

Quantum computing applied to nuclear physics

Denis Lacroix

 Many-body physics and QC - T. Ayral, P. Besserve, D. Lacroix, and E.A. Ruiz Guzman , Quantum computing with and for many-body physics, EPJA 59 (2023)
 Symmetry and QC - D. Lacroix, A. Ruiz Guzman and P. Siwach, Symmetry breaking/symmetry preserving circuits and symmetry restoration on quantum computers EPJA 59 (2023)
 CERN Quantum Initiative - Di Meglio et al., Quantum Computing for High-Energy Physics: State of the Art and Challenges, PRX Quantum 5, 037001 (2024)

IN2P3 communication newsletter

Di Meglio et al., Quantum Computing for High Energy Physics: State of the Art and Challenges, PRX Quantum (2024)

More on many-body systems treated with quantum computers

THE EUROPEAN Eur. Phys. J. A (2023) 59:227 https://doi.org/10.1140/epja/s10050-023-01141-1 Check for updates **PHYSICAL JOURNAL A Regular Article - Theoretical Physics** Quantum computing with and for many-body physics Thomas Ayral^{1,a}, Pauline Besserve^{1,3,b}, Denis Lacroix^{2,c}, Edgar Andres Ruiz Guzman^{2,d} ¹ Eviden Quantum Laboratory, 78340 Les Clayes-sous-Bois, France **General QC** Complexity ² Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ³ Centre de Physique Théorique, 91120 Palaiseau, France 0/1QMA-7 k-local Hamiltonian QMA ground state hard ound . stimation QMA 0/1NPcompl Hhard $|0\rangle^{\otimes n_a}$ OFTtraveling salesman 0/1HS factoring NP 1120 Atomic Nuclei Chemistry **Error corrections General QC** $\left< O \right>_{
m perfect}$ $|\Psi_0^{(s)}|$ adiabatic interpolated state preparation value Neutrino variational state preparation $\Psi_0^{(0)}$ $\hat{U}(\theta^*$ variational manifold Condensed Matter $\langle O \rangle_{\rm noisv}$ $\langle O \rangle_{\rm meas}$

Perez-Obiol et al, Scientific Reports 13 (2023)

Illustration with small superconductors

Illustration with the Richardson Hamiltonian

$$H_{\rm P} = \sum_{i>0} \varepsilon_i (a_i^{\dagger} a_i + a_{\overline{i}}^{\dagger} a_{\overline{i}}) - g \sum_{i,j>0} a_i^{\dagger} a_{\overline{i}}^{\dagger} a_{\overline{j}} a_j$$

This problem is an archetype of spontaneous symmetry breaking. An "easy" way to describe it is to break the particle number symmetry, i.e. consider wave-function that mixes different particle number

Example

 $|\Phi_0\rangle = \Pi_i (u_i + v_i a_i^{\dagger} a_{\overline{i}}^{\dagger})|-\rangle$

Mixes states with 0, 2, 4, ... particles

The particle number - U(1) symmetry) is broken

But ultimately number of Particle should be restored !

Hamiltonian and initial state

Pairing Hamiltonian

$$H_{\rm P} = \sum_{i>0} \varepsilon_i (a_i^{\dagger} a_i + a_{\overline{i}}^{\dagger} a_{\overline{i}}) - g \sum_{i,j>0} a_i^{\dagger} a_{\overline{i}}^{\dagger} a_{\overline{j}} a_j$$
Jordan-Wigner transfo:
$$\frac{1}{2} (I_i - Z_i)$$
State ordering is important !

Initial (symmetry breaking) state preparation

 $a_i^{\dagger} a_{\overline{i}}^{\dagger} \longrightarrow Q_n^+ Q_{n+1}^+$

$$|\Psi\rangle = \exp\left\{-\sum_{i>0}\varphi_i\left(a_i^{\dagger}a_{\overline{i}}^{\dagger} - a_{\overline{i}}a_i\right)\right\}|0\rangle \quad \Longrightarrow \quad |\Psi\rangle = \prod_{n>0}e^{i\varphi(X_nY_{n+1} + Y_nX_{n+1})/2}|-\rangle$$

Equivalent universal gate on pairs

Zhang Jiang et al, Phys. Rev. Applied 9, 044036 (2018).

