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Motivation

Nuclear physics

e Deals with a system of non-relativistic fermions
Schrodinger Equation and symmetrization principle

¢ |n typical processes the number of fermions is neither
small nor too large: Mesoscopic system

¢ The interaction is not well characterized/understood
¢ In medium effects are very important

Various approximate many body methods required to cover all
possible nuclear structure scenarios

Comparison with experiment cannot be used to tell the
goodness of the (variational) many body method used

It is important to quantify correlations at each level of
approximation



Approximations

There is a hierarchy (ladder) of approximations in nuclear
structure

¢ Mean field with symmetry breaking (HFB)
® Symmetry restoration

¢ Fluctuation in "collective variables” (the canonical
conjugate of orientations)

One can add additional steps to the ladder by considering
e elementary two quasiparticle excitations 3, 5,"|®)
* elementary four quasiparticle excitations 3 62;5;;@;@)
e etc ...

to eventually reach (QC language) full Cl.

Full Cl impossible except in small configuration spaces

Tools beyond gs correlation energy required to quantify

correlations



Quantum information

By using quantum information tools we would like to quantify
how much correlations are incorporated into the different wf of
the different approaches considered. The non-correlated
symmetry restricted Hartree Fock (HF) is used as a baseline

e Spontaneous symmetry breaking

e Symmetry restoration

e GCM

¢ Restricted ClI
Assumption: Correlations are connected with the degree of
entanglement in the system

Quantities like quantum discord or the von Neuman entropy
of the one body density matrix are explored.

Our focus it to understand also how the QI quantities evolve
across quantum phase transitions, typically as a function of
force strength parameters.



Quantum information tools

e Symmetrization principle for fermions poses a problem

¢ Instead of particles (Hilbert spaces) one uses orbitals
(algebras)

e Quantum discord
Measures quantum correlations between two partitions A
and B of the whole set of orbitals as the difference
between the quantum conditional entropy and its classical
counterpart

e Entropy one body density matrix
The relative entropy of each single orbital with respect to
the remaining ones is summed up to define the entropy.
Orbital dependent. Uses the natural orbital basis as a
reference.



Our work

We have studied several
variants of the Lipkin
model with various tools
of quantum information

e Entropies
¢ Discord

In those models parity
symmetry and particle
number symmetries
could be broken.

II. SINGLE-J SHELL

We consider the (2j+1)-fold degenerate single shell of
angular momentum j filled with an even number N of
identical particles, which without the interaction, is as-
sumed to be at zero energy. The Hamiltonian is com-
posed of the PPQ interaction,

H=-GPtP-xQ-Q, (2.1)

where P+ is the pair transfer operator and Q is the
quadrupole moment operator,

Pt =3 (jmim'|00)akar,. (2.2a)

mm'

Q=Y (jmim'|2p)atdm (2.2b)

mm'

while G and x are pairing and quadrupole coupling con-
stants, respectively. Hamiltonian (2.1) describes basic
collective correlations between nucleons [6,7] and it has
been used by many authors [8-11,20,21]. In the mean-

Can be solved exactly
Breaks rotational invariance

Phys. Rev. A 104, 032428; Phys. Rev. A 103, 032426; Phys.

Rev. A 105, 062449



Quantum information tools: Entropy

¢ Symmetrization principle for fermions induces
correlations

¢ Slater determinant as the base line (uncorrelated) state

e Entropy one body density matrix
The relative entropy of each single orbital with respect to
the remaining ones is summed up to define the entropy.
Orbital dependent.
Uses the natural orbital basis of the one body density p

S:—anlognk
k

ny eigenvalues of the density matrix

Slater: n, =00or1 — S=0



BCS and HFB

e Eigenvalues of the density p are the occupancies v,f
e S = 0 reflects the correlations gained by the BCS (HFB)
canonical transformation with respect to Slater
e S grows with AN? as expected
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Collective fluctuation

Collective fluctuations in the GCM scheme
v} = [ data(a)ie(a))

Generating wf |®(q)) is in general of HFB type

To remove BCS (HFB) correlations use the generalized density
matrix

Rq = (o@RIo@) = ( 2. (5. )

EigenvaluesOor1 — S(R) =0

Consider now
P — / dqdq' 15 (q)f (@' ) Rqq

with Rqq = ((q)R|®(q))
Entropy computed from the eigenvalues of R,



Correlated densities

As a side product one can compute the correlated density in
coordinate space

= / dqdq £ (q)(q ) paq

With pgqr = (9(9)216(q))

Pa(F) = 2 ia(Pqq )ik (F)pi(r)
Look at po(r) — prrs(r)




An example

GCM study of '®*Sm with 35
Ground state and two excited
states shown

Excited states get a larger entropy !



An example

GCM study of ®9Gd with /3,
Ground state and two excited
states shown

Shape coexistence: two “ground states”
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Excited states get a larger entropy !



