Recent Advances in the Nuclear Matrix Elements for Neutrinoless Double-Beta Decay

Lotta Jokiniemi (she/her) TRIUMF, Theory Department Fifth Gogny Conference, Paris, 10/12/2024

Introduction

Corrections to $0\nu\beta\beta$ -Decay Nuclear Matrix Elements

Correlations with other observables to constrain the matrix elements

Summary and Outlook

Introduction

Corrections to $0\nu\beta\beta$ -Decay Nuclear Matrix Elements

Correlations with other observables to constrain the matrix elements

Summary and Outlook

Double-Beta Decay

Neutrinoless Double-Beta $(0\nu\beta\beta)$ Decay

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-\pm 2\psi_e}$

Wendell H. Furry

Neutrinoless Double-Beta $(0\nu\beta\beta)$ Decay

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-+2\nu_e}$

G

Wendell H. Furry

Neutrinoless Double-Beta $(0\nu\beta\beta)$ Decay

. . .

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

Wendell H. Furry

• If observed, $t_{1/2}^{0\nu} \gtrsim 10^{25}$ years

Maria Goeppert-Mayer Ettore Majorana

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-\pm 2\psi_e}$

Neutrinoless Double-Beta $(0\nu\beta\beta)$ Decay

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- If observed, $t_{1/2}^{0\nu} \gtrsim 10^{25}$ years $(t_{1/2}^{2\nu} \approx 10^{20}$ years, age of the Universe $\approx 10^{10}$ years)

Maria Goeppert-Mayer Ettore

Ettore Majorana

Wendell H. Furry

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-\pm 2\psi_e}$

0vββ-Decay Experiments

\mathcal{R} **TRIUMF** Next-Generation $0\nu\beta\beta$ -Decay Experiments

\mathcal{R} **TRIUMF** Next-Generation $0\nu\beta\beta$ -Decay Experiments

$0\nu\beta\beta$ -Decay Half-Life

What would be measured

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

0vββ-Decay Half-Life

What would be measured

Majorana mass $m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$

T. Shickele, LJ, A. Belley, J. D. Holt, in preparation

Disco

accele

0vββ-Decay Half-Life

What would be measured

Majorana mass $m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$

Nuclear matrix element

T. Shickele, LJ, A. Belley, J. D. Holt, in preparation

Introduction

Corrections to $0\nu\beta\beta$ -Decay Nuclear Matrix Elements

Correlations with other observables to constrain the matrix elements

Summary and Outlook

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

õ

Traditional $0\nu\beta\beta$ -Decay Operators

$$M^{0\nu} = \frac{R}{g_{\mathbf{A}}^2} \int \frac{\mathbf{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

10/22

Traditional $0\nu\beta\beta$ -Decay Operators

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_n \frac{\left\langle f \right| J_{\mu}(\mathbf{x}) \left| n \right\rangle \left\langle n \right| J^{\mu}(\mathbf{y}) \left| i \right\rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{V}(0)]$$

$$J = \tau[g_{A}(0)\boldsymbol{\sigma} - g_{P}(0)\boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})]$$
LO

Traditional $0\nu\beta\beta$ -Decay Operators

$$M^{0\nu} = \frac{R}{g_{\mathrm{A}}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_n \frac{\left\langle f \right| J_{\mu}(\mathbf{x}) \left| n \right\rangle \left\langle n \right| J^{\mu}(\mathbf{y}) \left| i \right\rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{V}(0)] \qquad \text{LO}$$

$$I = \tau[g_{A}(0)\boldsymbol{\sigma} - g_{P}(0)\boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})] \qquad \qquad I = \tau[g_{A}(0)\boldsymbol{\sigma} - g_{P}(0)\boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})]$$

 and next-to-next-to-leading-order (N²LO) corrections absorbed into form factors and induced weak-magnetism terms

$$\mathcal{J}^{0} = \tau [g_{\mathrm{V}}(p^{2})]$$
$$J = \tau \left[g_{\mathrm{A}}(p^{2})\sigma - g_{\mathrm{P}}(p^{2})p(p \cdot \sigma) + ig_{\mathrm{M}}(p^{2})\frac{\sigma \times p}{2m_{\mathrm{N}}}\right]$$

