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Higgs - 12 years since the discovery!
• Higgs is essential in the Standard Model 

➡ Discovery during Run-1 by ATLAS (PLB, V716, P1-29) and CMS (PLB, V716, P30-61)  
➡ Since the discovery, priority from the experiments to measure its properties  

• Couplings of Higgs boson and massive particles split in the following main categories: 

➡ Gauge couplings to vector bosons 

➡ Yukawa couplings to fermions 

➡ Self-coupling of the Higgs field 

• Coupling measurements at best possible precision, crucial for the physics program (incl. BSM) (symmetry 
breaking, Standard Model prediction testing)
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Dedicated talk by 
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afternoon
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Outline
• Recap the Couplings from 2022 (Nature 607, 52–59 (2022)) 

• Higgs production and decay modes 
• Global signal strength and Couplings to individual particles  
• -framework, STXS and SMEFT interpretations 

• Updated results 
• Relative sign of W, Z couplings 
• Update on the  including results in STXS 
• Latest results from the  analysis 
• Highly boosted  production in fully hadronic decay modes

κ

H → ττ
V( → lep)H( → bb̄/cc̄)

VH

https://doi.org/10.1038/s41586-022-04893-w


4

Higgs Production & Decay modes
Chapter I.9. Summary 275
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Figure 178: The SM Higgs boson production cross sections as a function of the LHC centre of mass energy.
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Figure 179: The SM Higgs boson branching ratios as a function of the Higgs boson mass.

Run 1 Run 2 Run 3

arXiv:1610.07922 

• During Run 2, ATLAS recorded ~140 fb-1 luminosity in  collisions   
• ~9 millions of Higgs bosons are produced (SM prediction)  0.3% experimentally accessible
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• Major production/decay processes observed at the LHC 
• All available channels are combined to yield the most precise couplings measurements  
• Rare/difficult decay modes are pursued (second generation couplings, )  

• Important for beyond the SM scenarios
Zγ

Dedicated ATLAS BSM 
and rare H(125) decays 

 talk by Huacheng Cai on 
Tuesday

https://arxiv.org/abs/1610.07922
https://indico.ijclab.in2p3.fr/event/10259/timetable/#104-bsm-and-rare-h125-decays-a
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ATLAS measurements @ Run2
• Global signal strength measured for all production processes and decays together  

 (*)μ =
σ × B

(σ × B)SM
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Nature 607, 52–59 (2022)

μ = 1.05 ± 0.03(stat.) ± 0.03(exp.) ± 0.04(sig . th.) ± 0.02(bkg . th.)(*)

• Ratio of observed to predicted SM event rate 
• Already better than 10% precision in  measured in a number of decay channels 

• Still several channels dominated by the statistical uncertainty
ggF

p-value: 65% 

p-value: 56% 

• (p-value): 72% 

https://doi.org/10.1038/s41586-022-04893-w
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κ-Framework @ Run 2
• Event rates for Higgs production and decay processes can be 

expressed in terms of coupling modifiers (κ) multiplying the 
SM Higgs coupling strengths to other particles.  

• Three classes of models with progressively fewer assumptions

σ(i → H → f ) = σiBf =
σSM

i κ2
i ⋅ ΓSM

f κ2
f

ΓSM
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κ2
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Nature 607, 52–59 (2022)

All measured coupling strength modifiers are compatible with their SM predictions
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modifier for fermion couplings  
κV( = κW = κZ)

κF

Allows for the presence of non-SM 
particles in the loop-induced processes with 

effective coupling modifiers κg,κγ,κZγ

Coupling strength modifiers for 𝑊, 
𝑍, 𝑡, 𝑏, 𝑐, 𝜏 and 𝜇 (only SM particles 
assumed, loop processes resolved)

,  κV = 1.035 ± 0.031 κF = 0.95 ± 0.05

https://doi.org/10.1038/s41586-022-04893-w
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Simplified template cross section (STXS) 

All measurements are consistent with the SM predictions

Nature 607, 52–59 (2022)
• STXS framework partitions the Higgs 

cross section measurements separately 
in production modes and in several 
bins of kinematic regions in an 
optimized way 
• Split phase space of Higgs production 

processes into 36 kinematic regions  
• Optimise signal and BSM sensitivity  
• Reduce theoretical uncertainties that 

are directly folded into the 
measurements.  

