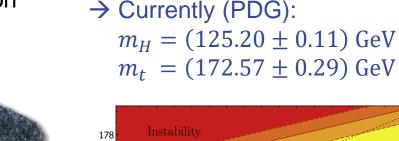

Mass, width and CPmeasurements - ATLAS

Valerie Lang On behalf of the ATLAS Collaboration


Higgs Hunting 2024 Orsay Paris, 23 September 2024

Is the *Higgs boson* the Standard Model (SM) Higgs boson?

Need to test Higgs boson properties!

- Mass → Input parameter in SM → Determines production cross section and branching ratio
- Width \rightarrow SM: ~4 MeV for m_H = 125 GeV
- Charge-conjugation-Parity (CP) \rightarrow SM: 0⁺

Modified from Andreassen, Frost, Schwartz, PhysRev D 97 056006

Meta-stability

currently

128

Absolute stability

126

(2018)

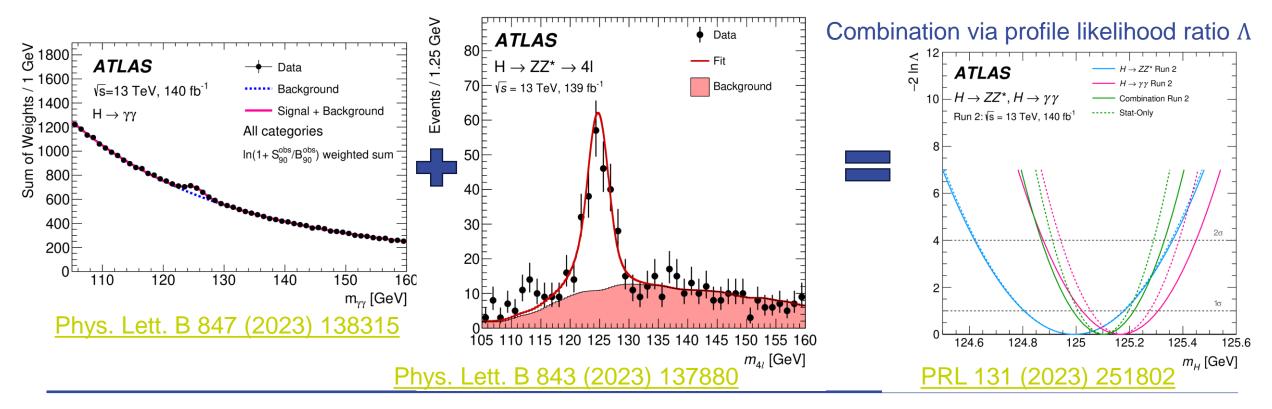
\rightarrow Why are these relevant?

- Mass \rightarrow Stable electro-weak (EW) vacuum?
- Width → Coupling of Higgs boson also to other, **invisible** particles?
- CP → Another source of CP-violation to explain abundance of matter vs. anti-matter?

universitätfreiburg

168

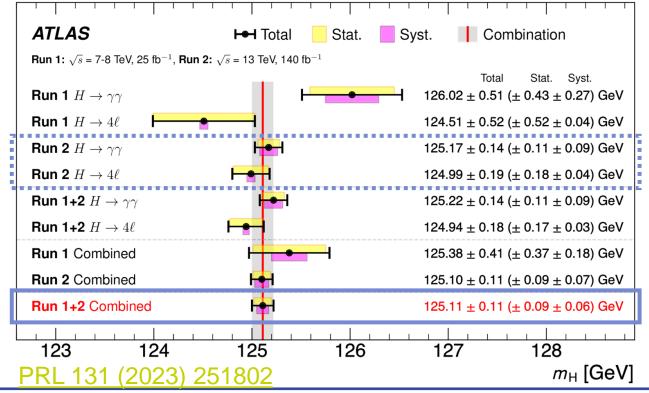
122


124

 m_{h}^{pole}

Measurement of the Higgs boson mass

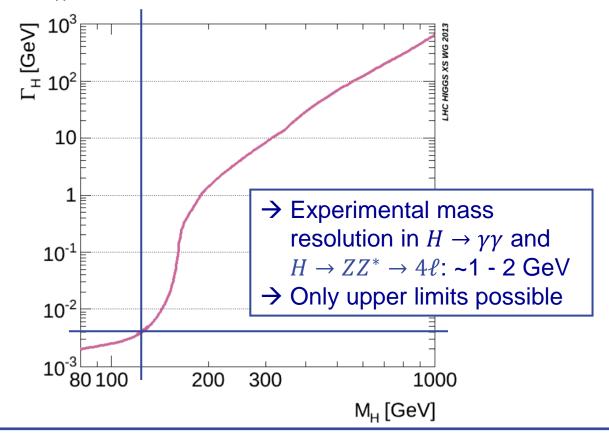
Best suited: High resolution channels $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$


- Provide reconstructed Higgs mass peak, good mass resolution
 - Good control of the lepton and photon energy scales by calibration via $Z \rightarrow \ell \ell$ and J/ ψ and Y signals