Leading-order short-range contribution to $0\nu\beta\beta$ decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Per. Lot. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Ultrasoft-neutrino contribution to $0\nu\beta\beta$ decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

CRIUMF Ultrasoft Neutrinos in pnQRPA and NSM

Contribution of ultrasoft neutrinos
 (|k| << k_F ≈ 100 MeV) to 0νββ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\text{usoft}}^{0\nu} = -\frac{2R}{\pi} \sum_{n} \langle f || \sum_{a} \boldsymbol{\sigma}_{a} \boldsymbol{\tau}_{a}^{+} || n \rangle \langle n || \sum_{b} \boldsymbol{\sigma}_{b} \boldsymbol{\tau}_{b}^{+} || i \rangle$$

$$\times (E_{e} + E_{n} - E_{i}) \left(\ln \frac{\mu_{\text{us}}}{2 (E_{e} + E_{n} - E_{i})} + 1 \right)$$

In pnQRPA: $|M_{usoft}^{0\nu}/M_{L}^{0\nu}| \le 30\%$ In NSM: $|M_{uvgt}^{0\nu}/M_{L}^{0\nu}| \le 10\%$

D. Castillo, LJ, P. Soriano, J. Menéndez, arXiv:2408.03373

\approx TRIUMF N²LO Loop Corrections to $0\nu\beta\beta$ Decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

*** TRIUMF** N²LO Loop Corrections in pnQRPA and NSM

• The N²LO loop corrections read as

$$M_{\rm loops}^{0\nu} = \frac{4R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{a,b} \tau_a^- \tau_b^- \int e^{-\frac{q^2}{2\Lambda^2}} j_u(qr) V_{\nu,2}^{(a,b)} q^2 dq | 0_i^+ \rangle$$

$$V_{\nu,2}^{(a,b)} = V_{\rm VV}^{(a,b)} + V_{\rm AA}^{(a,b)} + \ln \frac{m_{\pi}^2}{\mu_{\rm us}^2} V_{\rm us}^{(a,b)} + V_{\rm CT}^{(a,b)}$$

In pnQRPA:

 $|M_{\rm N^2LO}/M_{\rm L}| \approx 2\% - 10\%$

In NSM:

 $|M_{\rm N^2LO}/M_{\rm L}| \approx 4\% - 10\%$

$$\int C_{\rm N^2LO}^{0\nu}(r) \mathrm{d}r = M_{\rm loops}^{0\nu}$$

D. Castillo, LJ, P. Soriano, J Menéndez, arXiv:2408.03373

Introduction

Corrections to $0\nu\beta\beta$ -Decay Nuclear Matrix Elements

Correlations with other observables to constrain the matrix elements

Summary and Outlook

$0\nu\beta\beta$ Decay vs Double-Charge-Exchange Reactions

$$M^{0\nu} = M_{\rm GT}^{0\nu} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M_{\rm F}^{0\nu} + M_{\rm T}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm N^2LO}^{0\nu}$$

Leading contribution

$$M_{\rm GT}^{0\nu} = \langle f \big| \big| \sum_{jk} \tau_j^- \tau_k^- \sigma_j^- \sigma_k^- V_{\rm GT}(r_{jk}) \big| \big| i \rangle$$

• Double-Gamow-Teller (DGT) strength function

≈TRIUMF

$$B(\text{DGT};\lambda) = \frac{1}{2J_i + 1} |\langle f|| [\sum_{jk} \boldsymbol{\sigma}_j \tau_j^- \times \boldsymbol{\sigma}_k \tau_k^-]^{(\lambda)} ||i\rangle|^2$$

$0\nu\beta\beta$ Decay vs Double-Charge-Exchange Reactions

$$M^{0\nu} = M_{\rm GT}^{0\nu} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M_{\rm F}^{0\nu} + M_{\rm T}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm N^2LO}^{0\nu}$$

Leading contribution

$$M_{\rm GT}^{0\nu} = \langle f | | \sum_{jk} \tau_j^- \tau_k^- \sigma_j^- \sigma_k^- V_{\rm GT}(r_{jk}) | | i \rangle$$

• Double-Gamow-Teller (DGT) strength function

≈TRIUMF

$$B(\text{DGT};\lambda) = \frac{1}{2J_i + 1} |\langle f|| [\sum_{jk} \boldsymbol{\sigma}_j \tau_j^- \times \boldsymbol{\sigma}_k \tau_k^-]^{(\lambda)} ||i\rangle|^2$$

Could we probe 0vββ decay by DGT reactions?

