

Microscopic description of β -decay rates of r-process nuclei

Diana Alvear Terrero^{1,2,3}

In collaboration with Gabriel Martínez-Pinedo^{1,2,3} Caroline E. P. Robin^{4,3} Ante Ravlić⁵

Thomas Neff³ Max Pallàs⁶ Ariel Tarifeño-Saldivia^{7,6}

¹Helmholtz Forschungsakademie Hessen für FAIR. ²Technische Universität Darmstadt.
³GSI Helmholtzzentrum für Schwerionenforschung. ⁴Fakultät für Physik, Universität Bielefeld.
⁵Facility for Rare Isotope Beams, Michigan State University.
⁶Universitat Politècnica de Catalunya (UPC). ⁷Instituto de Física Corpuscular (IFIC).

Gogny Conference 2024, Paris. December 10-13, 2024

HFHF TECHNISC UNIVERSI DARMSTA

Overview

- Motivation
- Global β-decay calculations within QRPA
- Sensitivity to isoscalar pairing strength.
- β-delayed neutron emission and comparison with preliminary results from BRIKEN-REP experiment.
- Quasiparticle-vibration coupling results in waiting point nuclei.
- Extension to quasiparticle-vibration coupling and deformation.

The r-process.

- Astrophysical environment should provide enough neutrons per seed
- Path not fully accessible to experiments → theoretical predictions
- Inputs: β-decay half-lives, neutron-capture rates, fission rates and yields, ...

Determines the nuclear timescale for the r-process: competition with expansion timescale

HFHF

β -decay rates of r-process nuclei.

(Z,N) ground state $\ \ J$

 $J_i^{\Pi_i}$

L=0 ⇒ "allowed" L>0 ⇒ "forbidden"

L,J,S

 $\bar{\nu}_{e}$

- GSİ
- Gamow-Teller (GT): $\Delta S = 1$
- First Forbidden: L = 1, $\Pi_i \neq \Pi_f$

Allowed decays (GT):

$$\lambda = \frac{\ln 2}{T_{1/2}} \propto \int^{Q_{\beta}} f(Z, Q_{\beta} - E) S(E) dE$$
$$S(E) = \sum_{f} |\langle f | \hat{F} | i \rangle|^{2} \delta(E - E_{f} + E_{i})$$

Correlations relevant to the low-lying strength.

Global β -decay calculations within QRPA.

- FRDM + gross theory for FF¹
- relativistic spherical approach with D3C*²
- non-relativistic deformed approach with SKO' (Ney 2020)³

¹P. Möller et al., Phys. Rev. C **67**, 055802 (2003), P. Möller et al., Atomic Data and Nuclear Data Tables **125**, 1–192 (2019).
²T. Marketin et al., Phys. Rev. C **93**, 025805 (2016), M. Eichler et al., The Astrophysical Journal **808**, 30 (2015).
³E. M. Ney et al., Phys. Rev. C **102**, 034326 (2020).

5

Global β -decay calculations within QRPA.

- FRDM + gross theory for FF¹
- relativistic spherical approach with D3C*²

shorter half-lives for $N > 126 \Rightarrow$ shift of the third abundance peak (A ~ 195)

non-relativistic deformed approach with SKO' (Ney 2020)³

¹P. Möller et al., Phys. Rev. C **67**, 055802 (2003), P. Möller et al., Atomic Data and Nuclear Data Tables **125**, 1–192 (2019).

²T. Marketin et al., Phys. Rev. C 93, 025805 (2016), M. Eichler et al., The Astrophysical Journal 808, 30 (2015).

Gogny EpiMucNey retsals, Phys. Rev. C 102, 034326 (2020).

Global β -decay calculations within QRPA.

Very different predictions of the FF contribution to the rates

⁴ P. Möller et al., Phys. Rev. C **67**, 055802 (2003), P. Möller et al., Atomic Data and Nuclear Data Tables **125**, 1–192 (2019).
⁵T. Marketin et al., Phys. Rev. C **93**, 025805 (2016).

⁶E. M. Ney et al., Phys. Rev. C **102**, 034326 (2020).

Global β -decay calculations within QRPA.