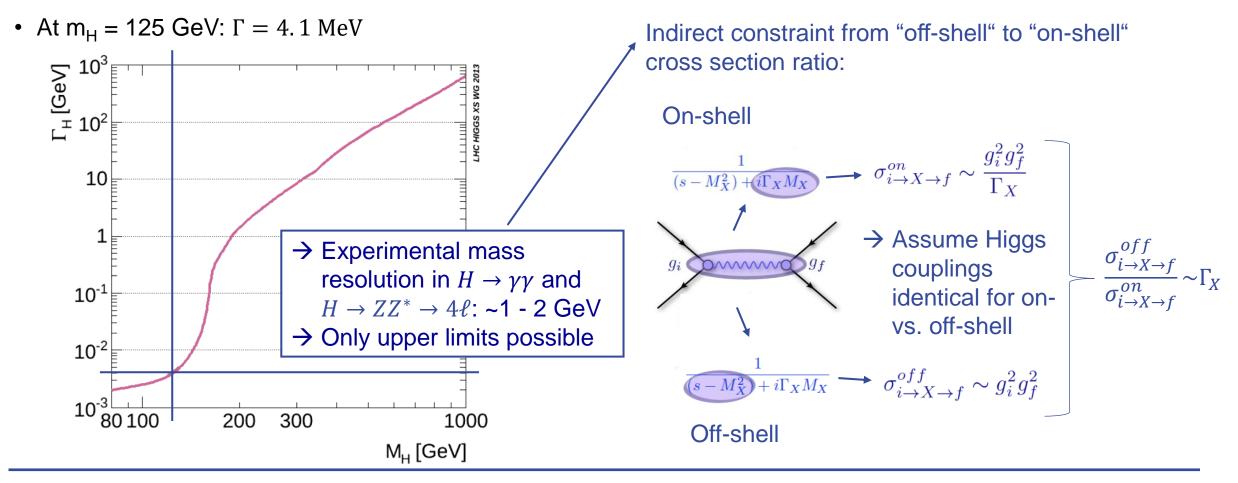
Measurement of the Higgs boson mass

Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ with Run 2 data

- Correlations between uncertainties of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ accounted for in profile likelihood
- Also combine with Run 1 data

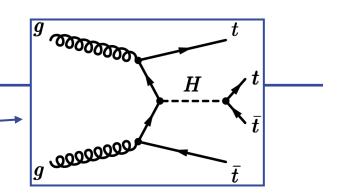


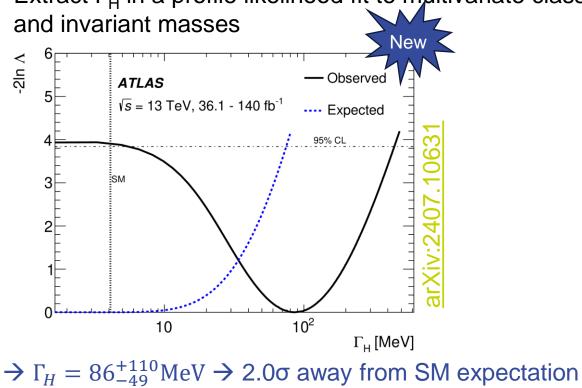
 → In the long term: H → ZZ* → 4ℓ likely dominant, due to smaller systematic uncertainty
 → However: Impressive that H → γγ still most precise → Major effort to reduce systematic uncertainties

