

Lourdes Urda

Effective Field Theory Results from the CMS experiment

Motivating accuracy in approximations

From hands-up pull some brake

Final

approach

wind

Keep increasing to maximize effective pull

NEW PHYSICS **Overview of CMS EXO results** 11101 137 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ String resonance Zy resonance ¹ March 2024 0.35-4.01712.03143 (2µ + 1y; 2e + 1y; 2j + 1y 127 6-1 11 11 // 1137 10 x→aa, M₄ = 0.02M₂, a→1VVI merced 111 1101 fb= 1 1 1 111 101 fb⁻¹ 140 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ **N 111** (axial-)vector mediator ($\chi\chi$), $g_0 = 0.25$, $g_{DM} = 1$, $m_r = 1$ Ge 0.0-1.952107.13021 (= 1i + p+** 11 1 1 136 fb= 1.1 <u>~1</u> 11 1 WI / I V / I V / V / / / / / CMS analyses $$\label{eq:states} \begin{split} &\mathsf{RS}\;\mathsf{G}_{\mathsf{KE}}(\mathsf{qq};gg),\;\mathsf{RM}_{\mathsf{H}}=0.1\\ &\mathsf{RS}\;\mathsf{QBH}\;(|j|),\;\mathsf{n}_{\mathsf{ED}}=1\\ &\mathsf{RS}\;\mathsf{QBH}\;(y|),\;\mathsf{n}_{\mathsf{ED}}=1\\ &\mathsf{non-rotating}\;\mathsf{BH},\;\mathsf{M}_{\mathsf{D}}=4\;\mathsf{TeV},\;\mathsf{n}_{\mathsf{ED}}=1 \end{split}$$ 36 fb⁻¹ 137 fb⁻¹ 36 fb⁻¹ 36 fb⁻¹ (2022), 60-6847 (2) 0.0-5.91803.08030 (2) 2.0-5.2 CMS-PAS-EXO-20-012 (Y + j) 2.0-5.2 CMS-PAS-EXO-20-012 (Y + j) indicating an vMSM, IVas1² = 1.0, IVas1² = 1.0 Today's Higgs portrait energy gap IU ç 137 fb⁻¹ 137 fb⁻¹ Vector like taus, Double 8676 (3/, $\approx 4/$, $1\tau + 3/$, $2\tau + 2/$, $3\tau + 1/$, $1\tau + 2/$, 2τ Vertor like taus. Sinnle 25.0 152202 08676 (31. > 41. 1x + 31. 2x + 21. 3x + 1 n t 137 fb⁻¹ , 0(100 GeV) scale between . . . L мİ 1140 fb=1 55M 7714 21 Vaatar baaan 1.41 .UUF EFT links phenomena across different energy scales Particle mass usev

SM Effective Field Theory (SMEFT)

CMS analyses enable us to accurately place limits on Wilson Coefficients (c_i)

CMS Run 2 EFT-related analyses

	Individual channels					
		$H \hookrightarrow WW \hookrightarrow e\mu\nu\nu$	Fur Phys I C 84 (2024) 779			
Ne	w!	VH⇔bb	CMS-PAS-HIG-23-016			
Ne	w!	$HZ\gamma$ and $H\gamma\gamma$	CMS-PAS-HIG-23-011			
	Combination of channels					
	EFT i	interpretation of Higgs diff. fic	d. measurements <u>CMS-PAS-HIG-23-013</u>			
Ne	w!	EFT interpretation of SM mea	asurements <u>CMS-PAS-SMP-24-003</u>			

Operator	Wilson coefficient	Example process
$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c _{HG}	^g ,
$H^\dagger H ilde{G}^a_{\mu u} G^{a\mu u}$	$ ilde{c}_{HG}$	g
$H^{\dagger}HB_{\mu u}B^{\mu u}$	c_{HB}	$q \xrightarrow{Z \xrightarrow{Q}} q \xrightarrow{Z} Z$
$H^\dagger H ilde B_{\mu u} B^{\mu u}$	$ ilde{c}_{HB}$	$q \xrightarrow{Z \leq} q \xrightarrow{H} \leq Z$
$H^{\dagger}HW^{i}_{\mu u}W^{i\mu u}$	c_{HW}	$q \xrightarrow{W \leq \cdots q} q \qquad W$
$H^{\dagger}H ilde{W}^{i}_{\mu u}W^{i\mu u}$	$ ilde{c}_{HW}$	$q \xrightarrow{W \leq} q \xrightarrow{H} W$
$H^{\dagger}\sigma^{i}HW^{i}_{\mu u}B^{i\mu u}$	c _{HWB}	$\begin{array}{c} q \xrightarrow{\gamma \leq} q \\ \hline \gamma \leq H \end{array}$
$H^{\dagger}\sigma^{i}H ilde{W}^{i}_{\mu u}B^{i\mu u}$	$ ilde{c}_{HWB}$	$q \xrightarrow{Z \leq} q \xrightarrow{H} \leq Z$

Global EFT data analyses are highly motivated

A single operator can influence many

processes, and multiple operators can affect one single process.

