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Solar system elemental abundances

Data sources: Mostly solar spectra, meteorites and terrestrial isotopic composition.

Features:
• 12 orders of magnitude span.
• H ∼ 75%; He ∼ 23%; C → U ∼ 2%.
• Exponential decrease up to Fe, almost flat distribution beyond Fe.
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Primordial Big-Bang nucleosynthesis

• D, He and (some) Li: Primordial Big-Bang nucleosynthesis.
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Primordial Big-Bang nucleosynthesis

C.Pitrou
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754
1-66
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• D, He, and Li formed when 109 ≳ T ≳ 108 K.
• Nuclear network: 11 reactions (+ neutron decay)
• High-precision era: very good agreement between

observations and theoretical predictions.
• Li problem: 7Li overestimated by a factor 2–4, 6Li

underestimated by 3 orders of magnitude.
• Precise estimation of charged particle and neutron

reactions, weak decays.
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Primordial Big-Bang nucleosynthesis
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Big-Bang nucleosynthesis of 6Li

• 6Li mostly produced by 4He(d , γ)6Li.
• Radiative capture rate poorly known at BBN energies

E = 30 − 400 keV.
• S factor from no-core shell model with continuum with

NN+3N.
• E1 transitions negligible, enhancement below 100 keV

due to M1.
• Uncertainty in termonuclear reaction rate reduced by a

factor 7.
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Spallation reactions

• (some) Li, B and Be: Galactic cosmic rays (GCR) on interstellar medium.
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GCR and spallation reactions

A
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• 6Li, 7Li, 9Be, 10B, 11B produced by nuclear interaction
of mostly protons and α particles with heavier (C-N-O)
nuclei.

• Cosmic ray observations with a 1−3% precision.
• Interpretation limited by uncertainties in nuclear cross

sections (20−50%).
• Can heavier nuclei be produced through GCR spallation?
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How do we fill de gap?

Credit: A. Hager
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Stellar nucleosynthesis B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

Credit: M. Liotta

Nobel Prize
1983
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Fusion in stellar interiors

• Nuclei up to 56Fe: Fusion reactions in stellar interiors.
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Fusion in stellar interiors

• Star mass and composition dictate the evolution.
• Successive thermonuclear burning stages (composition

change) and gravitational contractions (temperature
increase).

• Duration of burning phases decreases due to decreasing
energy and increasing neutrino production.

• Charged particle reactions → tunneling probability →
exponential decrease in abundance.

• After Si burning: gravitational collapse and catastrophic
explosion.

S. Goriely, EPJA (2023) 59:16
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Thermonuclear reactions in stars

In stellar plasmas, nuclei in thermodynamic equilibrium → follow a Maxwell-Boltzmann distribution.
Reaction rate per particle pair:

⟨σv⟩ =
(

8
πµ

)1/2 1
(kT )3/2

∫ ∞

0
σ(E) exp

(
− E

kT

)
EdE

• ⟨σv⟩ key quantity to determine energy production and
change in abundances.

• From experiments and/or theory.
• T changes with star evolution → ⟨σv⟩ over the relevant

T range (analytical expression).

Credit: M. Aliotta
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M Aliotta Nuclear reactions in stars
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Coulomb barrier tunneling

• Charged-particle reactions hindered by Coulomb
repulsion.

• Reactions initiated by thermal motion:

kT ∼ 100 T9 (keV)

Sun: T ∼ 1.5 × 10−2 GK → kT ∼ 1 keV.

Credit: M. Aliotta

tunnel
effect

Ekin ~ kT  (keV)
Ecoul ~ Z1Z2  (MeV)

nuclear well

Coulomb potentialV

rr0

During quiescient burnings: kT ≪ ECoul → reactions through tunnel effect (with l = 0):

P ∝ exp (−2πη(E)) = exp
(

− b
E 1/2

)
with η =

(
µ

2E

)1/2 Z1Z2e2

ℏ

Exponential drop in abundances curve. . .
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Gamow peak
Cross section given in terms of the astrophysical S(E) factor (non-resonant reactions):

σ(E) = 1
E exp(−2πη)︸ ︷︷ ︸

strong E dependence

S(E)

Reaction rate given by a competition between MB distribution and tunneling probability:

⟨σv⟩ ∝
∫

S(E) exp
(

− E
kT − b√

E

)
dE

Maximum rate at Gamow Peak:

E0 = 0.1220
(
Z 2

1 Z 2
2 µ

)1/3 T 2/3
9 MeV

∆E0 = 4
(E0kT

3

)1/2

E window of astrophysical interest well below Coulomb
barrier.