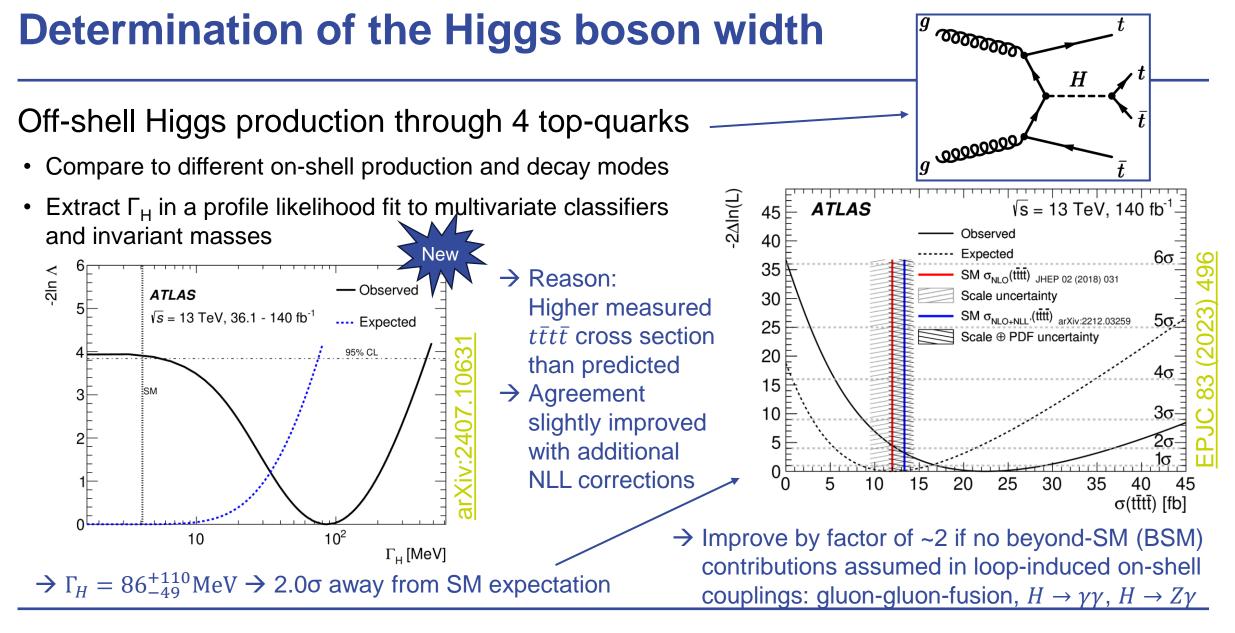

[→] Precision of 0.09% on $m_{H}!$

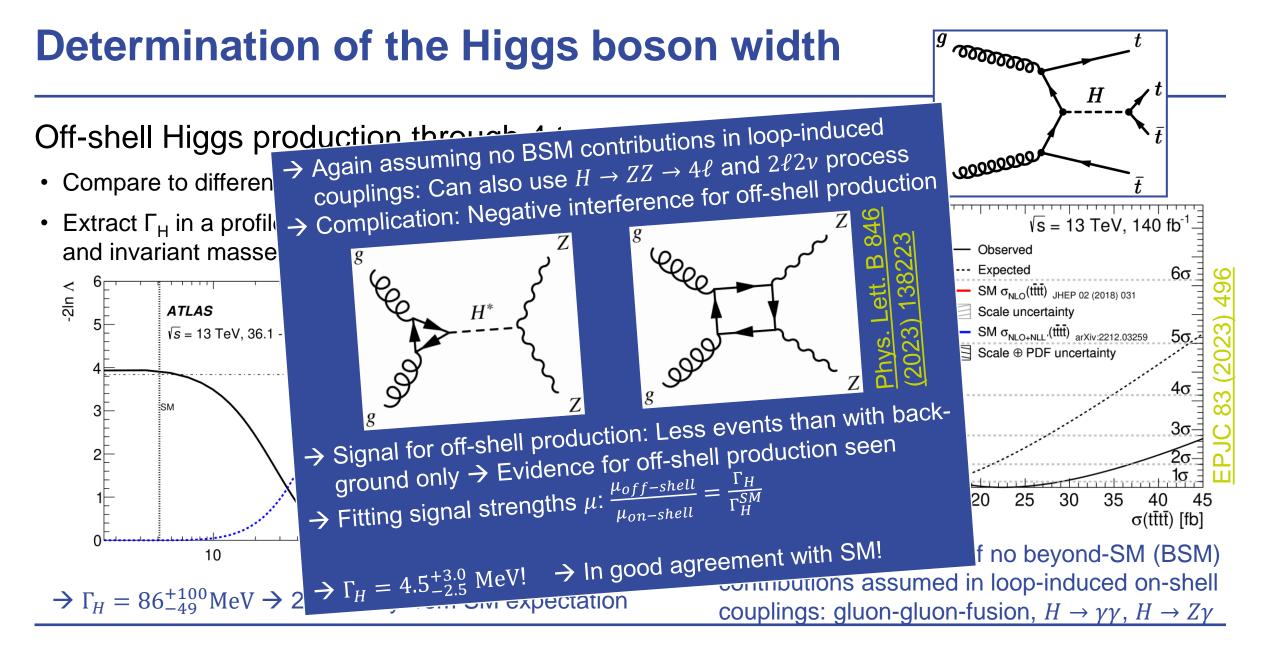
Very small Higgs boson width Γ expected in SM

• At $m_{H} = 125 \text{ GeV}$: $\Gamma = 4.1 \text{ MeV}$

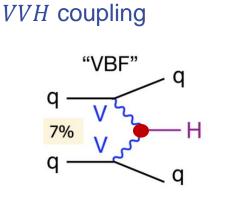



Very small Higgs boson width Γ expected in SM



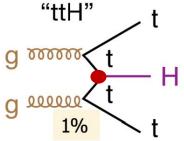

Off-shell Higgs production through 4 top-quarks

- Compare to different on-shell production and decay modes •
- Extract $\Gamma_{\rm H}$ in a profile likelihood fit to multivariate classifiers and invariant masses



Invariance of Higgs couplings to vector bosons/fermions under CP-transformation?

Higgs boson spin (J), parity (P) and charge-conjugation (C) measured as: J^{PC} = 0⁺⁺
 → Based on assumption of C- and CP-parity conservation in Higgs boson interactions


 \rightarrow Are these assumptions correct? \rightarrow Search for CP-violation (CPV) in production or decay of the Higgs boson

- CPV = admixture of CP-odd (pseudoscalar) terms in addition CP-even (scalar) SM Higgs boson
- Probe different couplings:

→ Accessible in vector-bosonfusion (VBF) production

 \rightarrow Accessible in $t\bar{t}H$ production

What about CP-violation? @ ttH vertex

Top-quark spinor

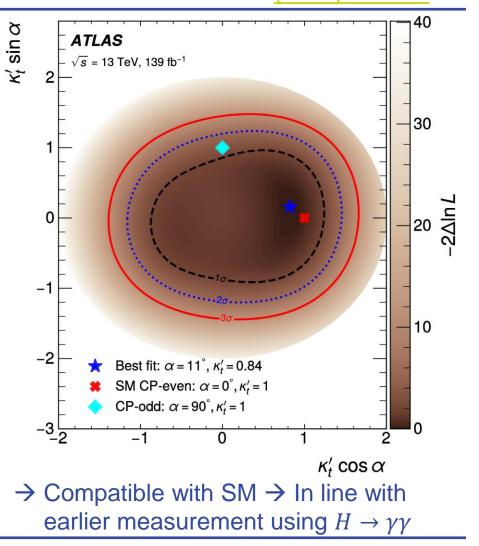
CP-mixing angle

Consider $t\bar{t}H$ and tH production with $H \rightarrow b\bar{b}$

 $\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$

• Add CP-odd admixture to top-quark Yukawa coupling

Higgs field


Coupling modifier

SM: α = 0, κ'_t = 1 (at tree level)
 → Higher order corrections push κ'_t below 1