\mathcal{R} TRIUMF Correlations Between DGT and $0\nu\beta\beta$ Decay

$$M_{\rm DGT} = -\langle \mathbf{0}_{\rm gs,f}^+ || [\sum_{jk} \boldsymbol{\sigma}_j \boldsymbol{\tau}_j^- \times \boldsymbol{\sigma}_k \boldsymbol{\tau}_k^-]^{(0)} || \mathbf{0}_{\rm gs,i}^+ \rangle$$

H. Ejiri, LJ, J. Suhonen, Phys. Rev. C 105, L022501 (2022)

\mathcal{R} **TRIUMF** Correlations Between DGT and $0\nu\beta\beta$ Decay

$$M_{\rm DGT} = -\langle 0^+_{\rm gs,f} || [\sum_{jk} \boldsymbol{\sigma}_j \boldsymbol{\tau}_j^- \times \boldsymbol{\sigma}_k \boldsymbol{\tau}_k^-]^{(0)} || 0^+_{\rm gs,i} \rangle$$

 Correlation between M^{0ν} and M_{DGT} found in nuclear shell model and EFT

N. Shimizu, J. Menéndez, K. Yako, Phys. Rev. Lett. 120, 142502 (2018)

S

\mathcal{R} **TRIUMF** Correlations Between DGT and $0\nu\beta\beta$ Decay

$$M_{\rm DGT} = -\langle \mathbf{0}^+_{\rm gs, f} || [\sum_{jk} \boldsymbol{\sigma}_j \boldsymbol{\tau}_j^- \times \boldsymbol{\sigma}_k \boldsymbol{\tau}_k^-]^{(0)} || \mathbf{0}^+_{\rm gs, i} \rangle$$

- Correlation between M^{0ν} and M_{DGT} found in nuclear shell model and EFT
- Correlation also holds in *ab initio* VS-IMSRG

\mathcal{R} **TRIUMF** Correlations Between DGT and $0\nu\beta\beta$ Decay

$$M_{\text{DGT}} = -\langle 0^+_{\text{gs,f}} || [\sum_{jk} \boldsymbol{\sigma}_j \boldsymbol{\tau}_j^- \times \boldsymbol{\sigma}_k \boldsymbol{\tau}_k^-]^{(0)} || 0^+_{\text{gs,i}} \rangle$$

- Correlation between M^{0ν} and M_{DGT} found in nuclear shell model and EFT
- Correlation also holds in *ab initio* VS-IMSRG
- ...and QRPA, when proton-neutron pairing varied
 - Observation of $M_{\text{DGT}} \rightarrow \text{constraints}$ for $M^{0\nu}$

LJ, J. Menéndez, Phys. Rev. C 107, 044316 (2023)

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

• How about $2\nu\beta\beta$ decay?

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

- How about $2\nu\beta\beta$ decay?
- $2\nu\beta\beta$ -decay also correlated with $0\nu\beta\beta$ -decay!

LJ, B. Romeo, P. Soriano and J. Menéndez, Phys. Rev. C 107, 044305 (2023)

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

- How about 2vββ decay?
- $2\nu\beta\beta$ -decay also correlated with $0\nu\beta\beta$ -decay!
- We can use the existing data to estimate $0\nu\beta\beta$ -decay NMEs!

LJ, B. Romeo, P. Soriano and J. Menéndez, Phys. Rev. C 107, 044305 (2023)

Introduction

Corrections to $0\nu\beta\beta$ -**Decay Nuclear Matrix Elements**

Correlations with other observables to constrain the matrix elements

Summary and Outlook

- Summary
- *χ*EFT corrections to 0νββ-decay seem to respect the power counting, but N²LO
 corrections still significant
- Correlation between $0\nu\beta\beta$ and $2\nu\beta\beta$ decays helped us predict $0\nu\beta\beta$ -decay NMEs with uncertainties
- Correlations with DGT and M1M1 transitions with future data can help us further constrain the NMEs

For the Future...