Quantum information tools: Discord

QUANTUM DISCORD: \?\Q

DEFINITION AND PROPERTIES V()

Definition:

5(A, B) = I(A, B) — J(A, B)

Measurement-based
\ conditional entropy
J(A,B) = maxS( 4) - S(pABlrIB)
ng

I(A, B) ="S(A) + S(B) — S(A, B)
AB|HB Zka(pAB)

1. Represents all the purely quantum correlations, beyond
entanglement.
2. For pure states, it reduces to the von Neumann entropy of a
subsystem, and the classical correlations acquires the same value. ]
B = —[IBpA
P

. Hard to compute due to the maximization process.



Quantum information tools: Discord

Definition:

8(A, B) = I(A, B) — J(A, B)
\ coiZ?:onal Zn-tr:;:

J(A,B) = mZ};xS(pA) - S(p*B|T1E)
I

\
S48 = TSt
k

How to compute it for qubits:
nf:() =V]0)(0] vt The unitary Vis the
‘variational parameter g 1

e, = v v

I(A, B) ="S(A) + S(B) — S(A, B)




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS

The fermion systems must satisfy the Parity Superselection Rule (PSSR). Hence, not all the
measurements are allowed. z

Only a superposition of odd/even number of fermions is allowed

Example:
NO!
T2 |00)(00 | T2 o [00)(00 | + ] 00)(01 | + [01)(00 | + |01)(01 |

PSSR allows us to pute the quantum di d: for a system of two orbitals, only two measurements are allowed

B T

Hg =aga
i —
They are projectors since aBaB + aBaB =1

B _ 1
IIf = ajag




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS

Dephasing channel

5(i.J) = S(Z(p") ) - S

Result:

The two orbital reduced density can be written as
Typical many-body variables

pr=1=Yy— v+ Yy

pp 0 0 a P2 = V)i~ Yijij vi = (wld'a|w)
, 0 p v O with  P3= Vi ™ Vijij ’ Y
Pl = 2 Py = Vijij Kji = <W|aiaj|w>
0 v p3 O x
a = K

— bt
« 0 o p, y = le'i Yijij = (‘/"“i 4 “j“i"/’)




Discord for fermions

QUANTUM DISCORD IN FERMION
SYSTEMS: TWO ORBITALS PAIRS

Following the qubit parametrization: HliB) - RTHEB)R

The parametrized projectors doesn’t have to mix states with different parity (because of the PSSR):

. . 1 N
R=¢H H= Z hl_.fci'cj +5Ai,-(ci‘ c; +¢ic) :{> Thouless rotation
[JEX



Models: Lipkin

THE 2-LIPKIN — T T
MODEL R aieraie ol SR

The 2 level Lipkin model simulates the nuclear interaction between two shells with same angular
momentum introducing a monopole-monopole interaction.

- Parity symmetry
- Number of
particles symmetry

1
Jo= 2 Z 6C;mc(r.m

om

Monopole-monopole term

-<)- c=+1

—m —1 m

H=¢J —iV(JZ+JZ)
ST T

5

Monopole-monopole interaction: for a
given value, there is a QPT that breaks
parity in the upper level

Ji= Ji= Z clT,mcfl.m
m




Models: Agassi

Pairing term

THE AGASSI LT
MODEL S ol sk

Monopole-monopole term

—m —1 1 m

Simulates a nuclear Hamiltonian introducing monopole-monopole and pairing interaction

8 Z A;Aa’

The pairing interaction

adds a superconducting
phase

H=e¢l —lV(JZ+JZ)
= o TG M TR

5

- Parity symmetry

- NIneey o Monopole-monopole interaction: for a Pairing interaction: for a given
particles symmetry given value, there is a QPT that breaks value, there is a QPT that
parity in the upper level breaks particle number

O(5) generators

1
=— i —Ji= i A = SU(2) generators
=g Xodhacon  L=ll= T A= Do :> e e

interaction (2-Lipkin

The HFB ground state has three quantum phases, corresponding to each term model)




Models: Lipkin 3 levels

THE 3-LIPKIN
MODEL o=

Similar to the 2-Lipkin model, with one additional energy level.

4 2 2 2

Monopole-monopole interaction: for two
given values, there is a QPT that breaks
number parity in the +1 and O level.

)  Monopole-monopole interaction between ¢ and ¢’ levels

::> SU(3) generators

K, = e

(e o,m-o,m



Two orbital quantum discord

THE AGASSI —
MODEL -0 — .

