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Microscopic approaches to fission
: mean-field wave functions constrained by shape degrees of freedom

 

A. Staszczak et al., PRC80 (‘09) 014309
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Ø WKB approximation for 
spontaneous fission

Ø Time-dependent GCM

|Ψ(t)⟩ =

∫
dqf(q, t)|Φq⟩ → Hcoll(q, ∂/∂q)

D. Regnier et al., PRC93 (‘16) 054611
Ø Our approach

in the same philosophy, but with a Green’s fcn
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).



Ø r-process nucleosynthesis

→ low E* and low r(E*)

(neutron induced) fission of 
neutron-rich nuclei

ü Validity of statistical models?
ü Validity of the Langevin approach?

Ø barrier-top fission

V
(e

)

CN barrier-top

high r(E) high r(E)
low r(E)

discrete levels

post
barrier

How to connect to a many-body Hamiltonian?

Why is a microscopic theory for fission important?



Shell model approach?
Shell model

Figure: Noritaka Shimizu (Tsukuba)

many-particle many-hole configurations 
in a mean-field potential
   →mixing by residual interactions

Shell model based on DFT

ei ← DFT
Y.P. Wang et al., PRL132, 232501 (2024)
J. Liu et al., arXiv: 2411.05370 (2024).



Shell model approach?
Shell model

Figure: Noritaka Shimizu (Tsukuba)

many-particle many-hole configurations 
in a mean-field potential
   →mixing by residual interactions

A similar approach 
for nuclear fission?

Ø Many-body configurations 
in a MF pot. for each shape

Ø hopping due to res. int.
→ shape evolution

a good connection to 
nuclear reaction theory

Shell model based on DFT

ei ← DFT
Y.P. Wang et al., PRL132, 232501 (2024)
J. Liu et al., arXiv: 2411.05370 (2024).



18b 22b 26b 29b 33b 37b

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
Calculations for 235U(n,f) based on Skyrme HF method

fission: along Q = Q20 → discretized along the fission path

the criterion:

ü Dynamics of the first barrier: axial symmetry 
ü a scaled fission barrier with Bf = 4 MeV : Egs(Q) → f Egs(Q)

14b 40b



18b 22b 26b 29b 33b 37b

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
Calculations for 235U(n,f) based on Skyrme HF method

fission: along Q = Q20 → discretized along the fission path

the criterion:

ü Dynamics of the first barrier: axial symmetry 
ü a scaled fission barrier with Bf = 4 MeV : Egs(Q) → f Egs(Q)

construct excited configurations at each Q with Skyrme UNEDF1
• neutron seniority zero configurations only
• truncation at E* = 4 MeV
• GOE for the CN and the pre-scission blocks

GOE GOE

dim.
=100 42 97 153 125 65 32 100

714x714 Hamiltonian matrix 



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis
many-body config. based on UNEDF1 
(HF basis, E* < 4 MeV)

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
Calculations for 235U(n,f) based on Skyrme HF method

Gn

p introduce the decay widths for the configurations at Q=14 and 40 b
ü Gcap: exp. data (scaled according to NGOE), Gfis: insensitivity



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis
many-body config. based on UNEDF1 
(HF basis, E* < 4 MeV)

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
Calculations for 235U(n,f) based on Skyrme HF method

Gn

p introduce the decay widths for the configurations at Q=14 and 40 b

Reaction theory (absorption probability):

“Datta formula”

ü Gcap: exp. data (scaled according to NGOE), Gfis: insensitivity



G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

from DFT

Q

Q’

also for 
off-diagonalsdiabatic couplings

Gaussian Overlap Approximation (GOA)

