Modeling **low-energy induced fission** in a discrete-basis formalism with density functional theory

Kouichi Hagino Kyoto University

George F. Bertsch (Seattle) Kotaro Uzawa (Kyoto)

How well can one describe nuclear fission microscopically?

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023). K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

5th Gogny conference, Paris, Dec. 10-13, 2024.

Modeling **low-energy induced fission** in a discrete-basis formalism with density functional theory

Kouichi Hagino Kyoto University

George F. Bertsch (Seattle) Kotaro Uzawa (Kyoto)

1. Microscopic understanding of nuclear fission 2. GCM + CI approach to induced fission

3. Calculations with the Skyrme functional

4. Discussions: applications of the Gogny interaction?

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023). K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

5th Gogny conference, Paris, Dec. 10-13, 2024.

Microscopic approaches to fission

: mean-field wave functions constrained by shape degrees of freedom

$$
\delta \langle \Phi | H - \lambda Q_{20} | \Phi \rangle = 0 \quad \rightarrow \Phi(Q_{20}), \ E(Q_{20})
$$

 \triangleright WKB approximation for spontaneous fission

$$
P = \exp\left[-2\int dq \sqrt{\frac{2B(q)}{\hbar^2}(V(q) - E)}\right]
$$

A. Staszczak et al., PRC80 ('09) 014309

$$
\triangleright \text{ Time-dependent GCM}
$$

$$
|\Psi(t)\rangle = \int dq f(q, t) |\Phi_q\rangle \longrightarrow H_{\text{coll}}(q, \partial/\partial q)
$$

D. Regnier et al., PRC93 ('16) 054611

\triangleright Our approach

in the same philosophy, but with a Green's fcn G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

Why is a microscopic theory for fission important?

\triangleright r-process nucleosynthesis

(neutron induced) fission of neutron-rich nuclei

- \rightarrow low E^* and low $\rho(E^*)$
- \checkmark Validity of statistical models?
- \checkmark Validity of the Langevin approach?

 \triangleright barrier-top fission

How to connect to a many-body Hamiltonian?

Shell model approach?

Shell model

+ $v_2|m_2\rangle$ $v_1|m_1\rangle$ $|\Psi\rangle =$ + $v_3|m_3\rangle$

Figure: Noritaka Shimizu (Tsukuba)

many-particle many-hole configurations in a mean-field potential \rightarrow mixing by residual interactions

Shell model based on DFT

$$
H = \sum_{i} \epsilon_i a_i^{\dagger} a_i - GP^{\dagger} P
$$

$$
\varepsilon_i \leftarrow DFT
$$

Y.P. Wang et al., PRL132, 232501 (2024) J. Liu et al., arXiv: 2411.05370 (2024).

 \rightarrow mixing by residual interactions

Shell model based on DFT

$$
H = \sum_{i} \epsilon_i a_i^{\dagger} a_i - GP^{\dagger} P
$$

$$
\varepsilon_i \leftarrow DFT
$$

Y.P. Wang et al., PRL132, 232501 (2024) J. Liu et al., arXiv: 2411.05370 (2024).

A similar approach for nuclear fission? $v_{\rm res}$

- \triangleright Many-body configurations in a MF pot. for each shape
- \triangleright hopping due to res. int.
- \rightarrow shape evolution
	- a good connection to nuclear reaction theory

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023). Calculations for $^{235}U(n,f)$ based on Skyrme HF method

fission: along $Q = Q_{20} \rightarrow$ discretized along the fission path

the criterion: $\langle \Psi_{\mu}(Q) | \Psi_{\mu}(Q') \rangle \sim e^{-1}$

 \checkmark Dynamics of the first barrier: axial symmetry \checkmark a scaled fission barrier with $B_f = 4 \text{ MeV}$: $E_{gs}(Q) \rightarrow fE_{gs}(Q)$

Calculations for $^{235}U(n,f)$ based on Skyrme HF method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

fission: along $Q = Q_{20} \rightarrow$ discretized along the fission path

the criterion: $\langle \Psi_{\mu}(Q) | \Psi_{\mu}(Q') \rangle \sim e^{-1}$

18b | 22b | 26b | 29b | 33b | 37b GOE | 18b | 22b | 26b | 29b | 33b | 37b | GOE

 \checkmark Dynamics of the first barrier: axial symmetry

 \checkmark a scaled fission barrier with $B_f = 4 \text{ MeV}$: $E_{gs}(Q) \rightarrow fE_{gs}(Q)$

construct excited configurations at each *Q* with Skyrme UNEDF1

- neutron seniority zero configurations only
- truncation at $E^* = 4$ MeV
- GOE for the CN and the pre-scission blocks

 \Box introduce the decay widths for the configurations at Q=14 and 40 b

 \checkmark Γ_{can} : exp. data (scaled according to N_{GOE}), Γ_{fis} : insensitivity

 \Box introduce the decay widths for the configurations at Q=14 and 40 b

 \checkmark Γ_{can} : exp. data (scaled according to N_{GOE}), Γ_{fis} : insensitivity

Reaction theory (absorption probability):

$$
T_{\text{fis}} = Tr[\Gamma_n G(E) \Gamma_{\text{fis}} G^{\dagger}(E)]
$$

\n
$$
T_{\text{Cap}} = Tr[\Gamma_n G(E) \Gamma_{\gamma} G^{\dagger}(E)]
$$
 "Data formula"