Credit: M. Aliotta
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Stellar burning

Credit: M. Aliotta
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M Aliotta Thermonuclear Reactions in Stars

• For stellar burning stages T = 106 − 108 K → E0 ∼ 100 keV
• Gamow peak: kT ≪ E0 ≪ ECoul → 10−18 b < σ < 10−9 b (tunneling)
• Average interaction time: τ ∼ ⟨σv⟩−1 ∼ 109 y → only stable species play a relevant role.
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Charged particle reactions for stellar burning



Introduction BBN GCR spallation fusion in stars s process r process Conclusions

Solar system elemental abundances

• Nuclei heavier than 56Fe (except p nuclei): neutron capture processes.
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The s process
s(low neutron capture) process: τn ≫ τβ− ; τ ∼ 10 − 1000 y ; nn ∼ 108 cm−3

β  decay

neutron
capture

neutron 
shell closureN

Z

unstable
nuclei
stable
nuclei

• The path to heavier nuclei stays close to stability.
• Astrophysical site: He-burning in low and intermediate mass stars.
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The s process

Generally, nuclear uncertainties are subdominant compared to than astrophysical uncertainties.

• Neutron source?
- 12C(p, γ)13N(β+)13C(α, n)16O
- 22Ne(α, n)25Mg

• At branching points
- Neutron capture cross sections?
- Astrophysical β decay rates?
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High T β decay and 205Pb dating in SS
• 205Pb is the heaviest short-lived s-process (only) radionuclide.
• At s-process temperatures, 205Pb EC competes with 205Tl (bound) β−.

G. Leckenby et al., Nature 635, 321-326 (2024)

• 205Pb and 205Tl astrophysical decay rates constrained by measuring β− decay of 205Tl81+.
• 205Pb as cosmochronometer of Sun formation.
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The r process
r(apid neutron capture) process: τ(n,γ) ≪ τβ− ; τ ∼ 1 s ; nn ∼ 1024−34 cm−3

β  decay

neutron
capture

neutron 
shell closureN

Z

unstable
nuclei
stable
nuclei

• The path to heavier nuclei goes through neutron-rich nuclei.
• Astrophysical site with high neutron fluxes → transient object.
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• The path to heavier nuclei goes through neutron-rich nuclei.
• Astrophysical site with high neutron fluxes → transient object.
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Modeling r-process abundances
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Neutron star mergers (NSM)

Rosswog et al., Class. Quantum Grav. 34, 104001 (2017)

Large variety of ejection channels in NSM, with different thermodynamic conditions.
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Kilonova Li and Paczýnski (1998), Metzger+(2010), Roberts+(2011). . .

• Decay of r -process nuclei emits energy → electromagnetic transient (kilonova).
• Shape and magnitude depend on the properties forming the ejecta.
• At late times few nuclei dominate the heating: are there detectable fingerprints?

D. Watson et al., Nature 574 (2019).

J. J. Cowan et al., RMP 93, 015002 (2021)
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Metzger et al, 2010

Cowperthwaite et al, 2017

M.-R. Wu et al., Phys. Rev. Lett. 122, 062701 (2019)

• The presence of fissioning nuclei and translead α emitters at t ∼ weeks impacts the lightcurve shape
Y. Zhu+ ApJL (2018); S. Wanajo ApJ (2018); M.-R. Wu+ PRL (2019).
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Nuclear inputs

82

82

126

184

neutron
drip-line

r-process path

known nuclei

Material accumulated?
Sn and β decays

Material accumulated?
Sn and β decays

Location r-process path?
(n, γ) vs (γ, n)

Fissioning region?
(n,γ) vs (n,fis)

The r -process requires the knowledge of
nuclear properties of neutron-rich nuclei:

• nuclear masses;
• β-decay rates;
• neutron capture rates;
• fission rates and yields;
• . . .

Changes in nuclear properties result in
non-local effects.
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Fission and r process
• Fission plays a crucial role during the r -process nucleosynthesis

Thielemann+(1983), Panov+(2005), Martinez-Pinedo+(2007), Korobkin+(2012), Petermann+(2012), Eichler+(2015), Goriely(2015),

Mumpower+(2018), Vassh+(2019), Giuliani+(2020), Wang+(2020), Vassh+(2020), Lemâıtre+(2021), Mumpower+(2022), Roederer+(2023). . .

