1}{2}}, \quad \alpha \equiv \mathbf{p}, \mathbf{n}$$

Nuclear deformation:

$$Q_{20} = \sqrt{\frac{16\pi}{5}} \int dr r^4 \rho_2(r) \quad \beta_2 = \sqrt{\frac{5\pi}{9}} \frac{1}{AR_0^2} Q_{20} \quad R_0 = 1.2 A^{1/3}$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

- ► The contribution of the two space coordinates **r**₁ and **r**₂, separated by considering the Fourier transform of the effective nucleon-nucleon interaction.
- The radial HF differential equations are solved by using the plane wave expansion technique.
- After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- ► The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$V_{\rm WS}(r,\Omega) = \frac{U_0}{1 + \exp(\frac{r - R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r - R_0}{a})}{\left[1 + \exp(\frac{r - R_0}{a})\right]^2} \mathbf{l} \cdot \mathbf{s} + V_{\rm C} - \Lambda Y_{20}(\Omega)$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

- ► The contribution of the two space coordinates **r**₁ and **r**₂, separated by considering the Fourier transform of the effective nucleon-nucleon interaction.
- The radial HF differential equations are solved by using the plane wave expansion technique.
- After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- ► The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$V_{\rm WS}(r,\Omega) = \frac{U_0}{1 + \exp(\frac{r - R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r - R_0}{a})}{\left[1 + \exp(\frac{r - R_0}{a})\right]^2} \mathbf{l} \cdot \mathbf{s} + V_{\rm C} - \Lambda Y_{20}(\Omega)$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	0000000	0000

- ► The contribution of the two space coordinates **r**₁ and **r**₂, separated by considering the Fourier transform of the effective nucleon-nucleon interaction.
- The radial HF differential equations are solved by using the plane wave expansion technique.
- After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- ► The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$V_{\rm WS}(r,\Omega) = \frac{U_0}{1 + \exp(\frac{r-R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r-R_0}{a})}{\left[1 + \exp(\frac{r-R_0}{a})\right]^2} \mathbf{1} \cdot \mathbf{s} + V_{\rm C} - \Lambda Y_{20}(\Omega)$$

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	0000000	0000

- ► The contribution of the two space coordinates **r**₁ and **r**₂, separated by considering the Fourier transform of the effective nucleon-nucleon interaction.
- The radial HF differential equations are solved by using the plane wave expansion technique.
- After each HF iteration, the s.p. wave functions just obtained are used in BCS equations in order to modify their occupation probabilities.
- ► The iterative procedure starts by using the s.p. wave functions obtained by solving the Schrödinger equation for a deformed Woods-Saxon potential:

$$V_{\rm WS}(r,\Omega) = \frac{U_0}{1 + \exp(\frac{r - R_0}{a})} + \frac{U_{so}}{r} \frac{\exp(\frac{r - R_0}{a})}{\left[1 + \exp(\frac{r - R_0}{a})\right]^2} \mathbf{l} \cdot \mathbf{s} + V_{\rm C} - \Lambda \, Y_{20}(\Omega)$$

Motivation	The method	RESULTS: EVEN-EVEN NUCLEI	Results: even-odd nuclei	Conclusions
000	0000000	●00000	0000000	0000

Overview

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

Motivation	The method	RESULTS: EVEN-EVEN NUCLEI	Results: even-odd nuclei	Conclusions
000	0000000	00000	000000	0000

BINDING ENERGIES

Motivation	The method	RESULTS: EVEN-EVEN NUCLEI	Results: even-odd nuclei	Conclusions
000	000000	00000	0000000	0000

Comparison with experimental data

Brookhaven National Laboratory \implies http://www.nndc.bnl.gov/

Motivation	The method	RESULTS: EVEN-EVEN NUCLEI	Results: even-odd nuclei	Conclusions
000	000000	000000	0000000	0000

Comparison with experimental data

H. De Vries, C.W. De Jager and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

Motivation	The method	RESULTS: EVEN-EVEN NUCLEI	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

Comparison with experimental data

P. Möller et al., At. Data and Nucl. Data Tab. 109 (2016) 1 Brookhaven National Laboratory \implies http://www.nndc.bnl.gov/ I. Angeli, K. P. Marinova, At. Data and Nucl. Data Tab. 99 (2013) 69

CAUTION!!! Exp. $|\beta_2|$ considering first 2⁺ excited state due to a rotation of the nucleus described by a liquid drop model $\implies \beta_2 = 0.353$ for ¹⁶O: 2⁺ state at 6.917 MeV

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	●000000	0000

Overview

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

Conclusions

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

• Solving $HF \implies$ obtaining s.p. wave functions.