Yukawa coupling

- Extract α and κ'_t from a simultaneous fit to several regions
 - Defined based on jet multiplicity, *b*-tagging, and 1 or 2 light leptons (e, μ) signal and control regions
 - Using multivariant analysis techniques (MVAs) for signal enhancement, and yields or CP-sensitive observables in fit

Phys. Lett. B 849 (2024) 138469

11

What about CP-violation? @ VVH vertex

Operator

 $O_{\Phi \tilde{W}}$

 $O_{\Phi \tilde{W} B}$

 $O_{\Phi \tilde{B}}$

Structure

Warsaw Basis

 $\Phi^{\dagger} \Phi \tilde{W}^{I}_{\mu\nu} W^{\mu\nu I}$

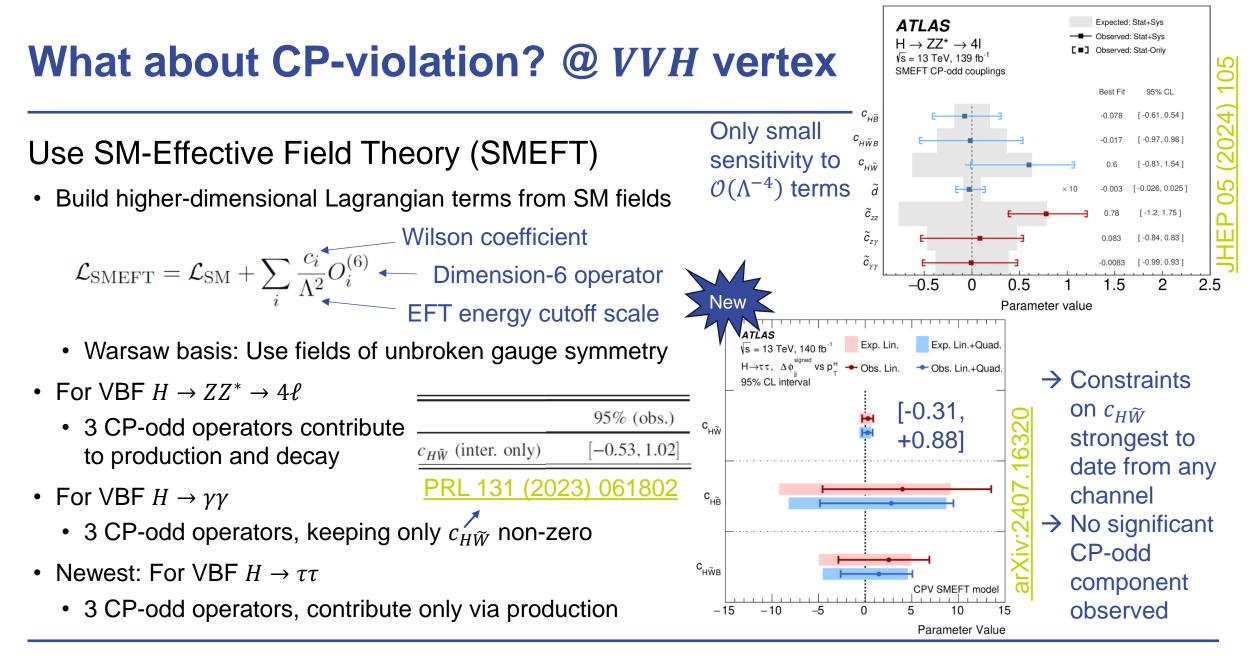
 $\Phi^{\dagger} \tau^{I} \Phi \tilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

 $\Phi^{\dagger}\Phi\tilde{B}_{\mu\nu}B^{\mu\nu}$

Coupling

 $c_{H\widetilde{W}}$

 $c_{H\widetilde{W}B}$


 $c_{H\widetilde{B}}$

Use SM-Effective Field Theory (SMEFT)

• Build higher-dimensional Lagrangian terms from SM fields

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \underbrace{O_{i}^{(6)}}_{i} \underbrace{\text{Wilson coefficient}}_{\text{Dimension-6 operator}}$ EFT energy cutoff scale

- Warsaw basis: Use fields of unbroken gauge symmetry
- For VBF $H \to ZZ^* \to 4\ell$
 - 3 CP-odd operators contribute to production and decay
- For VBF $H \rightarrow \gamma \gamma$
 - 3 CP-odd operators, keeping only $c_{H\widetilde{W}}$ non-zero
- Newest: For VBF $H \rightarrow \tau \tau$
 - 3 CP-odd operators, contribute only via production

Summary

Is the *Higgs boson* the Standard Model (SM) Higgs boson?

- Looks very much like it!
 - Mass measurements \rightarrow Now reached 0.09% precision!
 - Width determinations \rightarrow Rely on off-shell to on-shell cross section ratios
 - \rightarrow Now even use 4-top cross section fits
 - \rightarrow Narrow in on MeV range! \rightarrow Beware of model sensitivity though
 - CP-violation \rightarrow Currently no signs in Higgs boson interactions

 \rightarrow Should we give up?

Summary

Is the Higgs boson the Standard Model (SM) Higgs boson?

- Looks very much like it!
 - Mass measurements \rightarrow Now reached 0.09% precision!
 - Width determinations \rightarrow Rely on off-shell to on-shell cross section ratios
 - \rightarrow Now even use 4-top cross section fits
 - \rightarrow Narrow in on MeV range! \rightarrow Beware of model sensitivity though
 - CP-violation \rightarrow Currently no signs in Higgs boson interactions

 \rightarrow Should we give up? \rightarrow NO!