Superfluidity can be described by breaking particle number

BCS circuit

 $e^{-i\theta Y}$

Quantum computing for atomic nuclei

Illustration for small superfluids

Example of mixing for 12 qubits (with qiskit)

Projection on particle number

$$\Psi\rangle = \sum_{N} c_{N} |N\rangle \Rightarrow |N\rangle$$

0/1

n

For 2 qubits

 $\bigotimes_n |0\rangle$

$$\begin{split} |\Psi\rangle &= \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle \\ |N=0\rangle & \propto |N=1\rangle & |N=2\rangle \end{split}$$

A possible way to perform the projection is to use The Quantum-Phase-Estimation method with *N* itself

D. Lacroix, "Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer", PRL 125, 230502 (2020).

Non-destructive counting on a quantum computer

D. Lacroix, "Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer", PRL 125, 230502 (2020).

Eigenvalues-Ground state and excited states

 $E/g = -\frac{1}{4}(A - \nu)(2n_q - A - \nu - 2).$

For the degenerate case, this should give the exact solution

Standard Quantum Phase estimation

Iterative Quantum Phase estimation

16 qubits, N = 8

Systematic of QPE-based methods

Standard Quantum Phase estimation

Iterative Quantum Phase estimation

$$\hat{V}^{(k)} = e^{i\phi_k \hat{N}} \qquad \phi_k = \frac{\pi}{2^k}$$

Iterative Quantum Phase estimation + random Gaussian time (Rodeo algorithm)

K. Choi et al., Rodeo Algorithm for Quantum Computing, Phys. Rev. Lett. 127, 040505 (2021).

Ayral, Besserve, Lacroix, Ruiz Guzman, EPJA 59 (2023)

Systematic of QPE-based methods

Standard Quantum Phase estimation

Iterative Quantum Phase estimation

$$\hat{V}^{(k)} = e^{i\phi_k \hat{N}} \qquad \phi_k = \frac{\pi}{2^k}$$

Iterative Quantum Phase estimation + random Gaussian time (Rodeo algorithm)

Rodeo algorithm with different resolution

Exploration of different methods for the symmetry restoration

Symmetry restoration using Oracles

E. A. Ruiz Guzman and D. Lacroix, Phys. Rev. C 107, 034310 (2023)

Symmetry restoration using Oracles

E. A. Ruiz Guzman and D. Lacroix, Phys. Rev. **C 107**, 034310 (2023)

Hybrid Quantum-classical methods to perform symmetry projection

Using the classical computing knowledge

CPU INPUT (BITS) 011 - CPU

Good state reconstruction

Simple illustration with particle number

$$P_{N} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i\varphi(\hat{N}-N)} \mathbf{QPU}$$

$$\hat{O}\rangle_{SR} = \frac{\int_{0}^{2\pi} e^{i\varphi N} \langle \hat{O}e^{-i\varphi\hat{N}} \rangle_{SB}}{\int_{0}^{2\pi} e^{i\varphi N} \langle e^{-i\varphi\hat{N}} \rangle_{SB}}$$

$$\mathbf{CPU}$$

Bad state preparation

"Professional" version

Use quantum tomography techniques (Classical Shadow method)

Ruiz Guzman and Lacroix, Eur. J. Phys. A 60 (2024)

QPU

Hybrid Quantum-classical methods to perform symmetry projection

Using the classical computing knowledge

Bad state preparation

Simple illustration with particle number

2-

$$P_{N} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i\varphi(\hat{N}-N)} \mathbf{QPU}$$

$$\langle \hat{O} \rangle_{SR} = \frac{\int_{0}^{2\pi} e^{i\varphi N} \langle \hat{O}e^{-i\varphi\hat{N}} \rangle_{SB}}{\int_{0}^{2\pi} e^{i\varphi N} \langle e^{-i\varphi\hat{N}} \rangle_{SB}}$$

$$\mathbf{CPU}$$

QPU

Ruiz Guzman and Lacroix, PRC 105 (2022)

Quantum computing the Lipkin model

Encoding the Lipkin model on a quantum register

q = Number of qubits

Fermions-to-qubit: Jordan Wigner

J-scheme (compact) +parity encoding

QEOM-technique

Hlatshwayo et al, PRC 106 (2022), & PRC 109 (2024)

A few Achievements in WP 4.1

Solving the Lipkin model using quantum computers with two qubits only with a hybrid quantum-classical technique based on the generator coordinate method

Yann Beaujeault-Taudière 💿 * Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Laboratoire Leprince-Ringuet (LLR), École Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France

Energy

Quantum Subspace expansion

Ansatz/Hybrid Algorithms

Quantum Generator Coordinate Method

Coupling strength χ

Coupling strength χ

Q₂₀ [fm²]