• Allowing the combination of 
measurements in different decay 
channels and eventually between 
experiments.  

• The 𝑝-value for compatibility of the 
combined measurement and the SM 
prediction is 94%

https://doi.org/10.1038/s41586-022-04893-w
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Interpretations in SMEFT
• Standard Model Effective Field Theory 

(SMEFT) provides a model-independent 
setting to describe deviations from SM  

• Effective Lagrangian :

 

•  - Wilson coefficients operators are 
expressed in the Warsaw basis 
• Up to dimension 6 is considered 

• Simultaneous measurement of SMEFT 
parameters by computing eigenvectors 
EVn with PDF approx. Gaussian: 
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Tuesday

p-value: 98.2%

 arXiv:2402.05742 
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https://arxiv.org/abs/2402.05742
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Relative sign of the W and Z couplings with VBF WH production
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• In VBF WH process, the Higgs boson interacts with 
either a W or Z boson 
• Analysis selects VBF  events 
• Couplings parametrized with  modifiers 

• , SM prediction  
• Probing  sign (previously unconstrained) 

•  and upper limit 9.0x (obs.) SM (8.7 
exp.) 
• largest systematics due to W+jets and  modeling 

and jet energy resolution 
• The 𝑊 and 𝑍 boson couplings to the Higgs boson 

are determined to have the same sign  
• Opposite-sign hypotheses now excluded with 

significance 
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• The -lepton is the heaviest lepton and therefore has the largest 
coupling to the Higgs boson,  6% 

• First analysis considers only leptonic W, Z decays and H final 
states with at least one 𝜏-lepton decaying hadronically 
• NN analysis is used to separate signal and background  

• Signal strength:  with overall 
significance ~  

• The fit is also performed for the four production modes (STXS)  
• Good agreement with the SM predictions.  

• Improvements over the previous analysis splitting VBF in more 
kinematic regions and enhancing the  measurement using ML 
• 8% improvement in the global signal strength and a ∼ 25% 

improvement in the  signal strength (statistically limited) 

τ
BR(H → ττ)

μ = 1.28 ± 0.3(stat) ± 0.2(sys)
4.2σ

tt̄H

tt̄H

 channel (incl. STXS)H → ττ

arXiv:2407.16320

Phys. Lett. B 855 (2024) 138817

https://arxiv.org/abs/2407.16320
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Legacy  (1/2)V( → lep)H( → bb̄/cc̄)
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•  is the most sensitive process to study 
some of the rarer Higgs production mechanisms such as 
the associated production with a 𝑊 or 𝑍 boson (VH)  

• Higgs decays to  pairs 
• Simultaneous extraction of both signals 
• Analysis strategy validated searching diboson WZ and 

ZZ signal

V( → lep)H( → bb̄)

bb̄, cc̄
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Figure 5.1: Leading order Feynman diagrams of the V H production followed by a H æ bb decay for the (a)
0-lepton, (b) 1-lepton and (c) 2-lepton channels (l = e, µ). For the ZH production, the gluon initiated

(gg æ ZH, (d)) process is also contributing, its cross-section is approximately a factor 6 times smaller than
the quark initiated (qq æ ZH, (a) and (c)) one [53, 65, 90].

As a result, the first observation of H æ bb decays was reported in 2018 using pp collisions of the
Run 1 data set collected at 7 TeV and 8 TeV, combined with a partial Run 2 data set collected at
13 TeV both by the ATLAS [3] and CMS collaborations [4].

