

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Mass, width and CP measurements - CMS

Fabio lemmi ¹ on behalf of the CMS Collaboration

Higgs Hunting 2024, Paris, France September 23rd, 2024

¹ Institute of high energy physics (IHEP), Beijing, China

Introduction: Higgs boson mass

- Higgs boson mass (m_H) not predicted by the theory
- All properties of Higgs boson (couplings, branching ratios...) depend on m_H
- Motivates precision measurements of m_H
- Measurement is carried in high resolution channels
 - о **H(**үү)
 - H(4L)

m_H in H(γγ): <u>Phys. Lett. B, 805 (2020)</u>

- Small BR (~0.23%) but clean final state
- Use **data collected in 2016** (36 fb⁻¹)
- Analysis strategy similar to previous CMS analyses [<u>1</u>]
- Measurement refined through better detector calibration and understanding of systematics
- Improved description of data-MC nonlinear discrepancies in energy scale

* Low/high R9: converted/unconverted photon

4

Residual scale and resolution corrections

- Compute residual corrections to E_y scale and resolution after ECAL calibration and E_y regression
 Derived in Z(ee), with electrons
- **Derived in Z(ee)**, with electrons reconstructed as photons
- 1. Correct for long-term shifts for E_{γ} scale (per LHC-fill)
- 2. Derive corrections for E_{γ} scale and resolution in bins of $|\eta|$, R9^{*}
- 3. Derive corrections for E_y scale in bins of $|\eta|$ and p_T
 - a. Accounts for any small non-linear response of crystals with energy

Systematic uncertainties

- **E**_y **scale and resolution**: vary R9 distribution and selection criteria of Z(ee) electrons
- Residual p_T dependance of scale corrections
 - Corrections for Z(ee) electrons ($< p_T > \approx 45$ GeV) used for H(yy) photons ($< p_T > \approx 60$ GeV)
 - Apply residual corrections a second time, deviations from unity taken as systematic
- Non-uniformity of light collections due to radiation damage
 - Scale corrections derived in Z(ee), applied to photons
 - Photons penetrate 0.85X₀ more than electrons in ECAL crystals
 - Derived **uncertainty to cover for differences between electrons and photons** [<u>1</u>, <u>2</u>]

Results

 Binned maximum likelihood to all 7 analysis categories $m_{\rm H} = 125.78 \pm 0.18 ({\rm stat.}) \pm 0.18 ({\rm syst.}) \,{\rm GeV}$

- Precision of measurement at the per-mille level
- **Dominant uncertainty:** non-uniformity in light collection

Developments: non-uniformity of light collection

- Developed new treatment for uncertainty due to non-uniformity of light collection
- Calibrations performed with Z(ee) electrons, applied to photons
- **Photons** penetrate 0.85X₀ deeper than **electrons** of the same energy in PbWO₄
- Non-uniform radiation damage along crystal depth \rightarrow **bias in photon energy**, as non-uniformity is neither simulated nor corrected by E_v regression

Developments: non-uniformity of light collection

- 2016 analysis: do not correct for bias, assign uncertainty covering for this
 - Resulted in dominant uncertainty: revised in light of full Run2 analysis 0
- **Rely on simulation of light collection efficiency (LCE) instead** (CMS-DP-24-045): apply energy scale correction and dedicated uncertainty on the correction

$$F = \frac{S^{e}}{S^{\gamma}} = \frac{\int E^{e}_{dep}(z) \times LCE(z; R/R_{0}, \eta) dz}{\int E^{e}_{dep}(z) dz} \xleftarrow{Collected energy for}_{undamaged crystal}}{\int E^{\gamma}_{dep}(z) \times LCE(z; R/R_{0}, \eta) dz}$$

- $S^{e}(S^{y}) \equiv ECAL$ response to electrons (photons)
- $E_{dep} \equiv$ shower profile in PbWO₄ as a function of depth (Geant4) LCE \equiv Light Collection Efficiency as a function of depth, simulated with Fluka+Litrani
- $R/R_0 \equiv$ ECAL laser response measured in data —> can correct with per-run granularity ₈

Developments: non-uniformity of light collection

- Ingredients: e/γ shower profiles in ECAL (Geant4) and LCE in ECAL (Fluka + Litrani)
- Expect to strongly reduce uncertainty due to light collection efficiency in full Run2 measurement

m_{H} and Γ_{H} in H(4l): <u>Submitted to PRD</u>

- Full **Run2 data** (138 fb⁻¹)
- Analysis strategy refined through better calibrations, analysis strategy and understanding of systematics
- Vertex-beamspot constraint: 4L tracks constrained to common vertex compatible with beam spot
 - 3–8% mass resolution improvement
- **Constraint on on-shell Z**: p_T of dilepton pair should give Z true lineshape
- **Categorize events based on \delta m_{4L}/m_{4L}:** isolate events with high mass resolution
 - \circ ~ 10% mass resolution improvement

m_H results

 Maximum likelihood fit to m_{4L} and kinematic discriminant D_{bkg}

 $m_{\rm H} = 125.04 \pm 0.11 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \,{\rm GeV}$

• Results are combined with Run1 data [<u>1</u>]

 $m_{\rm H} = 125.08 \pm 0.10 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \,{\rm GeV}$