A few Achievements in WP 4.1

But nuclei have both spin (s) and isospin (t) (neutron/proton)

This increases the number of qubits $S_z, \ S^2, \ \pi$

This increases the number of symmetries that could be broken

$$S_z, S^2, T_z, T^2, \pi$$

Symmetry-breaking states become extremely hard to control Symmetry restoration becomes very demanding

J. Zhang, PhD thesis (2025).

Use of adaptative methods

And try to control symmetry breaking

Iterative construction of the ansatz

Grimsley, et al, Nat. Commun. 10 (2019)

$$ightarrow$$
 Start from a state $\ket{\Psi_0}=\ket{n=0}$

Built iteratively the ansatz such as:

$$|n
angle=e^{i heta_nA_n}|n-1
angle=\prod_{k=1}^n e^{i heta_kA_k}|0
angle$$
 Such that $A_n\in\{O_1,\cdots,O_\Omega\}$

S

ADAPT-VQE applied to the Superfluid problems: only spins

J. Zhang, D. Lacroix, and Y. Beaujeault-Taudière, PRC (in press) arXiv:2408.17294

Extension to spin and isospin

Is breaking symmetries always a good idea?

Extension to the proton-neutron pairing Hamiltonian problem

$$H = \sum_{i=1}^{n_B} \left[\varepsilon_{i,n} (\nu_i^{\dagger} \nu_i + \nu_{\bar{i}}^{\dagger} \nu_{\bar{i}}) + \varepsilon_{i,p} (\pi_i^{\dagger} \pi_i + \pi_{\bar{i}}^{\dagger} \pi_{\bar{i}}) \right] - \sum_{T_z = -1,0,1} g_V(T_z) \mathcal{P}_{T_z}^{\dagger} \mathcal{P}_{T_z} - \sum_{T_z = -1,0,1} g_S(S_z) \mathcal{D}_{S_z}^{\dagger} \mathcal{D}_{S_z}.$$

Different Hamiltonian limit

 $\sum_{S_z = -1, 0, 1}$

S_z/T_z	Isoscalar		Isovector			
Case	-1	0	1	-1	0	1
1				\checkmark		\checkmark
2		\checkmark			\checkmark	
3				\checkmark	\checkmark	\checkmark
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Different operator pool in ADAPT-VQE breaking or not symmetries

	Particle number	Seniority	Parity
H-pool	\checkmark	\checkmark	\checkmark
QEB-pool	\checkmark	×	\checkmark
Qubit-pool	×	×	\checkmark

J. Zhang, DL, and Y. Beaujeault-Taudière, PRC (in press) arXiv:2408.17294

Is breaking symmetries always a good idea?

Extension to the proton-neutron pairing Hamiltonian problem

$$H = \sum_{i=1}^{n_B} \left[\varepsilon_{i,n} (\nu_i^{\dagger} \nu_i + \nu_{\bar{i}}^{\dagger} \nu_{\bar{i}}) + \varepsilon_{i,p} (\pi_i^{\dagger} \pi_i + \pi_{\bar{i}}^{\dagger} \pi_{\bar{i}}) \right] \\ - \sum_{T_z = -1,0,1} g_V(T_z) \mathcal{P}_{T_z}^{\dagger} \mathcal{P}_{T_z}$$

$$-\sum_{S_z=-1,0,1}g_S(S_z)\mathcal{D}_{S_z}^\dagger\mathcal{D}_{S_z}.$$

Different Hamiltonian limit

S_z/T_z	Isoscalar		Isovector			
Case	-1	0	1	-1	0	1
1				\checkmark		\checkmark
2		\checkmark			\checkmark	
3				\checkmark	\checkmark	\checkmark
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Different operator pool in ADAPT-VQE breaking or not symmetries

	Particle number	Seniority	Parity
H-pool	\checkmark	\checkmark	\checkmark
QEB-pool	\checkmark	×	\checkmark
Qubit-pool	×	×	\checkmark

J. Zhang, DL, and Y. Beaujeault-Taudière, PRC (in press) arXiv:2408.17294

Specific methods to improving convergence

Going closer to nuclei: adding isospin

J. Zhang, DL, and Y. Beaujeault-Taudière, PRC (in press) arXiv:2408.17294

Extending the method for excited states

Data mining Quantum Optimization algorithms techniques Expressivity Entanglement Noise correction Quantum advantage