- More data from LHC and future machines: HL-LHC and e⁺e⁻ needed
 - Fully map the Higgs potential → Understand stability of the electroweak vacuum
 - Model independent determination of Higgs boson width
 - CP-violation? \rightarrow Let's not leave any stone unturned

- → Nature is holding onto her secrets and building up the suspense
- → More human ingenuity needed to access them ☺

Thank you for your attention

Backup

Measurement of the Higgs boson mass

Systematic uncertainties for $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Run 2 measurements

$H \rightarrow \gamma \gamma$

 $H \to ZZ^* \to 4\ell$

Largest contributing uncertainties:

Source	Impact $[MeV]$
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \to \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

Phys. Lett. B 847 (2023) 138315

_	Systematic Uncertainty	Contribution $[MeV]$	
	Muon momentum scale	± 28	
	Electron energy scale	± 19	
	Signal-process theory	± 14	
	Phys Latt R 8/3	Source	

<u>Phys. Lett. B 843</u> (2023) 137880

Run 2 Combination

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

PRL 131 (2023) 251802

Measurement of the Higgs boson mass

Systematic uncertainties for $H \rightarrow \gamma \gamma$ in comparison to previous measurement

$H \rightarrow \gamma \gamma$ Full Run 2

$H \rightarrow \gamma \gamma$ Partial Run 2

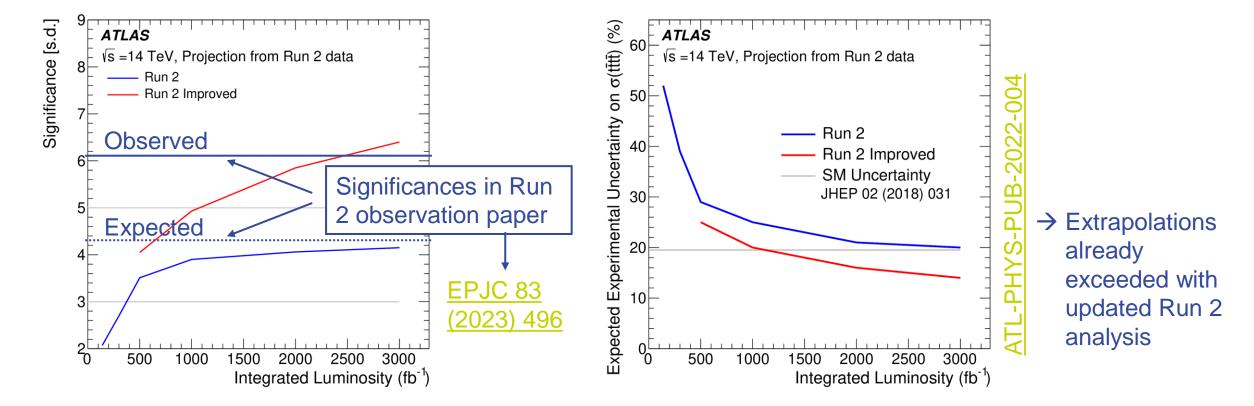
Source	Impact [MeV]	Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
Photon energy scale	83	EM calorimeter cell non-linearity	± 180
$Z \rightarrow e^+ e^-$ calibration	59 🗙 🕿		± 170
$E_{\rm T}$ -dependent electron energy scale	44	Non-ID material	± 120
$e^{\pm} \rightarrow \gamma$ extrapolation	30	ID material	± 110
Conversion modelling	24	Lateral shower shape $Z \rightarrow ee$ calibration	± 110
Signal-background interference	26	$Z \rightarrow ee$ calibration Conversion reconstruction	± 80 ± 50
Resolution	15	Background model	± 50
Background model	14	Selection of the diphoton production verte	± 40
Selection of the diphoton production vertex	5	Resolution	± 20
Signal model	1	Signal model	± 20
Total	90	Phys. Lett. B 784 (2018	3) 345

Details on improved electron and photon energy calibration in Run 2: JINST 19 (2024) P02009

Phys. Lett. B 847 (2023) 138315

- For full Run 2 \rightarrow New auxiliary measurement (linearity fit) of the data-to-MC electron scale correction as function
 - of electron E_{τ} using the larger $Z \rightarrow e^+e^-$ sample from full Run 2
- → More accurate description of material upstream of the EM calorimeter in the simulation, lower
- sensitivity of new clustering algorithm to effects of interactions with detector material
- \rightarrow More precise study of $e^{\pm} \rightarrow \gamma$ extrapolation in larger dataset

Off-shell Higgs production through 4 top-quarks


Target processes		Reference
Off-shell measurement		
$pp \rightarrow t\bar{t}t\bar{t}$		[26]
On-shell measurement		
Production	Decay	
ggF, VBF, WH, ZH, tīH, tH	$H \rightarrow \gamma \gamma$	[31]
$t\bar{t}H + tH$	$H \rightarrow b \bar{b}$	[32]
WH, ZH	$H \rightarrow b \bar{b}$	[33, 34]
VBF	$H \rightarrow b \bar{b}$	[35]
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \rightarrow ZZ$	[36]
ggF, VBF	$H \rightarrow WW$	[37]
WH, ZH	$H \rightarrow WW$	[38]
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \to \tau \tau$	[39]
$ggF + t\bar{t}H + tH$, VBF+ $WH + ZH$	$H \rightarrow \mu \mu$	[40]
Inclusive	$H \rightarrow Z\gamma$	[41]