FF contribution to the rates

 $\rightarrow\,$ After recent corrections 7 to the RHB+RQRPA code with <code>D3C*</code>

⁷C. E. P. Robin and G. Martínez-Pinedo, arXiv:2403.17115 (2024).

Global β -decay calculations within QRPA.

GSİ

Sensitivity to isoscalar pairing strength (V₀)

• V_0 parametrisation with N-Z dependence fitted to reproduce experimental half-lives.⁸

⁸G. Lorusso et al., Phys. Rev. Lett. **114**, 192501 (2015).

Global β -decay calculations within QRPA.

Sensitivity to isoscalar pairing strength (V₀)

Large values can produce problems in the heavy and superheavy region

Global β -decay calculations within QRPA.

Sensitivity to isoscalar pairing strength (V_0)

- Large values can produce problems in the heavy and superheavy region
 - \rightarrow Evolution of eigenvalues with V $_0$ for 2^-

β -delayed neutron emission: preliminary results.

β -delayed neutron emission: Comparison to preliminary results of BRIKEN-REP experiment.

• Newly measured $T_{1/2}$ and P_{1n} values for isotopes from ¹⁴⁶Ba to ¹⁶²Nd.

β -delayed neutron emission: Comparison to preliminary results of BRIKEN-REP experiment.

• Newly measured $T_{1/2}$ and P_{1n} values for isotopes from ¹⁴⁶Ba to ¹⁶²Nd.

Quasiparticle vibration coupling (QVC)⁹

⁹C. Robin and E. Litvinova, Phys. Rev. C 98, 051301 (2018), C. Robin and E. Litvinova, European Physical Journal A 52, 205 (2016).

Quasiparticle vibration coupling (QVC)⁹

⁹C. Robin and E. Litvinova, Phys. Rev. C 98, 051301 (2018), C. Robin and E. Litvinova, European Physical Journal A 52, 205 (2016).

Quasiparticle vibration coupling (QVC)⁹

No adjustable proton-neutron pairing.

So far limited to spherical systems.

⁹C. Robin and E. Litvinova, Phys. Rev. C 98, 051301 (2018), C. Robin and E. Litvinova, European Physical Journal A 52, 205 (2016).

QVC in waiting point nuclei¹⁰

Future work: extension to QVC and deformation.

Procedure:^{11,12}

- Determine phonon vertices from like-particle response.
- Add the vertices to the residual interaction of the deformed β-decay calculation¹⁴ (*in collaboration with A. Ravlić*)

¹¹E. Litvinova and Y. Zhang, Phys. Rev. C **104**, 044303 (2021), Y. Zhang et al., Phys. Rev. C **105**, 044326 (2022).

¹²Q. Liu et al., Phys. Rev. C **109**, 044308 (2024).

¹³A. Ravli ć et al., Phys. Rev. C **110**, 024323 (2024).

Summary and outlook.

- Towards improvement of global β-decay rates and β-delayed emission probabilities calculations within relativistic description.
- At QRPA level:
 - Corrections and update of previous global RQRPA β-decay rates tabulation including correction of the isoscalar pairing strength values for heavier nuclei (*in progress*).
 - β -delayed neutron emission probabilities measurement as a benchmark for the theory.
- Beyond QRPA:
 - Inclusion of the phonons reduces the half-lives, bringing them closer to the experiment without the need for adjustable proton-neutron pairing.
 - Ultimately, extension to include deformed like-particle phonon vertices in the deformed β-decay calculation.

Summary and outlook.

- Towards improvement of global β-decay rates and β-delayed emission probabilities calculations within relativistic description.
- At QRPA level:
 - Corrections and update of previous global RQRPA β-decay rates tabulation including correction of the isoscalar pairing strength values for heavier nuclei (*in progress*).
 - β -delayed neutron emission probabilities measurement as a benchmark for the theory.
- Beyond QRPA:
 - Inclusion of the phonons reduces the half-lives, bringing them closer to the experiment without the need for adjustable proton-neutron pairing.
 - Ultimately, extension to include deformed like-particle phonon vertices in the deformed β-decay calculation.

Thank you for your attention!

Preliminary results of BRIKEN-REP experiment.

Preliminary results of BRIKEN-REP experiment.