Conclusions and outlook

In the Indico, more on: -Symmetry and entanglement -Phase-estimation -Excited states with quantum Krylov -Green's function computed with QC. -Neutrino oscillations

E. A. Ruiz Guzman Now at

S. Aychet Claisse Y. Beaujeault-Taudiere

Lawrence Livermore National Laboratory

M. O. Hlatshwayo Now at

P. Siwach

T. Ayral

P. Besserve Now at Edimbourg

E. Litivinova

A. Roggero

More topics -- For online version – Symmetry breaking, entanglement and Ansatz

Ansatz/entanglement

Entanglement in selected binary tree states: Dicke or total spin states or particle-number-projected BCS states

Denis Lacroix ^{®*} Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

More on Phase Estimation

Illustration of the QPE method with projected state

$$V = \exp\left\{-2\pi i\left(rac{H-E_{\min}}{E_{\max}-E_{\min}}
ight)
ight\}$$

► For the propagator, we used the Trotter-Suzuki method

 $U(\tau) = \prod U(\Delta \tau) \longrightarrow \prod U_{\varepsilon}(\Delta \tau) U_{g}(\Delta \tau)$

$$H_{\rm P} = \sum_{i>0} \varepsilon_i (a_i^{\dagger} a_i + a_i^{\dagger} a_{\bar{i}}) - g \sum_{i,j>0} a_i^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_j$$

$$\prod_p \left(\begin{array}{c} 1 & 0 \\ 0 & \exp\left(-2i\widetilde{\varepsilon}_p\Delta t\right) \end{array} \right) \prod_{p>q} \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & \cos(\lambda_{pq}) & i\sin(\lambda_{pq}) & 0 \\ 0 & i\sin(\lambda_{pq}) & \cos(\lambda_{pq}) & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \quad \text{with}$$

$$\lambda_{pq} = g\Delta t$$

Examples

Part. number
J_z = ħm
J² = ħ²j(j + 1)

parity

Use the QPE approach for operators with known eigenvalues to obtain entangled states

Hypothesis:

Assume a hermitian operator S acting on nq qubits

 \blacktriangleright Assume that S has discrete eigenvalues $\{\lambda_0 \leq \cdots \leq \lambda_M\}$ with $\lambda_k = am_k$

$$a = \operatorname{cst}$$

$$U_S = \exp\left\{2\pi i \left[\frac{S-\gamma_0}{a2^{n_0}}\right]\right\}$$

Eigenvalues of U_s are given by $e^{2\pi i \theta_k}$ with $\theta_k = (m_k - m_0)/2^{n_0}$

If $(m_k - m_0) < 2^{n_0} \implies \theta_k < 1$

and θ_k is exactly written as a binary fraction

It is then optimal for the QPE use. An optimal choice for the number of register qubits is $n_r = n_0$

and $n_r - 1 \le \ln(m_k - m_0) / \ln 2 < n_r$.

D. Lacroix, "Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer", PRL 125, 230502 (2020).

The quantum-Phase estimation (QPE) algorithm

If I measure given binary number in the ancillary qubit. After measurement, I have the projection on the associated particle number component

Examples

Part. number
J_z = ħm
J² = ħ²j(j + 1)

parity

Use the QPE approach for operators with known eigenvalues to obtain entangled states

Hypothesis:

Assume a hermitian operator S acting on nq qubits

 \blacktriangleright Assume that S has discrete eigenvalues $\{\lambda_0 \leq \cdots \leq \lambda_M\}$ with $\lambda_k = am_k$

$$a = \operatorname{cst}$$

$$U_S = \exp\left\{2\pi i \left[\frac{S-\gamma_0}{a2^{n_0}}\right]\right\}$$

Eigenvalues of U_s are given by $e^{2\pi i \theta_k}$ with $\theta_k = (m_k - m_0)/2^{n_0}$

If $(m_k - m_0) < 2^{n_0} \implies \theta_k < 1$

and θ_k is exactly written as a binary fraction

It is then optimal for the QPE use. An optimal choice for the number of register qubits is $n_r = n_0$

and $n_r - 1 \le \ln(m_k - m_0) / \ln 2 < n_r$.