$H ightarrow WW ightarrow e \mu \nu \nu$

Eur. Phys. J. C 84 (2024) 779

6

Based on likelihood ratios

$$\mathcal{D}_{\rm BSM} = \frac{\mathcal{P}_{\rm BSM}(\vec{\Omega})}{\mathcal{P}_{\rm BSM}(\vec{\Omega}) + \mathcal{P}_{\rm SM}(\vec{\Omega})}$$

Reconstruction at detector-level

MELA-based kinematic discriminants (KD) sensitive to <u>production vertex</u>: Production mode (D_{VBF}) Pure BSM contribution $(D_{0^{-}})$ SM-BSM interferences (D_{CP}) Sensitive to <u>decay vertex</u>: $m_{\ell\ell}$

SMEFT Higgs basis

Useful for analyses combination

SMEFT Warsaw basis

Useful for the theoretician community

Linear+Quadratic

Results in terms of cross section fraction contribution available.

Data/MC plots for reference

Constraints on Wilson Coefficients

 $g_4^{ZZ} \propto s_w^2 C_{H\tilde{B}} + c_w^2 C_{H\tilde{W}} + s_w c_w C_{H\tilde{W}B}$

EFT in HZ γ and H $\gamma\gamma$

CMS-PAS-HIG-23-011

Targeting the production vertex involving the Higgs and an associated photon, these AC can impact the production rate

 $H \rightarrow ZZ \rightarrow 4\ell$

H → bh

Mass of Higgs candidate

Cross-section measurement from the combination of channels

HVV couplings scans

Yukawa couplings scans

Combination and EFT interpretation of Higgs differential fiducial measurements

Analysis strategy: Differential distributions are sensitive to Higgs couplings through distortions in the predicted SM cross-section spectra. Used parametrizations: κ-framework and SMEFT

p_T^H 2D scans of Wilson coefficients

Fit pairs of CP-even and CPodd Wilson coefficients to assess their impact on Higgs production and decay, with all other coefficients set to their SM values of zero.

But there are more...!

Interpretation of the entire phase space

Combined EFT interpretation of SM measurements

CMS-PAS-SMP-24-003

First combination from an experiment including top, Higgs, vector boson and jet measurements in an EFT interpretation!

Analysis	Type of measurement	Observables used	Experimental likelihood
$H \rightarrow \gamma \gamma$	Diff. cross sections	STXS bins [40]	\checkmark
Wγ	Fid. diff. cross sections	$p_{\mathrm{T}}^{\gamma} imes oldsymbol{\phi}_{f} $	\checkmark
WW	Fid. diff. cross sections	$m_{\ell\ell}$	\checkmark
$Z \to \nu \nu$	Fid. diff. cross sections	$p_{\mathrm{T}}^{\mathrm{Z}}$	\checkmark
tī	Fid. diff. cross sections	$M_{ m tar t}$	×
EWPO	Pseudo-observables	$ \Gamma_{Z}, \ \sigma_{had}^{0}, R_{\ell}, \ R_{c}, \ R_{b}, \ A_{FB}^{0,\ell}, \\ A_{FB}^{0,c}, A_{FB}^{0,b} $	×
Inclusive jets	Fid. diff. cross sections	$p_{\rm T}^{\rm jet} \times y^{\rm jet} $	×
tīX	Direct EFT	Yields in regions of interest	\checkmark

✓ LEP and SLC electroweak precision measurements included.

Constraints on Wilson Coefficients

Individually: 64, with confidence intervals ranging from ±0.003 to ±20.

Flash of the EV fit

Conclusions

- EFT serves as a connection to the fundamental nature of interactions, bridging different energy scales.
- 5 indirect searches of BSM effects in the context of SMEFT have been presented across:
 - 3 individual channels, refining our understanding of Higgs couplings to particles and the EWSB mechanism.
 - Two combined EFT interpretation analyses on the Higgs and SM demonstrate that global EFT data analyses are crucial.
- EFT Run 2 analyses are statistically limited but show promise for future Higgs physics in Run 3 and beyond.
- For now, everything is consistent with the SM within uncertainties.
- Precision is key accurate approximations are essential to staying safe and sound!