• Used off- and on-shell analyses

arXiv:2407.10631

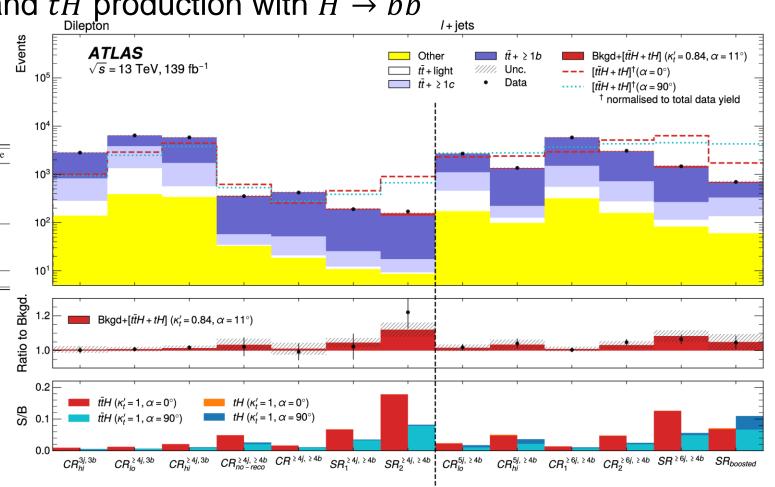
4-top production at the HL-LHC

• Extrapolation based on previous Run 2 4-top analysis – obtained evidence: Eur. Phys. J. C 80 (2020) 1085

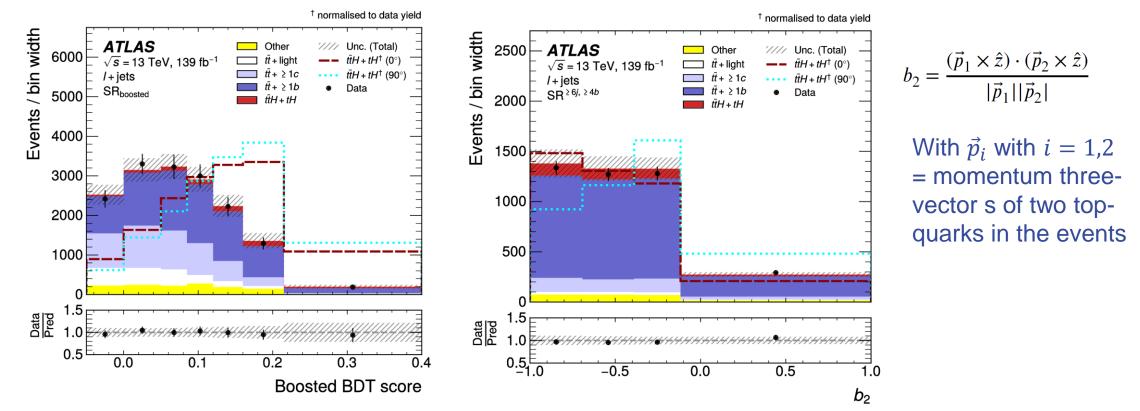
Using $H \to ZZ^* \to 4\ell/2\ell 2\nu$

-2In(\lambda) -2In(\lambda) 20 20⊢ - Obs-Stat. only Obs-Stat. only ATLAS ATLAS - Obs-Sys — Obs-Sys $18{\stackrel{-}{\vdash}}\,{}_{H^*} \rightarrow ZZ \rightarrow 4{\stackrel{-}{\vdash}}\,{}_{V\nu}$ 18 On + Off-shell combined -- Exp-Stat. only Exp-Stat. only 16^{⊢13 TeV, 139 fb⁻¹} - Exp-Sys 16^{⊢13 TeV, 139 fb⁻¹} Exp-Sys **14** Obs-Stat. only: $1.1^{+0.6}_{-0.5}$ Exp-Stat. only: $1.0^{+0.8}_{-0.9}$ Exp-Sys: $1.0^{+0.9}_{-0.9}$ **14** Obs-Stat. only: $1.1^{+0.6}_{-0.5}$ Exp-Stat. only: $1.0^{+0.8}_{-0.9}$ Exp-Sys: $1.0^{+0.9}_{-0.9}$ 12 12 10E 10 8 8 6 6 2σ 2σ 4 4 2 2 1σ 1σ 0 0 .5 2 2.5 3.5 0.5 2 2.5 3 3.5 0 0.5 .5 3 0 4 4 $\mu_{\text{off-shell}}$ $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$

universitätfreiburg


<u>Phys. Lett. B 846</u> (2023) 138223

Phys. Lett. B 849 (2024) 138469


CP-violation tested with $t\bar{t}H$ and tH production with $H \rightarrow b\bar{b}$

 Fit of signal regions (SRs) and control regions (CRs) with binned profile likelihood method

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
Dilepton (TR ^{$\geq 4j$, $\geq 4b$})	$\begin{array}{c} \mathrm{CR}_{\mathrm{no-reco}}^{\geq 4j,\geq 4b}\\ \mathrm{CR}^{\geq 4j,\geq 4b}\\ \mathrm{SR}_{1}^{\geq 4j,\geq 4b}\\ \mathrm{SR}_{2}^{\geq 4j,\geq 4b}\end{array}$	$ \begin{bmatrix} - \\ BDT^{\geq 4j, \geq 4b} \in [-1, -0.086) \\ BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186) \\ BDT^{\geq 4j, \geq 4b} \in [0.186, 1] \end{bmatrix} $	$egin{array}{c} \Delta\eta_{\ell\ell}\ b_4\ b_4\ b_4\ b_4 \end{array}$
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$CR_{1}^{\geq 6j,\geq 4b}$ $CR_{2}^{\geq 6j,\geq 4b}$ $SR^{\geq 6j,\geq 4b}$	$\begin{array}{l} \text{BDT}^{\geq 6j,\geq 4b} \in [-1,-0.128) \\ \text{BDT}^{\geq 6j,\geq 4b} \in [-0.128,0.249) \\ \text{BDT}^{\geq 6j,\geq 4b} \in [0.249,1] \end{array}$	$ \begin{array}{c} b_2\\ b_2\\ b_2\\ b_2 \end{array} $
<i>l</i> +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}

CP-violation tested with $t\bar{t}H$ and tH production with $H \rightarrow bb$ • Examples for CP-sensitive observables

What about CP-violation?