• Most precise single-channel measurement to date

$\Gamma_{\rm H}$ off-shell measurement

- Previous measurement by CMS [<u>1</u>] in Z(2L2v) and Z(4L)
 - Partial dataset for 4L
- Measurement of Γ_{H} from off-shell measurements relies on **assumptions**
 - Knowledge of coupling ratios between on- and off-shell production

$$\frac{\sigma_{\rm vv \to H \to 4\ell}^{\rm off-shell}}{\sigma_{\rm vv \to H \to 4\ell}^{\rm on-shell}} \propto \Gamma_{\rm H}$$

- **ggH loop** production is **dominated by top and has no BSM** contributions
- Sizeable interference between H boson signal and continuum background
- PDF describing data accounts for interference and cross-feeding

$$\mathcal{P}_{jk}(\vec{x};\vec{\xi}_{jk},\vec{\zeta}) = \frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0} \,\mathcal{P}_{jk}^{\mathrm{sig}}(\vec{x};\vec{\xi}_{jk}) + \sqrt{\frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0}} \,\mathcal{P}_{jk}^{\mathrm{int}}(\vec{x};\vec{\xi}_{jk}) + \mu_j \,\mathcal{P}_{jk}^{\mathrm{cross}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi};\vec{\xi}$$

$\Gamma_{\rm H}$ off-shell measurement

- Extract $\Gamma_{\rm H}$: $\Gamma_{\rm H} = 2.9^{+2.3}_{-1.7} {\rm ~MeV}$
- Off-shell $\mu_{\text{F}},\,\mu_{\text{V}}$ in agreement with SM prediction

CP properties

- So far, properties of Higgs boson found to be consistent with SM
- In particular, $J^{CP} = 0^{++}$
- Limited precision allows for CP-violating anomalous couplings
 - E.g., CP-odd coupling to top quarks or new BSM interactions would result in CP violation
- Anomalous, CP-violating couplings (ACs) studied in large spectrum of production and decay modes
- Events categorized based on matrix-element discriminants (MELA, [<u>1</u>]) or on advanced Machine Learning techniques
- Results usually expressed in terms of cross-section ratios f_{ai}, depending on ACs a_i

$$f_{ai} = \frac{\left|a_{i}\right|^{2} \sigma_{i}}{\sum_{j} \left|a_{j}\right|^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right)$$

CP-violating ACs: results

- H→4L decay (<u>PRD 104, 052004</u>)
- AC with gluons f^{ggH}_{a3} consistent with 0
- Combining with ttḦ(γγ) (<u>PRL 125,</u> 061801), CP-odd excluded at 3.2σ
- Similar studies on HVV couplings in papers

- H→WW decay (<u>EPJC 84, 779 (2024)</u>)
- Study HVV ACs in two approaches
 - Impose a^{WW}_i = a^{ZZ}_i, study cross section ratios independently (left)
 - Impose SU(2) x U(1) symmetry, analyze a_i independently (left) or simultaneously (right)
- Value of CP-violating AC f_{a3} is found to be consistent with 0

CP-violating ACs: results

well.

H→ττ decay (<u>PRD 108, 032013</u>)

Value of CP-violating AC f₂₃ is found

previous slide) consistent with 0 as

Combined result with 4L analysis (cfr.

ttH(bb) (submitted to [HEP)

to be consistent with 0

19.2(T) 16.8 Z

14.4

12.0

9.6

7.2

4.8

24

 $s_{v} = 1$

1.5 2.0

Kt

- Higgs-top CP coupling parametrized with purely CP-even and -odd terms
 - $\kappa_t, \tilde{\kappa}_t$ as well as cross section ratio f_{CP}
- Results compatible with purely CP-even coupling
- κ_t, κ_t result compatible with SM at the level of 2σ

Conclusions

- The CMS Collaboration is measuring the Higgs boson mass and natural width using the canonical high-mass-resolution channels: yy and 4L
- Most precise single-channel measurement on m_H in H(4L) decay channel, using full Run2 dataset
- Intensive work to **reduce uncertainty** due to non-uniformity of light collection in sight **of full Run2 H(yy) mass measurement**
- Measured $\Gamma_{\rm H}$ using off-shell events in H(4L) decay channel
- Anomalous, **CP-violating couplings** (ACs) **studied** in large spectrum of production and decay modes
 - Results are consistent with SM expectation of purely CP-even interactions

Backup slides

Event classification; signal & background modeling

- Select 4 prompt isolated leptons

 Build Z candidates and H candidate
- Split events in 9 categories based on δm_{4L}/m_{4L}
 - Equal amount of signal events in each
- **Signal model**: DSCB + Landau
 - + Breit-Wigner when measuring Γ_{H}
- Background model
 - Irreducible: from MC, Bernstein pol. degree 3
 - Reducible: from control region in data (fake-rate method), Landau

$\Gamma_{\rm H}$ off-shell measurement

- Select region m_{4L} > 220 GeV
- 3 exclusive categories: VBF tagged, VH tagged, untagged
- Fit **3 observables**: m₄₁ + 2 kinematic discriminants
- Model with 4 parameters of interest: $m_H \Gamma_H$, μ_F , μ_V