Figure 1. Final abundances of the integrated ejecta around the second and third peak for an NSM Korobkin et al. 2012; Rosswog et al. 2013 at a simulation time

10 s, employing the FRDM mass model combined with four different ssion fragment distribution models see the text . For reasons of clarity the results are
presented in two graphs. The abundances for Th and U are indicated by crosses. In the left-hand panel the lower crosses belong to the Panov et al. 2008 model
dashed line , while the lower crosses in the right-hand panel belong to the ABLA07 distribution model dashed line . The dots represent the solar -process
abundance pattern Sneden et al. 2008

Figure 2. Fission rates at 1 s in s for -delayed and neutron-induced ssion at freeze-out from equilibrium for one representative trajectory
when utilizing the FRDM mass model and Panov et al. 2010 ssion rates. : Corresponding ssion fragment production. The distribution model here is ABLA07.

The Astrophysical Journal, 808:30 13pp , 2015 July 20 Eichler et al.

M. Eichler et al., Astrophys. J. 808, 30 (2015).

• Few fission data sets are available, mainly parametrizations/phenomenological → validity far from
stability?
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Fission and the r-process J.-F.Lemaitre et al., Phys. Rev. C 103, 025806 (2021)

• SPY: Fission yields obtained from scission-point model using BSk27 EDFs.
• Symmetric and asymmetric fission transition depends on deformed shell structure.
• Largest impact for neutron-rich ejecta .
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Fission and the r-process SAG et al., Phys. Rev. C 102, 045804 (2020)
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β-delayed fission and the r process

M. R. Mumpower et al., Astrophys. J. 869, 14 (2018)

▶ β-delayed (and spontaneous) fission can dominate at late times.
▶ Extremely challenging: coupling between β strength, neutron emission and fission.
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Impact of β decays and fission
• Impact of β-decay half-lives varies with the observable.
• We modified tβ

1/2 (FRDM) ≥ 3 s and study the impact on abundances and heating rates.
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Systematic of β-decay rates
credit: Caroline Robin (U. Bielefeld)

• β-decay rates closer to stability show larger uncertainties → more systematic studies are required
(see also E. M. Ney et al., Phys. Rev. C 102, 034326 (2020)).
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β decay and r process . . . Mumpower+(2016),Shafer+(2016),Marketin+(2016),Kajino+(2017),Lund+(2023),Kullmann+(2023). . .

• Models: Interacting shell model (near neutron shell closure), FRDM+QRPA, HFB+QRPA (Diana’s talk).
• Rates at N = 50 and 82 dominated by GT transitions, but forbidden transitions relevant for N = 126.

E. M. Ney et al., PRC 102, 034326 (2020). T. Marketin et al., PRC 93, 025805 (2016)

• Global studies show large variations for medium heavy nuclei.
• Shorter half-lives for Z > 80 shift the third peak and increase the material available to fission.
• β-delayed neutron emission strongly impacts the abundances after freeze-out (Futoshi’s talk).
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Nuclear masses

J. J. Cowan et al., RMP 93, 015002 (2021)

M. R. Mumpower et al., PPNP 86 (2016)
J. J. Mendoza-Temis et al., PRC 92 (2015)

• Nuclear masses are an essential ingredient:
i) energy budget of n captures, β decays and

fission;
ii) location of the r -process path;
iii) accumulation of material.

• Global models with rms errors below 700 keV.

• Far from stability: large spread in the predicted
nuclear masses.

• The predicted abundances and kilonova light curve
suffer from large uncertainties.
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Nuclear masses

J. J. Cowan et al., RMP 93, 015002 (2021)M. R. Mumpower et al., PPNP 86 (2016)

J. J. Mendoza-Temis et al., PRC 92 (2015)
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• Nuclear masses are an essential ingredient:
i) energy budget of n captures, β decays and

fission;
ii) location of the r -process path;
iii) accumulation of material.

• Global models with rms errors below 700 keV.
• Far from stability: large spread in the predicted

nuclear masses.
• The predicted abundances and kilonova light curve
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Impact of nuclear mass model uncertainties

Monte Carlo variation on single nuclei

- Loose nuclear correlations ⇒ impact of
masses can be overestimated. . .

M. Mumpower et al., Prog. Part. Nucl. Phys. 86 (2016)

Propagation of nuclear models uncertainties

- Keep nuclear correlations ⇒ reduced impact
of nuclear masses (good correlations?).