D. Lacroix, "Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer", PRL 125, 230502 (2020).

Illustration
$$|\Psi
angle = \bigotimes_n H |0
angle$$

The full basis can eventually be constructed

P. Siwach and DL, Phys. Rev. A 104, 062435 (2021)

Illustration of the QPE method for energy with projected state

Some technical details

$$V = \exp\left\{-2\pi i \left(rac{H-E_{\min}}{E_{\max}-E_{\min}}
ight)
ight\}$$

➡ For the propagator, we used the Trotter-Suzuki method

 $U(\tau) = \prod U(\Delta \tau) \longrightarrow \prod U_{\varepsilon}(\Delta \tau) U_{g}(\Delta \tau)$

$$H_{\rm P} = \sum_{i>0} \varepsilon_i (a_i^{\dagger} a_i + a_{\overline{i}}^{\dagger} a_{\overline{i}}) - g \sum_{i,j>0} a_i^{\dagger} a_{\overline{i}}^{\dagger} a_{\overline{j}} a_j$$

$$\prod_p \left(\begin{array}{c} 1 & 0 \\ 0 & \exp\left(-2i\widetilde{\varepsilon}_p\Delta t\right) \end{array} \right) \prod_{p>q} \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & \cos(\lambda_{pq}) & i\sin(\lambda_{pq}) & 0 \\ 0 & i\sin(\lambda_{pq}) & \cos(\lambda_{pq}) & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \quad \text{with}$$

$$\lambda_{pq} = g\Delta t$$

Illustration of the QPE method with projected state

More on symmetry and Lipkin model

Symmetry dilemma: in general using symmetries to solve a problem is a good idea

Symmetry dilemma: in general using symmetries to solve a problem is a good idea

Symmetry dilemma: in general using symmetries to solve a problem is a good idea But not always...

- (+) Require less qubits
- (-) Lead to more compact encoding
- (-) requires more operations to prepare states
- (+) Ansatz might be more predictive at low cost(+) Less operations to prepare the ansatz
- (-) Symmetries should be restored, ultimately !

More on Excited states using Quantum Krylov method

Hilbert space

Our strategy

Compute overlap and Hamiltonian matrix elements on the quantum computer

Solve the eigenvalue problem on the classical computer

$$\{|\Psi\rangle, \ H|\Psi\rangle, \cdots, \ H^{M-1}|\Psi\rangle\} \equiv \{|\Phi_i\rangle\}_{i=0,M-1}$$

Diagonalize in the non-orthogonal subspace

$$O_{ij} = \langle \Phi_i | \Phi_j \rangle \qquad H_{ij} = \langle \Phi_i | H | \Phi_j \rangle$$

Generalized eigenvalue problem

$$|\xi_{\alpha}\rangle = \sum_{n} c_{n}(\alpha) |\Psi_{n}\rangle \implies \sum_{n} c_{n}(\alpha) H_{in} = E_{\alpha} \sum_{n} c_{n}(\alpha) O_{in}$$

Our first attempt: use the generating function of H

$$F(t) = \langle \Phi_0 | e^{-itH} | \Phi_0 \rangle$$

$$F(t) = 1 - it \langle H \rangle_0 + \frac{(-it)^2}{2} \langle H^2 \rangle_0 + \cdots$$

$$\langle H^K \rangle_0 = i^K \left. \frac{d^K F(t)}{dt^K} \right|_{t=0}$$

Ruiz-Guzman and Lacroix, arXiv:2104.08181v2

Approximate method : Krylov Based methods

Hilbert space

Ruiz-Guzman and Lacroix, arXiv:2104.08181v2

Approximate method : Krylov Based methods

Highly Truncated Hilbert space

$$\{|\Psi\rangle, \ H|\Psi\rangle, \cdots, \ H^{M-1}|\Psi\rangle\} \equiv \{|\Phi_i\rangle\}_{i=0,M-1}$$

$$\{|\Psi\rangle, \ e^{-i\tau_1 H}|\Psi\rangle, \cdots, \ e^{-i\tau_{M-1} H}|\Psi\rangle\}$$

$$= \langle \Phi_i |\Phi_j\rangle = \langle \Psi | e^{-i(\tau_j - \tau_i)H} |\Psi\rangle \qquad H_{ij} = \langle \Psi | H e^{-i(\tau_j - \tau_i)H} |\Psi\rangle$$

Hadamard test for the real part of O and H

 O_{ij}

Modified Hadamard test for the imaginary part

Diagonalization on a classical computer

Comparison QPE vs Quantum Krylov after Q-VAP

Green's function

Ongoing projects

Computing one-body Green's function with Hybrid quantum-classical methods

Green's function matrix elements

$$G_{ij}(t,t') = \langle \Psi_0 | \mathrm{T}[a_j^{\dagger}(t)a_i(t')] | \Psi_0
angle$$