Phys. Lett. B 849 (2024) 138469

24

Phys. Rev. Lett. 125

What about CP-violation?

Consider $t\bar{t}H$ and tH production with $H \rightarrow \gamma\gamma$

- Add CP-odd admixture to top-quark Yukawa coupling
 - $\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$ • Impacts both, production and decay, through top-quark
 - loop in $H \rightarrow \gamma \gamma$ decay
 - Train BDT to separate CP-even and CP-odd couplings

€ 840

n of Weights/2.5 C

Data

140

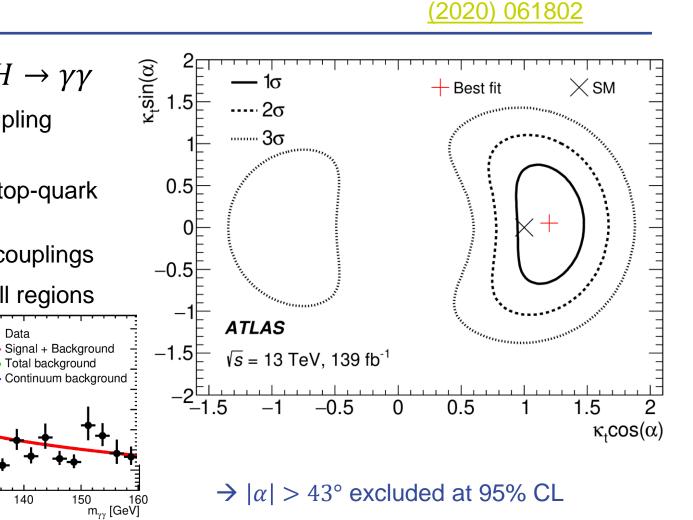
150

Total background

- Simultaneous maximum-likelihood fit to $m_{\gamma\gamma}$ in all regions
 - Need to input couplings to photons (for branching ratio of $H \rightarrow \gamma \gamma$) and gluons (to subtract gluon-gluon-fusion contribution)

 \rightarrow From Run 2 coupling com-bination (without $t\bar{t}H$ and tH)

ATLAS


110

vs = 13 TeV, 139 fb⁻¹

In(1 + S/B) Weighted Sum

120

130

Higher order corrections for top-quark Yukawa coupling (from theory)

$$\bar{\mu} = M_t$$
 y_t LO0.99425NLO0.94953NNLO0.93849JHEP12 (2013) 089

For VBF $H \rightarrow ZZ^* \rightarrow 4\ell$

Extract constraints with optimal observables (OOs)

$$\mathcal{OO} = \frac{2\Re \left(\mathcal{M}_{SM}^* \mathcal{M}_{BSM}\right)}{\left|\mathcal{M}_{SM}\right|^2}$$

- Intrinsically CP-odd → Symmetric = CP-even Higgs, asymmetric = CP-odd admixture
- → If restricting to single BSM CP-odd Higgs coupling: \tilde{d} (assuming that different CP-violating contributions could not be distinguished experimentally)
 - In Warsaw basis: Set $c_{H\widetilde{W}} = c_{H\widetilde{B}} \rightarrow c_{H\widetilde{W}B} = 0$
- Alternative basis:
 - Higgs basis: Use fields after EW symmetry breaking,
 i.e. physical states of SM gauge bosons: W⁺, W⁻, Z, γ

$$|\mathcal{M}|^{2} = \left|\mathcal{M}_{SM} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{BSM,i}\right|^{2}$$

$$= |\mathcal{M}_{SM}|^{2} + 2\sum_{i} \frac{c_{i}}{\Lambda^{2}} \Re \left(\mathcal{M}_{SM}^{*} \mathcal{M}_{BSM,i}\right) + \sum_{i} \sum_{j} \frac{c_{i}c_{j}}{\Lambda^{4}} \Re \left(\mathcal{M}_{BSM,i}^{*} \mathcal{M}_{BSM,j}\right)$$
Linear term \rightarrow CP-odd Quadratic term \rightarrow CP-even
$$\int_{VBF+VH, \tilde{c}_{zz} = 5.0}^{0.0} \int_{VBF+VH, \tilde{c}_{zz} = 5.0}^{0.0} \int_{VBF+$$

 \rightarrow Only shape-information (CP-odd) used in fit

BSM/

What about CP-violation?

For VBF $H \rightarrow \gamma \gamma$

events /

70F

50

40⊢

30F

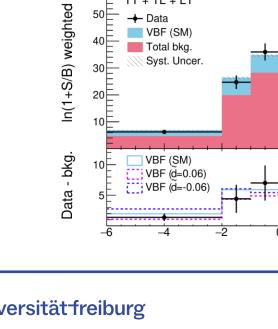
20

- Extract constraints with optimal observable (OO)
- Use regions of tight (T) or loose (L) requirements on BDTs enhancing VBF over ggF or the continuum

Sig. + bkg.

