On the use of charge distribution in nuclei to constrain effective interactions

K. Bennaceur

IP2I, CNRS/IN2P3, Université Claude Bernard Lyon 1, France

December 13th, 2024

5th Gogny conference – Paris 2024, December 10-13

Outline

Mean-field and effective interactions

Simple considerations on charge and matter distributions

Finite-size instabilities and linear response

Fits using charge distributions

Conclusion and outlooks

Mean-field models

► Stationary Schrödinger equation for A particles

$$\hat{H}\Psi = \left(\hat{T} + \hat{V}_2 + \hat{V}_3 + ...\right)\Psi = E_0\Psi$$

► Mean-field approximation, Hartree-Fock(-Bogolyubov)

$$E = \langle \Phi | \hat{H}_{\mathrm{eff}} | \Phi \rangle \simeq E_0 = \langle \Psi | \hat{H} | \Psi \rangle$$

▶ Effective interaction $\hat{H}_{\text{eff}} = \hat{T} + \hat{V}_{\text{eff}}$

$$\hat{V}_{ ext{eff}} = \hat{V}_{ ext{eff}}(\mathbf{p})\,, \quad \mathbf{p} \in \mathbb{R}^n\,, \quad n \sim 10 ext{ to } 25$$

Details don't matter but:

- ▶ HF(B) equations are non linear and are solved iteratively
- Can be very time consuming when many symmetries are broken
- Fits often done using empirical properties and, often, spherical or even-even ones

Predictive power in uncharted territory?

Sets of data and algorithm

Non-relativistic functionals, see for example:

Fayans functionals:

P.-G. Reinhard and W. Nazarewicz Phys. Rev. C 95, 064328 (2017).

Regularized interactions:

K.B., J. Dobaczewski, T. Haverinen, M. Kortelainen, JPG 47, 105101 (2020)

Skyrme functionals:

```
SAMi: X. Roca-Maza, G. Colò, H. Sagawa, PRC 86 031306R (2012).
```

UNEDF2: M. Kortelainen *et al.*, PRC 89, 054314 (2014).

BSkG2: W. Ryssens, G. Scamps, S. Goriely, M. Bender, EPJA 59, 96 (2023).

and many more...

Gogny interactions:

D1S: J.F. Berger, M. Girod and D.Gogny, Comp. Phys. Comm. 63, 365 (1991).

DG: G. Zietek, thesis 2023, https://theses.hal.science/tel-04394860

M3Y interactions:

G. Bertsch, J. Borysowicz, H. McManus, and W. Love, Nucl. Phys. A 284, 399 (1997).

Charge distribution in ¹³²Sn with Skyrme functionals

 $ho_{
m sat} \leftrightarrow {\it r}_{
m ch}$ but does not constrain oscillations in the inside

Isoscalar and isovector distributions in ⁴⁰Ca

Isoscalar and isovector distributions in ⁴⁸Ca

Isoscalar and isovector distributions in 60Ca

Finite size instabilities

Large charge density oscillations are also related to the vicinity of finite-size instabilities

▶ Oscillation of the isovector density $\rho_1(r) = \rho_n(r) - \rho_p(r)$ observed when we tried to modified the effective mass.

T. Lesinski, K.B., T. Duguet, J. Meyer, Phys. Rev. C74, 044315 (2006)

- Can also appear in the vector (spin) channels.
- Exist in the scalar-isoscalar channel as a physical phenomenon (spinodal instability).
- ► Also observed for Gogny functionals.

M. Martini, A. De Pace, K.B. EPJA 55, 150 (2019).

Constraints on charge distributions might be used to avoid isovector finite-size instabilities?

T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315

- ► HF calculation for ⁴⁰Ca with SLy4 and LNS¹ parameterizations
- HF iterations do not lead to convergence with LNS

Appearance of domains with asymmetric and/or polarized matter

¹L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai, PRC 73, 015313

T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315

- ► HF calculation for ⁴⁰Ca with SLy4 and LNS¹ parameterizations
- HF iterations do not lead to convergence with LNS

▶ Appearance of domains with asymmetric and/or polarized matter

¹L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai, PRC 73, 015313

T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315

- ► HF calculation for ⁴⁰Ca with SLy4 and LNS¹ parameterizations
- HF iterations do not lead to convergence with LNS

▶ Appearance of domains with asymmetric and/or polarized matter

¹L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai, PRC 73, 015313

T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315

- ▶ HF calculation for ⁴⁰Ca with SLy4 and LNS¹ parameterizations
- HF iterations do not lead to convergence with LNS

▶ Appearance of domains with asymmetric and/or polarized matter

¹L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai, PRC 73, 015313

Linear response method in infinite nuclear matter

C. Garcia-Recio, J. Navarro, Van Giai Nguyen, L.L. Salcedo, Ann. Phys. 214 (1992) 293

- D. Davesne, M. Martini, K.B., J. Meyer, Phys. Rev. C80, 024314, errat.: Phys. Rev. C84, 059904²
- ightharpoonup Excitation of the system with a perturbation (ω, \mathbf{q})

$$Q^{(\alpha)} = e^{-\mathrm{i}\omega t} \sum_{i} e^{\mathrm{i}\mathbf{q}\cdot\mathbf{r}_{i}} \Theta_{i}^{(\alpha)}$$

with $\Theta_i^{\rm ss} = 1_i$, $\Theta_i^{\rm vs} = \boldsymbol{\sigma}_i$, $\Theta_i^{\rm sv} = \boldsymbol{\tau}_i$ or $\Theta_i^{\rm vv} = \boldsymbol{\sigma}_i \, \boldsymbol{\tau}_i$.