Dhawan, Zgid, Motta, J. Chem. Theory and Comp. 20, 4629 (2024)

Lehman representation

Strate

$$G_{ij}(\omega) = \frac{\langle \Psi_0^N | a_i | \Psi_k^{N+1} \rangle \langle \Psi_k^{N+1} | a_j^{\dagger} | \Psi_0^N \rangle}{\omega - (E_k^{N+1} - E_0^N) + i\eta} + \sum_k \frac{\langle \Psi_0^N | a_j^{\dagger} | \Psi_k^{N-1} \rangle \langle \Psi_k^{N-1} | a_i | \Psi_0^N \rangle}{\omega - (E_0^N - E_k^{N-1}) - i\eta}$$

- Design and optimize an accurate Ansatz for the ground state for N particles
 - Use two separate Quantum Space Expansion
 For (N+1) and (N-1) particles

Aychet-Claisse, Lacroix, Somà, Zhang, in preparation

Ongoing projects

Dhawan, Zgid, Motta, J. Chem. Theory and Comp. 20, 4629 (2024)

Aychet-Claisse, Lacroix, Somà, Zhang, in preparation

-- More on Neutrinos treated on quantum computers --

Beam 1

A focus on neutrino oscillation physics simulated

on quantum computers

Illustration of the Hamiltonian (2 flavor approx)

$$H_{\nu} = \frac{1}{N} \sum_{i=0}^{N-1} \sin(2\theta_{\nu}) X_i - \cos(2\theta_{\nu}) Z_i$$
$$H_{\nu\nu} = \sum_{i$$

- 1. Decomposition of *H* into elementary blocks
- 2. Use a transformation (Trotter-Suzuki)

Example: $e^{i\Delta tH_1/\hbar} = e^{-i\Delta tH_1/\hbar}e^{-i\Delta tH_2/\hbar}$

3. Transforms to circuit

Beam 1

A focus on neutrino oscillation physics simulated

on quantum computers

Illustration of the Hamiltonian (2 flavor approx)
ation
$$H_{\nu} = \frac{1}{N} \sum_{i=0}^{N-1} \sin(2\theta_{\nu}) X_i - \cos(2\theta_{\nu}) Z_i$$
ing
$$H_{\nu\nu} = \sum_{i$$

or with optimization

Beam 1

A focus on neutrino oscillation physics simulated

on quantum computers

Hall et al, PRD 104 (2021)

Amitrano, et al, PRD 107, (2023)

A focus on neutrino oscillation physics

Is also pushing the limit of classical simulation

Tensor network

Using MPS layers to simulate neutrino evolution

Up to ~100 neutrinos

Roggero, Phys. Rev. D 104 (2021) Cervia et al, Phys. Rev. D 105 (2022)

Phase-space methods

Several hundreds of neutrinos

A few Achievements in WP 4.1

Redo emission Redo emission Karges entryles Karge and systers

Using quantum computers as generator of events

Application to neutrino oscillations

1

11

PHYSICAL REVIEW D VOL..XX, 000000 (XXXX)

2	Phase-space methods for neutrino oscillations: Extension to multibeams
3	Denis Lacroix ⁰ , ^{1,*} Angel Bauge ⁰ , ¹ Bulent Yilmaz ⁰ , ² Mariane Mangin-Brinet ⁰ , ³
4	Alessandro Roggero, ^{4,5} and A. Baha Balantekin ⁶
5	¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
6	² Physics Department, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey
7	³ Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, 38026 Grenoble, France
8	⁴ Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy
9	⁵ INFN-TIFPA Trento Institute of Fundamental Physics and Applications, Trento, Italy
10	⁶ Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

(Received 2 October 2024; accepted 23 October 2024)

Comparison exact (black) and approximate

A few Achievements in WP 4.1

Using quantum computers as generator of events

PHYSICAL REVIEW D 110, 103027 (2024)

Phase-space methods for neutrino oscillations: Extension to multibeams

Denis Lacroix⁰,^{1,*} Angel Bauge⁰,¹ Bulent Yilmaz⁰,² Mariane Mangin-Brinet⁰,³ Alessandro Roggero,^{4,5} and A. Baha Balantekin⁰ ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²Physics Department, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey ³Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, 38026 Grenoble, France ⁴Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy ⁵INFN-TIFPA Trento Institute of Fundamental Physics and Applications, Trento, Italy ⁶Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Possible to simulate 200+ entangled qubits on a laptop