 $G(E) = [H - i\Gamma/2 - EO]^{-1}$

Calculations for $^{235}U(n,f)$ based on Skyrme HF method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

 $H \sim H_0 + V_{\text{pair}} + V_{\text{diabatic}} = H_0 - GP^{\dagger}P + V_{\text{diabatic}}$

co	v_L	$H_k = \sum_i \epsilon_i(Q_k) a_i^{\dagger}(Q_k) a_i(Q_k) - GP^{\dagger} P$			
$(V_L)^T$	H_1	0	$F^{\dagger} = \sum_i a_i^{\dagger}(Q_k) a_i^{\dagger}(Q_k)$		
0	H_{12}	$(V_R)^T$	from DFT	\bigodot	\bigodot
V_R	co	$GP^{\dagger} P$			
Q	also for absolute couplings				

Gaussian Overlap Approximation (GOA) $\frac{\langle \Psi_{\mu}(Q)|H|\Psi_{\mu}(Q')\rangle}{\langle \Psi_{\mu}(Q)|\Psi_{\mu}(Q')\rangle} \sim E_{\mu}(\bar{Q}) - h_2(\Delta\zeta)^2$

diabatic couplings

$$
\frac{\langle \Psi_{\mu}(Q)|H|\Psi_{\mu}(Q')\rangle}{\langle \Psi_{\mu}(Q)|\Psi_{\mu}(Q')\rangle} \equiv \langle \Psi_{\mu}(Q')|\Psi_{\mu}(Q')\rangle
$$

 $\left\langle \frac{\partial^2 J}{\partial \lambda^2}\right\rangle \equiv \ \langle \Psi_\mu(Q)|V_{\rm diabatic}|\Psi_\mu(Q^\prime)\rangle \, ,$ $\sim E_{\mu}(\bar{Q}) - h_2(\Delta\zeta)^2$
 $\langle \Psi_{\mu}(Q)|\Psi_{\mu}(Q')\rangle = e^{-(\Delta\zeta)^2}$

$$
\rightarrow h_2 \sim 1.5 \text{ MeV}
$$

insensitivity property

insensitivity property

sensitive to the pairing, though less than in spontaneous fission

Fluctuations of fission width

K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

chi-square distribution:

a small number of d.o.f. for induced fission \leftarrow transition state theory

Fluctuations of fission width

K. Uzawa and K.H., Phys. Rev. C110, 014321 (2024).

a small number of d.o.f. for induced fission \leftarrow transition state theory

$$
G(E_n) = \frac{1}{H - i\Gamma/2 - E_n} = \sum_{\alpha} \frac{|\phi_{\alpha}\rangle\langle\tilde{\phi}_{\alpha}|}{E_{\alpha} - E_n}
$$

only a few eigenstates with $\text{Re}(E_{\alpha}) \sim E_n$ contribute "transition states"

Towards a large-scale calculation

K. Uzawa and K.H., PRE110, 055302 (2024).

seniority zero config. \rightarrow non-zero config.

 \rightarrow a large scale calculation ($\sim 10^6$ dim.)

Notice: large scale CI calculations \rightarrow the Lanczos method for an efficient iterative method to obtain the ground state

shift-invert Lanczos method

$$
G(E_n) = \frac{1}{H - i\Gamma/2 - E_n} = \sum_{\alpha} \frac{|\phi_{\alpha}\rangle\langle\tilde{\phi}_{\alpha}|}{E_{\alpha} - E_n}
$$

only a few eigenstates with $\text{Re}(E_{\alpha}) \sim E_n$ contribute

In general, the "transition states" are <u>in the middle of the spectrum</u> \rightarrow the shift-invert Lanczos method

$$
H\phi_{\alpha} = E_{\alpha}\phi_{\alpha} \to \underbrace{(H - E_n)^{-1}}_{\text{Lanczos}} \phi_{\alpha} = (E_{\alpha} - E_n)^{-1} \phi_{\alpha}
$$

Towards a large-scale calculation

K. Uzawa and K.H., PRE110, 055302 (2024).

Summary and discussions

r-process nucleosynthesis: fission of neutron-rich nuclei

requires a microscopic approach applicable to low E^* and $\rho(E^*)$

a new approach: shell model $+$ GCM

an application to induced fission of 236U based on Skyrme EDF

- \rightarrow the insensitive property
	- an importance of the pairing interaction
	- a small value of d.o.f.

 \leftarrow the transition state theory

Future perspectives: seniority non-zero config. \rightarrow pn res. interaction

K. Uzawa and K. Hagino, PRC108 ('23) 024319

a large scale calculation ($\sim 10^6$ dim.)

 \rightarrow the shift-invert Lanczos method

K. Uzawa and K.H., PRE110, 055302 (2024)

Summary and discussions

Applications with the Gogny interaction?

In principle, any EDF can be used for the calculations, but....

the # of configurations are too small with D1S $\rho(E)$ is too small renormalization of $e_i \rightarrow (m^*/m)$ e_i

Discussions Applications with the Gogny interaction?

To find a renormalization factor to match with $p(E)$ of UNEDF1 at $Q = 14b$

A new Gogny parameter set with $m^* \sim 1$?