T. Sprouse et al., Phys. Rev. C 101, 055803 (2020)
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Nuclear masses - Global and local changes SAG+, arXiv:2412.03243

Masses = homogeneous part (global, LDM) + quantum shell-correction (local)
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Starting from the DZ31 and FRDM models, we construct two new mass tables by mixing their bulk
and the quantum shell parts:

E(DZ31*) = E FRDM
bulk + E DZ31

shell

E(FRDM*) = E DZ31
bulk + E FRDM

shell
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Nuclear masses - Global and local changes ∼2000 NSM trajectories from Collins et al., MNRAS 101093 (2023)

20 40 60 80
Z

10
7

10
6

10
5

10
4

10
3

Y(
Z)

(a) n/s = 1

20 40 60 80
Z

(b) t = 1 Gyr

50 100 150 200 250
A

10
7

10
6

10
5

10
4

10
3

Y(
A)

(c) n/s = 1

50 100 150 200 250
A

(d) t = 1 Gyr

DZ31 DZ31 * FRDM FRDM *

Abundances insensitive to global changes in masses (e.g., symmetry energy).



Introduction BBN GCR spallation fusion in stars s process r process Conclusions

Nuclear masses - Global and local changes SAG+, arXiv:2412.03243
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Abundance mostly related to local changes on S2n (rather than bulk properties of masses) →
∆2n(N, Z) = S2n(N, Z) − S2n(N + 2, Z).
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Neutron capture rates
• If number of states available to compound nucleus (CN) is small, direct capture (DC) may dominate

the neutron capture rate.

• Including DC affects the distribution around the third peak (A ∼ 160) I. Kullman+, MNRAS 523, 2551–2576 (2023).
• Results sensitive to masses, level densities, GRSF, optical model, . . .
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Summary
• Stellar nucleosynthesis of chemical elements probes nuclear physics across the nuclear chart.

M. Arnould and S. Goriely, PPNP 112 103766 (2020)

28th International Nuclear Physics Conference (INPC 2022)
Journal of Physics: Conference Series 2586 (2023) 012104

IOP Publishing
doi:10.1088/1742-6596/2586/1/012104
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Figure 1. Schematic representation in the (N,Z) plane of the different astronuclear physics
applications, including nucleosynthesis processes, composition and structure properties of NSs.
For each process, the nuclear data needs are sketched. The open black squares correspond to
stable or long-lived nuclei, the yellow squares to the nuclei for which masses have been measured
and are included in the 2020 Atomic Mass Evaluation (AME) [3]. Nuclei with a neutron or
proton separation energies tending to zero define the neutron or proton “drip lines” (solid black
lines), as predicted from a mass model. More details can be found in Ref. [1].

proton-capture process (or rp process) in X-ray bursts, the suggested νp process in exploding
massive stars as well as different nucleosynthesis processes responsible for the production of
elements heavier than iron, such as the slow neutron-capture process (or s process) and the
intermediate neutron-capture process (or i process). The lack of nuclear data on highly neutron-
deficient and neutron-rich nuclei seriously limits our ability to describe the so-called p-process
in type-Ia and type-II supernovae [4], the rapid-neutron capture process (or r process) of
nucleosynthesis as well as the composition of the crust of NSs [5, 6]. Despite the remarkable
efforts of experimentalists in pushing ever closer to the neutron drip line there is unfortunately
no hope of measuring the structure and interaction properties of the astrophysically relevant
nuclei in the foreseeable future. For further progress one has to turn to theory. Only a few
experimental and theoretical aspects are discussed in the present contribution. Readers are
referred to reviews, such as Ref. [1], for more information on the many open questions affecting
nuclear astrophysics.

2. Recent progress on the s- and p-process nucleosynthesis
About half of nuclides heavier than iron are produced via the s process predominantly in the
C-rich layers of asymptotic-giant-branch (AGB) stars [7, 8] as well as during core He-burning
in massive stars [9]. Recently, it has been shown that rotation in massive stars can significantly
affect the efficiency of the s process, especially at low metallicity [9, 10, 11]. Because of the
rotational mixing operating between the H-shell and He-core during the core He-burning phase,
the abundant 12C and 16O isotopes in the convective core are mixed within the H-shell, boosting

• Nuclear uncertainties can reduce our capability to interpret astrophysical observations.
• Not all uncertainties may have an impact. . .
• Same problem tackled using different theoretical frameworks: complementary answers.
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