BACK UP SLIDES

EFT H → WW → eµvv analysis

Targeting HVV anomalous couplings in production and decay vertexes

HVV vertex parametrization

HVV vertex parametrization

$H ightarrow WW ightarrow e \mu \nu \nu$

Eur. Phys. J. C 84 (2024) 779

23

 D_{0}

3 independent parameters

 $SU(2)\times U(1)$

Results in terms of cross-section fraction

Translation into SMEFT bases possible

Results in terms of cross-section fraction f_{ai}

SMEFT SCANS

AC SCANS

3 independent parameters

SMEFT Higgs basis

Mass eigenbasis

Useful for analyses combination

Comparable sensitivity with full Run 2 analyses: HZZ <u>PRD 104 (2021) 052004</u> Hττ JHEP 06 (2022) 012, PRD 108 (2023) 032013 ttH analyses JHEP 07 (2023) 092

SMEFT Warsaw basis

Gauge eigenbasis

Useful for the theoretician community

$$\begin{split} \delta a_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(2c_{\rm H\Box} + \frac{6e^2}{s_{\rm w}^2} c_{\rm HWB} + (\frac{3c_{\rm w}^2}{2s_{\rm w}^2} - \frac{1}{2})c_{\rm HD} \right) \\ \kappa_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(-\frac{2e^2}{s_{\rm w}^2} c_{\rm HWB} + (1 - \frac{1}{2s_{\rm w}^2})c_{\rm HD} \right) \\ a_2^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_{\rm w}^2 c_{\rm HB} + c_{\rm w}^2 c_{\rm HW} + s_{\rm w} c_{\rm w} c_{\rm HWB} \right) \\ a_3^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_{\rm w}^2 c_{\rm HB} + c_{\rm w}^2 c_{\rm HW} + s_{\rm w} c_{\rm w} c_{\rm HWB} \right) \end{split}$$

The results massively surpass that of the <u>Run 1</u> analysis from the CMS experiment in both precision and coverage.

Constraints on mass eigen basis

 $C_{\gamma\gamma}, C_{z\gamma}, \tilde{C}_{\gamma\gamma}, \tilde{C}_{z\gamma}$

H → bb dominated

Yukawa couplings

Hff vertex parametrization

 $\kappa_{\rm u}, \kappa_{\rm d}, \kappa_{\rm s}, \text{ and } \kappa_{\rm c}$

Interpretation of the entire phase space

Determine linear combinations of the most constrained Wilson coefficients from the data to simultaneously constrain 10 directions in parameter space.

Results are consistent with the SM within 1σ .

Principal Component analysis (PCA)

HIG-23-013

Identify non-flat directions of the likelihood --> greatest impact on the data.

TO OVERCOME : Available data lacking sufficient information to constrain all Wilson coefficients (59!)

✓ The absolute values of the WC indicate the weight their in the linear combination.

✓ Higher weights in combinations with large eigenvalues (EV) signify that the

coefficient is more constrained by the data.

Interpretation of the entire phase space

EV₉ ×10

-15

-10

-5

0

Parameter value

5

10

15

Results are consistent with the SM within 1σ .

Fit to observables

Boosted Information Tree (BIT)

Input Features:

- 1- and 2-Lepton States: Angular and kinematic variables.
- O-Lepton State: Energy-sensitive kinematic variables.
 Specific Inputs
- DEEPJET: H candidate b-tagged jets
- PARTICLENET: H candidate AK8 jets

Training Procedure:

• Data: 50% for training, 50% for validation.

HIG-23-016

Constraints on mass eigen basis

 $C_{\gamma\gamma}, C_{z\gamma}, \tilde{C}_{\gamma\gamma}, \tilde{C}_{z\gamma}$

H → bb dominated

Yukawa couplings

Hff vertex parametrization

 $\kappa_{\rm u}, \kappa_{\rm d}, \kappa_{\rm s}, \text{ and } \kappa_{\rm c}$

Parametrization

SMP-24-003

$$\sigma_{p,SMEFT} = \sigma_{p,SM} \left[1 + \sum rac{A_{p,j}}{\Lambda^2} + \sum rac{B_{p,jk}}{\Lambda^4}
ight]$$

where $A_{p,j}$ and $B_{p,jk}$ represent linear and quadratic terms in the Wilson coefficients.

Impact of the <u>linear part of</u> parameterizations on cross sections, comparing with SM expectations.

35

Worth Highlighting

95% CL lower limits on the scales Λ

Data/MC plots

Other Full Run 2 CMS EFT-related analyses

Presented in HH23

CMS Analysis	Channel	Measurement	Combined with	REF
HIG-19-009	On Shell H→ZZ	HVV, Hgg, Htt	[Htt] H→γγ (<u>HIG-19-013</u>)	PRD 104 (2021) 052004
HIG-20-006	Η→ττ	Ηττ	_	<u>JHEP 06 (2022) 012</u>
HIG-20-007	$H \rightarrow \tau \tau$	HVV, Hgg, Htt	on-Shell H \rightarrow ZZ + H $\rightarrow\gamma\gamma$	PRD 108 (2023) 032013
HIG-21-006	ttH and tH	Htt	on-Shell H \rightarrow ZZ + H $\rightarrow\gamma\gamma$	<u>JHEP 07 (2023) 092</u>
HIG-21-013	off-Shell H→ZZ	H Off-Shell evidence $\Gamma_{ m Higgs}$, HVV	on-Shell H→ZZ	<u>Nat. Phys. 18 (2022) 1329</u>