H ∼ H0 + Vpair + Vdiabatic = H0 −GP
†
P + Vdiabatic

Calculations for 235U(n,f) based on Skyrme HF method



⟨Ψµ(Q)|H|Ψµ(Q′)⟩

⟨Ψµ(Q)|Ψµ(Q′)⟩
≡ ⟨Ψµ(Q)|Vdiabatic|Ψµ(Q

′)⟩

∼ Eµ(Q̄)− h2(∆ζ)2

diabatic couplings

Gogny D1S

→ h2 ~ 1.5 MeV



Gin = 0.01 MeV
Gcap = 0.00125 MeV
Gfis = 0.015 MeV

DE = 0.5 MeV

energy average



a
-1

= 
T f

is
/ T

ca
p

insensitivity property

α
−1
exp ∼ 3.0

GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfismany-body config. based on UNEDF1 

insensitive to Gf
(post-barrier dynamics) 
→the main assumption 

of TST

cf. Analytic discussion 
with a 2GOE+1Q model

K.H. and G.F. Bertsch, 
JPSJ93, 064003 (2024)

E = 4.0 MeV



a
-1

= 
T f

is
/ T

ca
p

insensitivity property

α
−1
exp ∼ 3.0

base set
Gpair = 0.2 MeV
h2 = 0.15 MeV
→ a-1 = 0.95

Gpair → Gpair/2
Gpair = 0.1 MeV
h2 = 0.15 MeV
→ a-1 = 0.37

sensitive to the pairing, though less
than in spontaneous fission

E = 4.0 MeV

E = 4.5 MeV



K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

a small number of d.o.f. for induced fission ← transition state theory

insensitivity propertyFluctuations of fission width

chi-square distribution:
n: # of d.o.f.

(n=1: the PT distribution)

n = 1.25



K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

a small number of d.o.f. for induced fission ← transition state theory

insensitivity propertyFluctuations of fission width

n = 1.25

G(En) =
1

H − iΓ/2− En

=
∑

α

|φα⟩⟨φ̃α|

Eα − En

only a few eigenstates with Re(Ea) ~ En contribute
“transition states”



insensitivity propertyTowards a large-scale calculation

K. Uzawa and K.H., PRE110, 055302 (2024).
seniority zero config. → non-zero config. 

→ a large scale calculation (~ 106 dim.)

G(En) =
1

H − iΓ/2− En

=
∑

α

|φα⟩⟨φ̃α|

Eα − En

shift-invert Lanczos method

only a few eigenstates with Re(Ea) ~ En contribute

Notice: large scale CI calculations → the Lanczos method
for an efficient iterative method to obtain the ground state

In general, the “transition states” are in the middle of the spectrum 
→ the shift-invert Lanczos method

Hφα = Eαφα → (H − En)
−1φα = (Eα − En)

−1φα

Lanczos



insensitivity propertyTowards a large-scale calculation

K. Uzawa and K.H., PRE110, 055302 (2024).

En = 6.5 MeV

# of iteration

~ 40 times faster!



Summary and discussions 
r-process nucleosynthesis: fission of neutron-rich nuclei

requires a microscopic approach applicable to low E* and r(E*)
a new approach: shell model + GCM

an application to induced fission of 236U 
based on Skyrme EDF

• the insensitive property
• an importance of the pairing interaction
• a small value of d.o.f.

← the transition state theory
Future perspectives: seniority non-zero config. → pn res. interaction

K. Uzawa and K. Hagino, PRC108 (‘23) 024319

a large scale calculation (~ 106 dim.)

→

→ the shift-invert Lanczos method
K. Uzawa and K.H., PRE110, 055302 (2024)
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Applications with the Gogny interaction?
In principle, any EDF can be used for the calculations, but….

the # of configurations are too small
with D1S

m* = 1.01 (UNEDF1)
0.697 (D1S)

r(E) is too small
renormalization of ei → (m*/m)  ei

Q = 14b

Summary and discussions 
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To find a renormalization factor 
to match with r(E) of UNEDF1 at Q = 14b

a Q-dep. renormalization factor

Discussions Applications with the Gogny interaction?

A new Gogny parameter set with m* ~ 1?
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