- Test $M_{\rm usoft}^{0\nu}$ predictions with data from charge-exchange reactions (currently limited at ~ 5 MeV)
- Study N²LO corrections to M^{0ν} with consistent Hamiltonians in an *ab initio* framework
- Study correlation between $0\nu\beta\beta$ and $2\nu\beta\beta$ decay in an *ab initio* framework

Thank you Merci

Next generation experiments

∂ TRIUMF

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

Õ

Effective Neutrino Masses

 Effective neutrino masses combining the likelihood functions of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe)

S. D. Biller, Phys. Rev. D 104, 012002 (2021)

• Middle bands: $M_{\rm L}^{(0\nu)}$ Lower bands: $M_{\rm L}^{(0\nu)} + M_{\rm S}^{(0\nu)}$ Upper bands: $M_{\rm L}^{(0\nu)} - M_{\rm S}^{(0\nu)}$

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{d\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_n - \frac{1}{2}(E_i + E_f) - \frac{1}{2}(E_1 - E_2)}$$

• Energy of the virtual neutrino typically $E_v = \sqrt{m_v^2 + k^2} \sim |\mathbf{k}| \sim k_F \sim 100 \text{ MeV}$ ("soft neutrinos")

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{d\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_n - \frac{1}{2}(E_i + E_f) - \frac{1}{2}(E_1 - E_2)}$$

- Energy of the virtual neutrino typically $E_v = \sqrt{m_v^2 + k^2} \sim |\mathbf{k}| \sim k_F \sim 100 \text{ MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_1 E_2 \sim 0$ MeV

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{d\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_n - \frac{1}{2}(E_i + E_f) - \frac{1}{2}(E_1 - E_2)}$$

- Energy of the virtual neutrino typically $E_v = \sqrt{m_v^2 + k^2} \sim |\mathbf{k}| \sim k_F \sim 100 \text{ MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_1 E_2 \sim 0$ MeV

$$\rightarrow M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

 Intermediate states |n⟩ with all spin-parities J^π up to high energies

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

- Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

- Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

With closure approximation:

• Assuming that $|\mathbf{k}| >> E_n - \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

- Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- Use the relation $\sum_{n} |n\rangle \langle n| = 1$

Closure approximation

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

- Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- Use the relation $\sum_{n} |n\rangle \langle n| = 1$

$$\rightarrow M^{0\nu} \propto \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E \rangle}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

- Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

With closure approximation:

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- Use the relation $\sum_{n} |n\rangle \langle n| = 1$

$$\rightarrow M^{0\nu} \propto \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E \rangle}$$

 Typically used with other nuclear methods

scovery scelerate

RIUMF Ultrasoft Neutrinos as Closure Correction

TRIUMF Similar effects found in *ab initio* studies

• In ⁷⁶Ge:

$$\begin{split} M_{\rm S}^{0\nu}/M_{\rm L}^{0\nu} \sim 40\%\,, \\ M_{\rm N^2LO}^{0\nu}/M_{\rm L}^{0\nu} \sim 5\%^a \end{split}$$

A. Belley et al. arXiv:2308.15634 (2023)

^aThere were some errors found in the paper

accel

TRIUMF Similar effects found in *ab initio* studies

• In ⁷⁶Ge:

 $M_{
m S}^{0
u}/M_{
m L}^{0
u}$ ~ 40% , $M_{
m N^2LO}^{0
u}/M_{
m L}^{0
u}$ ~ 5% ^a

• In 130 Te and 136 Xe:

 $M_{\rm S}^{0\nu}/M_{\rm L}^{0\nu}\sim 20\%-120\%$

A. Belley et al. arXiv:2307.15156 (2023)

^aThere were some errors found in the paper

accel

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

Two-Body Currents & Contact Term

 Correlations survive when adding approximate two-body currents (2BCs) and the contact term

LJ, B. Romeo, P. Soriano and J. Menéndez, Phys. Rev. C **107**, 044305 (2023)

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

Two-Body Currents & Contact Term

- Correlations survive when adding approximate two-body currents (2BCs) and the contact term
- Effect of 2BCs larger than in previous studies

J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

Probing $0\nu\beta\beta$ Decay by $2\nu\beta\beta$ Decay

Two-Body Currents & Contact Term

- Correlations survive when adding approximate two-body currents (2BCs) and the contact term
- Effect of 2BCs larger than in previous studies

J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

 2BCs and the contact term largely cancel each other

Phys. Rev. C 107, 044305 (2023)