The quantum discord for the HFB ground state in the ‘original’ orbital basis is easy to compute:

Q
Il
+

m=m’and o= -0’ orbitals —m’”and o=0" orbitals
HF deformed phase 03820 HF deformed phase 0.5820
0.5175 05175
0.4530 0.4530
0.3885 0.3885
0.3240 0.3240
BCS phase 0.2595 0.2595
HE 01950 X F BCS phase 0.1950
spherical 0.1305 spherical 0.1305
phase 0.0660 Bl phase 0.0660
0.0015 0.0015
00 05 1.0 15 20 25 30 00 05 10 15 20 25 3.0
x b

HF deformed phase breaks parity symmetry BCS phase breaks particle number symmetry




Faba, Martin and Robledo, Phys. Rev. A 103, 032426, 2021

Two orbital quantum discord

THE 2-LIPKIN — OO F O e
MODEL -—Om-_ __I'CID"O'T c=—1

1
A particular case of Agassi model: only monopole-monopole interaction H = SJO - EV(J_%_ + JE)

Here we have QD between QD between up/down orbital pair

HF orbitals for the exact = 1. For y < 1 there is no quantum

ground state. 020 _ x ;2 discord. The orbitals are the

- N=7 same as the ‘original’ ones.

- If QD is high, the HF orbitals o015 — N=9 | 2. For y = co the discord is low
need to be very correlated | § — N=11 and decreases fast with the
in order to catch all the g — N=13 number of particles. The mean-
correlations. £ 0.10 o xzi; field approx. is good.

- If QD is smaill, the HF 2 N=20 | 3. For y ® I and y > 1 the discord
orbitals don’t need to be g reaches a maximum. The HF
very correlated in order to 0.05 approx. fails, since the orbitals
describe the exact state. [ need the correlate between

them in order to describe the

This is in agreement with the 0.00 exact ground state.

behaviour of RCE vs OV




Due to the QPT, RCE changes the curvature

Second derivative relative correlation energy

Correlation energy & overall entropy

THE 2-LIPKIN
MODEL
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Faba, Martin and Robledo, Phys. Rev. A 104,032428, 2021



Second derivative of relative correlation energy

Correlation energy & overall entropy

THE 3-LIPKIN
MODEL

Same behaviour than 2-Lipkin model,
with two QPT’s
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Faba, Martin and Robledo, Phys. Rev. A 104,032428, 2021




Results: Four orbital QD

A
Four orbital quantum discord T /

THE 3-LIPKIN ™" ===

DY i O T e

MODEL B—

- This partition follows the natural structure
of the interaction
A=1[1,3],B=1[0,2]

All the approximations reproduce
0 1 7 Z A z z more or less the exact results.

QD (exact)
o
o
P

2 os
Q
) ] W ‘ <—— + better fit, specially far from the first QPT point
S 0.0
0 1 2 3 4 5 6
Eos
> _ﬂ <—— + particle number dependence
& 0.0
0 1 2 3 4 5 6
o =
z? i x 73&("“'” ‘ Change of behaviour at the QPT points
= -
oo

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



Results: Four orbital QD

Four orbital quantum discord no

THE 3-LIPKIN ™™ &
MODEL = rol

A=1[2,31,B=10,1] The HF approximation does not succeed
catching quantum correlations, we need a
7 7 5 5 " 5 z symmetry restoration

QD (exact)
o o
> =
25

§ 0.1] ﬁ*‘% ‘ <«—— Closer to the exact result
S 0.0 - - T
0 1 2 3 4 5 6
= o1 A symmetry restoration is enough to obtain quantum
£o ] f M ‘ <«——correlations in a similar shape with respect to the
200 exact state + particle number dependence.
0 1 2 3 4 5 6
“;- 01T 5 N=5
o —— N=50 “—— Null QD for all values!
S 0.0
0 1 2 3 4 5 6

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



Results: Four orbital QD

Four orbital quantum discord ng

THE 3-LIPKIN ™" === ?3%
MODEL

R =[1.8=1[0] The symmetry breaking process creates
205 = .
g T_._ N =50 ‘ ‘fake’ quantum correlations at the two
0.0 .

< 0 1 2 3 4 5 6 orbital level
3 0.51 ‘
e
S 0.0 - ¥ ;

0 1 2 3 4 5 6
g_ 0.5 A symmetry restoration is enough to restore the true
a QD
o 0.0

0 1 2 3 4 5 6
Cos
z <“—— Fake’ QD!
< 0.0

0 1 2 3 4 5 6

X

Faba, Martin and Robledo, Phys. Rev. A 105, 062449, 2022



CONCLUSIONS

- For fermion systems, the QD can be computed through Thouless rotations, and for
the two orbital case, it is specially simple.

- QD is a good tool in order to analyze many body systems, such as QPTs.
Moreover, the orbital QD is useful to understand deeply the role of the symmetries.

- In general, one needs symmetry restoration on top of HF to catch most of the
correlations present in the exact ground state. The correlations are ‘redistributed’

with the symmetry restoration process.

- Correlation energy is not a good estimation of the correlations within a system.
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