- - - Total bkg.

.


00

 $\times \Delta \mathsf{NLL}$

N

95% CL

68% CL

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

₆₀ = m_{γγ} ∈ [118, 132] GeV

Total bkg Syst. Uncer.

TT + TL + LT

+ Data VBF (SM)

27

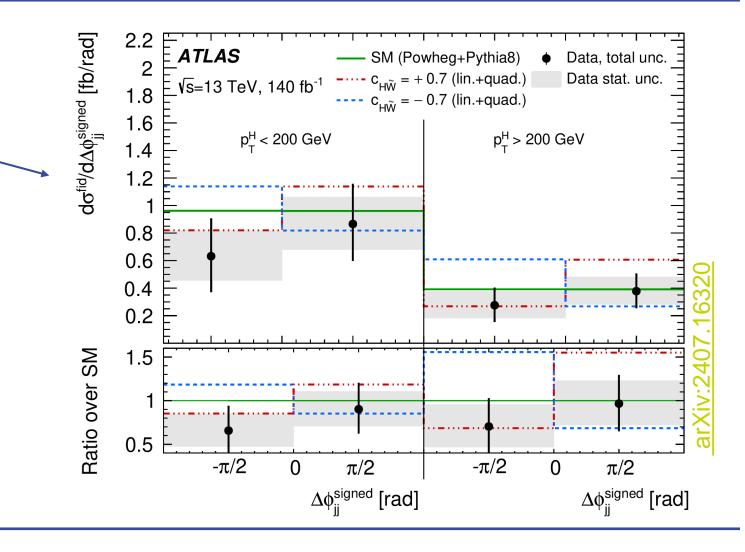
 $C_{H\widetilde{W}}$

9E **ATLAS 8**E $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ VBF $H \rightarrow \gamma \gamma$ 6 Exp. stat. + syst. Obs. stat. + syst. 5 Δ

0

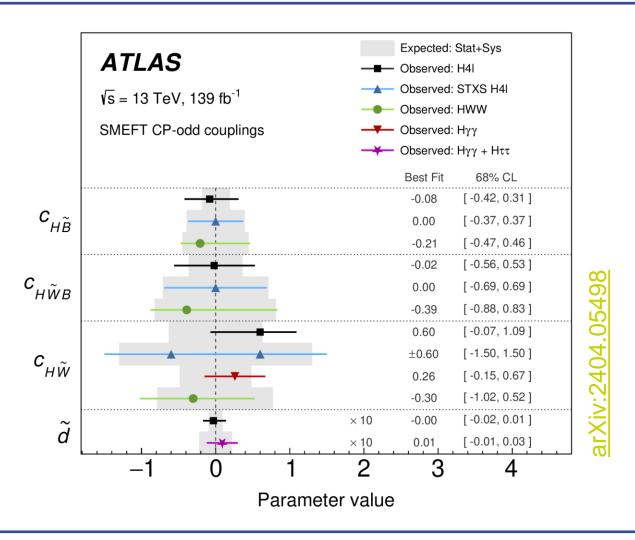
0.5

Phys. Rev. Lett.

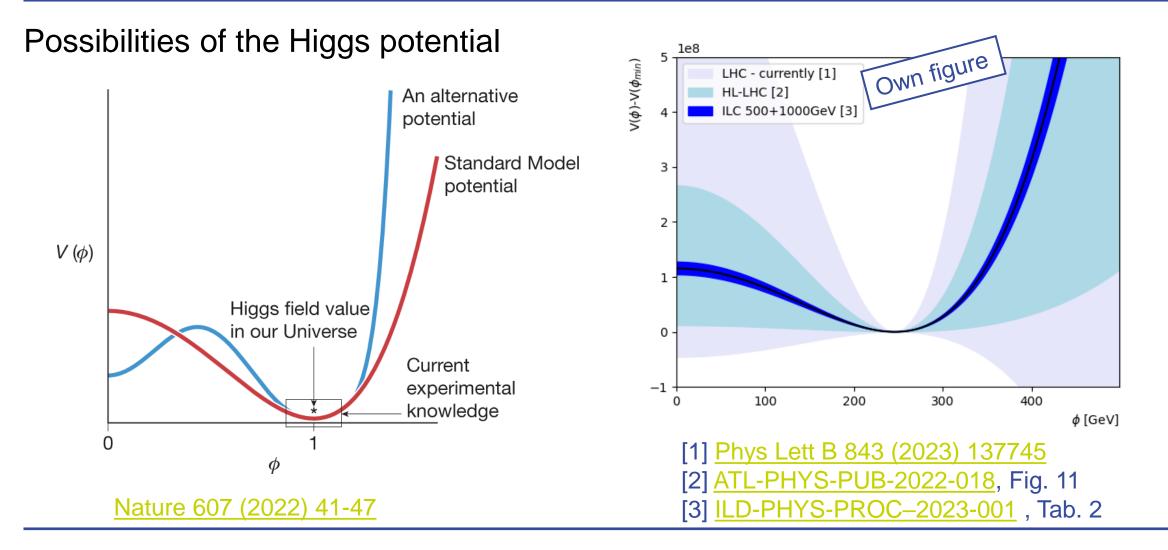

131 (2023) 061802

 \rightarrow Only shape-information used in fit

-0.5


For VBF $H \rightarrow \tau \tau$

- Use unfolded differential cross sections
 - For CP-odd operators



VBF combination

• Prior to latest $H \rightarrow \tau \tau$ measurement

Higgs potential with HL-LHC and e⁺e⁻ machine