- ▶ Blocking ⇒ forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of $v_k^2 \implies$ by solving BCS equations after each HF iteration.
- BCS equations modify the v_k^2 of the other s.p. states.
- Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

- Solving $HF \implies$ obtaining s.p. wave functions.
- ▶ Blocking ⇒ forcing a full occupation of the odd nucleon s.p. wave function.
- ▶ Values of $v_k^2 \implies$ by solving BCS equations after each HF iteration.
- BCS equations modify the v_k^2 of the other s.p. states.
- Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

- Solving $HF \implies$ obtaining s.p. wave functions.
- ► Blocking ⇒ forcing a full occupation of the odd nucleon s.p. wave function.
- Values of $v_k^2 \Longrightarrow$ by solving BCS equations after each HF iteration.
- **BCS** equations modify the v_k^2 of the other s.p. states.
- Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

- Solving $HF \implies$ obtaining s.p. wave functions.
- ► Blocking ⇒ forcing a full occupation of the odd nucleon s.p. wave function.
- Values of $v_k^2 \implies$ by solving BCS equations after each HF iteration.
- BCS equations modify the v_k^2 of the other s.p. states.
- Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

- Solving $HF \implies$ obtaining s.p. wave functions.
- ► Blocking ⇒ forcing a full occupation of the odd nucleon s.p. wave function.
- Values of $v_k^2 \implies$ by solving BCS equations after each HF iteration.
- BCS equations modify the v_k^2 of the other s.p. states.
- Preliminary results for some light nuclei isotopic chains: O, Ne, Mg, Si, Ar and Ca.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	000000	0000

BINDING AND SEPARATION ENERGIES D1S Interaction

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

BINDING AND SEPARATION ENERGIES D1S Interaction

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	000000	000000	0000000	0000

BINDING AND SEPARATION ENERGIES D1S Interaction

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

Nuclear radii

J.-P. Delaroche et al. Phys. Rev. C81 (2010) 014303:

 $R_{\rm p}^2 = R_{\rm ch}^2 - (0.8775\,{\rm fm})^2 + 0.1148\,\frac{N}{Z}\,{\rm fm}^2 - 0.033\,{\rm fm}^2$

25/30

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	000000	0000

Nuclear radii

D1S Interaction

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

Overview

Motivation

The method

Results: even-even nuclei

Results: even-odd nuclei

Conclusions

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

MAIN RESULTS

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ▶ Variational principle + Slater determinants built with s.p wave functions whose radial part depends on *m* ⇒ deformation.

• Two steps in the iterative procedure of the method, **HFBCS**:

- Solving HF equations to generate the s.p. wave functions.
- Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- ▶ For each nucleus, oblate and prolate solutions ⇒ optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ▶ Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- For each nucleus, oblate and prolate solutions => optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- For each nucleus, oblate and prolate solutions => optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- For each nucleus, oblate and prolate solutions => optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - ► Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- For each nucleus, oblate and prolate solutions => optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - ► Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- ► For each nucleus, oblate and prolate solutions ⇒ optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - ► Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- ► For each nucleus, oblate and prolate solutions ⇒ optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - ► Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- ► For each nucleus, oblate and prolate solutions ⇒ optimal solution, the smallest energy value.
- Optimal solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation 000	The method 0000000	Results: even-even nuclei 000000	Results: even-odd nuclei 0000000	Conclusions 0000

- Model to describe open shell nuclei, even-even and even-odd ones, using finite range efective interactions including tensor terms.
- ► Variational principle + Slater determinants built with s.p wave functions whose radial part depends on $m \implies$ deformation.
- Two steps in the iterative procedure of the method, **HFBCS**:
 - ► Solving HF equations to generate the s.p. wave functions.
 - Solving BCS equations to obtain the occupation probabilities of the s.p. states.
- ► For each nucleus, oblate and prolate solutions ⇒ optimal solution, the smallest energy value.
- **Optimal** solutions with tensor force are less deformed.
- Very small values of the deformation parameter $|\beta_2|$.
- Concerning binding energies, separation energies and radii, good results for even-odd nuclei.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

- A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- Our HFBC approach shows s.p. properties still well recognizable.
- Set of s.p. wave functions with their occupation probabilities
 starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- Extension of the method to study odd-odd nuclei.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

- A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- Our HFBC approach shows s.p. properties still well recognizable.
- Set of s.p. wave functions with their occupation probabilities
 starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- Extension of the method to study odd-odd nuclei.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

- A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- Our HFBC approach shows s.p. properties still well recognizable.
- Set of s.p. wave functions with their occupation probabilities
 ⇒ starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- Extension of the method to study odd-odd nuclei.

Motivation	The method	Results: even-even nuclei	Results: even-odd nuclei	Conclusions
000	0000000	000000	0000000	0000

- A global fit of the effective force containing tensor terms is needed to have a good accuracy of the experimental data on binding energies, charge radii and distributions.
- Our HFBC approach shows s.p. properties still well recognizable.
- Set of s.p. wave functions with their occupation probabilities
 starting point to build up a Deformed Quasi-Particle Random Phase Approximation.
- Extension of the method to study odd-odd nuclei.

MOTIVATION The method Results: even-even nuclei Results: even-odd nuclei Conclusions 000 000000 000000 000000 000

Thank you for your attention!

 Patio Arrayanes
 Charles Nègre, Le Stryge

 Alhambra (Granada)
 ©Musée Orsay (Paris)

 ...and we will see in the VI Gogny Conference