Since the observation of H æ bb decay and V H mechanism, the experimental focus has shifted
towards precision measurements of the Higgs boson production kinematics. In its latest results, the
ATLAS collaboration has performed inclusive and differential cross-section measurements both
with the simplified template cross-section (STXS) [65, 275] and the fiducial [276] approaches.
The results have also been interpreted in terms of the Wilson coefficients of BSM operators of
an effective field theory Lagrangian [5, 65, 275]. Another important milestone has been achieved
combining the V H, H æ bb and V H, H æ cc analyses [6] which confirmed with a 95% confi-
dence level that the Higgs-charm coupling is weaker than the Higgs-bottom coupling. Finally, a
combination for different regimes of the transverse momentum of the vector boson (pV

T ) was per-
formed [5] in order to reconstruct the Higgs boson candidate (targeting H æ bb decays) either as
two individual jets (referred to as resolved topology) or as a single large-radius jet (referred to as
boosted topology) as schematized in Figure 5.2. All the results mentioned above will be discussed
extensively in this chapter.

The ATLAS V H(bb/cc) analysis team is now working on a Legacy Run 2 publication in which I
have been deeply involved (as already highlighted at the beginning of this chapter), aiming at com-
bining for the first time the V H, H æ bb resolved, the V H, H æ bb boosted and the V H, H æ cc

analyses. This paper will serve as a reference measurement for the coming years. It includes all the
latest ATLAS developments, updates and recommendations in terms of reconstruction, identifica-
tion and isolation of objects, modelling of events and recommended sources of uncertainties. The
updates and development with respect to the previous papers will be emphasized in this chapter.

For H æ bb/cc decays, the angular distance between the two b-hadrons (or c-hadrons) [190, 191],
as explained in Section 3.6.1, can be approximated by:

�R(b, b) ¥
2mH

p
H

T
. (5.1.1)

The Equation (5.1.1) implies that the H æ bb/cc decays can be reconstructed in ATLAS with
the boosted topology for Higgs transverse momentum (pH

T ) of the order of few hundreds of giga
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Figure 5.1: Leading order Feynman diagrams of the V H production followed by a H æ bb decay for the (a)
0-lepton, (b) 1-lepton and (c) 2-lepton channels (l = e, µ). For the ZH production, the gluon initiated

(gg æ ZH, (d)) process is also contributing, its cross-section is approximately a factor 6 times smaller than
the quark initiated (qq æ ZH, (a) and (c)) one [53, 65, 90].

As a result, the first observation of H æ bb decays was reported in 2018 using pp collisions of the
Run 1 data set collected at 7 TeV and 8 TeV, combined with a partial Run 2 data set collected at
13 TeV both by the ATLAS [3] and CMS collaborations [4].

Since the observation of H æ bb decay and V H mechanism, the experimental focus has shifted
towards precision measurements of the Higgs boson production kinematics. In its latest results, the
ATLAS collaboration has performed inclusive and differential cross-section measurements both
with the simplified template cross-section (STXS) [65, 275] and the fiducial [276] approaches.
The results have also been interpreted in terms of the Wilson coefficients of BSM operators of
an effective field theory Lagrangian [5, 65, 275]. Another important milestone has been achieved
combining the V H, H æ bb and V H, H æ cc analyses [6] which confirmed with a 95% confi-
dence level that the Higgs-charm coupling is weaker than the Higgs-bottom coupling. Finally, a
combination for different regimes of the transverse momentum of the vector boson (pV

T ) was per-
formed [5] in order to reconstruct the Higgs boson candidate (targeting H æ bb decays) either as
two individual jets (referred to as resolved topology) or as a single large-radius jet (referred to as
boosted topology) as schematized in Figure 5.2. All the results mentioned above will be discussed
extensively in this chapter.

The ATLAS V H(bb/cc) analysis team is now working on a Legacy Run 2 publication in which I
have been deeply involved (as already highlighted at the beginning of this chapter), aiming at com-
bining for the first time the V H, H æ bb resolved, the V H, H æ bb boosted and the V H, H æ cc

analyses. This paper will serve as a reference measurement for the coming years. It includes all the
latest ATLAS developments, updates and recommendations in terms of reconstruction, identifica-
tion and isolation of objects, modelling of events and recommended sources of uncertainties. The
updates and development with respect to the previous papers will be emphasized in this chapter.