Response of the system at a given density within the RPA approx.

$$\chi^{(\alpha)}(\omega,\mathbf{q}) = \frac{1}{\Omega} \sum_{n} \left| \langle n | \mathcal{Q}^{(\alpha)} | 0 \rangle \right|^2 \left(\frac{1}{\omega - E_n + i \eta} - \frac{1}{\omega + E_n - i \eta} \right)$$

 $n \in \text{excited}$ states of the system $\Omega = \text{normalization}$ volume

▶ Pole at zero energy for given finite values of **q** and $\rho_0 \Rightarrow$ instability

²Don't forget to cite this erratum, it helps to increase my H index.

Linear response as a tool for diagnosis

Pole of the response at E = 0 instability

Finite-size instabilities and linear response

Use of linear response

Linear response as a tool for diagnosis

Attempt to build a stability criterion

v. Hellemans, A. Pastore, T. Duguet, K.B., D. Davesne, J. Meyer, M. Bender, P. -H. Heenen,
PRC 88, 064323

Study in the scalar-isoscalar channel (S=0, T=1) based on 9 functionals based on totally different fitting procedures

- Lowest density ρ_{\min} for which the response has a pole must be $\rho_{\min} > 1.2 \times \rho_{\text{sat}}$
- But: not based on observables and very difficult to use with finite-range interactions.

Instability and densities oscillations with Skyrme EDFs

Skyrme functional (time-even part)

- ▶ Parameters: t_0 , x_0 , t_1 , x_1 , t_2 , x_2 , t_3 , x_3 , α , W_{so} .
- ► Functional:

$$E = T + \int \mathcal{E} \, \mathrm{d}^3 r$$

with (for time-even nuclei)

$$\mathcal{E} = C_0^{\rho} [\rho_0] \rho_0^2 + C_0^{\tau} \rho_0 \tau_0 - C_0^{\Delta \rho} (\nabla \rho_0)^2 + C_0^{J} \mathbf{J}_0^2 + C_0^{\nabla J} \rho_0 \nabla \cdot \mathbf{J}_0$$

+ $C_1^{\rho} [\rho_0] \rho_1^2 + C_1^{\tau} \rho_1 \tau_1 - C_1^{\Delta \rho} (\nabla \rho_1)^2 + C_1^{J} \mathbf{J}_1^2 + C_1^{\nabla J} \rho_1 \nabla \cdot \mathbf{J}_1$

Dangerous term easy to identify for the isovector instabilities

$$-C_1^{\Delta\rho} (\nabla \rho_1)^2$$

Depletion Factor
$$F_{\max} = rac{
ho_{\max} -
ho(0)}{
ho_{\max}}$$
 ,

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Depletion Factor
$$F_{\mathrm{max}} = \frac{\rho_{\mathrm{max}} - \rho(0)}{\rho_{\mathrm{max}}}$$
 ,

Depletion Factor
$$F_{\max} = rac{
ho_{\max} -
ho(0)}{
ho_{\max}}$$
 ,

Depletion Factor
$$F_{\mathrm{max}} = \frac{\rho_{\mathrm{max}} - \rho(0)}{\rho_{\mathrm{max}}}$$
 ,

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Depletion Factor
$$F_{\max} = rac{
ho_{\max} -
ho(0)}{
ho_{\max}}$$
 ,

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Cf. M. Grasso et al., PRC 79, 034318 (2009)

Depletion Factor
$$F_{\max} = \frac{\rho_{\max} - \rho(0)}{\rho_{\max}}$$
 ,

Use of charge distributions to fit the EDFs parameters

Skyrme SLy functional constrained with

- $\rho_{\rm crit} > 0.24 \; {\rm fm}^{-3} > 1.2 \times \rho_{\rm sat}$,
- ► charge densities in ⁴⁰Ca, ⁹⁰Zr and ²⁰⁸Pb.

The criterion $\rho_{\min} > 1.2 \times \rho_{sat}$ may not be conservative enough.

 $^{^{3}}ho_{\rm crit} > 0.24~{
m fm}^{-3}$ as for SLy5*, *Cf.* A. Pastore *et al.*, arXiv:1210.7937

Regularized functional constained with charge distributions

- \blacktriangleright Ajustement \sim regularized functional from JPG 47, 105101 (2020).
- ► Constraints on charge distributions in ⁴⁰Ca, ⁹⁰Zr and ²⁰⁸Pb.
- Preliminary results!

Nuclei use in the fit: 40Ca

Nuclei use in the fit: 90Zr

Nuclei use in the fit: 208Pb

Nuclei not use in the fit: 48Ca

Nuclei not use in the fit: 60Ni

Nuclei not use in the fit: 74Ge

Fits using charge distributions

Regularized interaction

Nuclei not use in the fit: 88Sr

Nuclei not use in the fit: 40Ar

Don't worry, it does not always work...

Semi-bubble Nuclei ³⁴Si?

Conclusions and outlooks

- Charge distributions contain information that may be useful to constrain functionals.
- They give and objective criterion to avoid finite-size (isovector) instabilities
- Consequences for binding energies, radii, deformation, spectroscopy... work in progress.
- Charge distributions from
 H. de Vries, C.W. de Jager and D. de Vries, ADNDT 36 (1987) 495.
 very useful compilation... but
 - 37 years old;
 - not always consistent with recent measurements of charge radii;
 - sometimes contains several sets of data for the same nucleus;
 - **-** ..

Thanks to my colleagues involved in this (preliminary) work

- IP2I Lyon:M. Bender, Ph. da Costa, D. Davesne, V. Guillon, J. Meyer.
- University of York: J. Dobaczewski.
- ► CEA / DES, Cadarache: A. Pastore.
- University of Jyväskylä: G. Danneaux, M. Kortelainen, H. Rui.