For H æ bb/cc decays, the angular distance between the two b-hadrons (or c-hadrons) [190, 191],
as explained in Section 3.6.1, can be approximated by:
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T ) of the order of few hundreds of giga
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Figure 5.1: Leading order Feynman diagrams of the V H production followed by a H æ bb decay for the (a)
0-lepton, (b) 1-lepton and (c) 2-lepton channels (l = e, µ). For the ZH production, the gluon initiated

(gg æ ZH, (d)) process is also contributing, its cross-section is approximately a factor 6 times smaller than
the quark initiated (qq æ ZH, (a) and (c)) one [53, 65, 90].

As a result, the first observation of H æ bb decays was reported in 2018 using pp collisions of the
Run 1 data set collected at 7 TeV and 8 TeV, combined with a partial Run 2 data set collected at
13 TeV both by the ATLAS [3] and CMS collaborations [4].

Since the observation of H æ bb decay and V H mechanism, the experimental focus has shifted
towards precision measurements of the Higgs boson production kinematics. In its latest results, the
ATLAS collaboration has performed inclusive and differential cross-section measurements both
with the simplified template cross-section (STXS) [65, 275] and the fiducial [276] approaches.
The results have also been interpreted in terms of the Wilson coefficients of BSM operators of
an effective field theory Lagrangian [5, 65, 275]. Another important milestone has been achieved
combining the V H, H æ bb and V H, H æ cc analyses [6] which confirmed with a 95% confi-
dence level that the Higgs-charm coupling is weaker than the Higgs-bottom coupling. Finally, a
combination for different regimes of the transverse momentum of the vector boson (pV

T ) was per-
formed [5] in order to reconstruct the Higgs boson candidate (targeting H æ bb decays) either as
two individual jets (referred to as resolved topology) or as a single large-radius jet (referred to as
boosted topology) as schematized in Figure 5.2. All the results mentioned above will be discussed
extensively in this chapter.

The ATLAS V H(bb/cc) analysis team is now working on a Legacy Run 2 publication in which I
have been deeply involved (as already highlighted at the beginning of this chapter), aiming at com-
bining for the first time the V H, H æ bb resolved, the V H, H æ bb boosted and the V H, H æ cc

analyses. This paper will serve as a reference measurement for the coming years. It includes all the
latest ATLAS developments, updates and recommendations in terms of reconstruction, identifica-
tion and isolation of objects, modelling of events and recommended sources of uncertainties. The
updates and development with respect to the previous papers will be emphasized in this chapter.

For H æ bb/cc decays, the angular distance between the two b-hadrons (or c-hadrons) [190, 191],
as explained in Section 3.6.1, can be approximated by:

�R(b, b) ¥
2mH

p
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T
. (5.1.1)

The Equation (5.1.1) implies that the H æ bb/cc decays can be reconstructed in ATLAS with
the boosted topology for Higgs transverse momentum (pH

T ) of the order of few hundreds of giga

(0 lep)

(1 lep)

(2 lep)

ATLAS-CONF-2024-010 

Dedicated talk by 
Marion Miissio on 

Tuesday

http://cds.cern.ch/record/2905263
https://indico.ijclab.in2p3.fr/event/10259/timetable/#168-boosted-higgs-decays-to-b


2− 0 2 4 6 8 10
 normalised to SMB × σ

 > 600 GeVZ,t
T

ZH, p

 < 600 GeVZ,t
T

ZH, 400 < p

 < 400 GeVZ,t
T

ZH, 250 < p

 < 250 GeVZ,t
T

ZH, 150 < p

 < 150 GeVZ,t
T

ZH, 75 < p

 > 600 GeVW,t
T

WH, p

 < 600 GeVW,t
T

WH, 400 < p

 < 400 GeVW,t
T

WH, 250 < p

 < 250 GeVW,t
T

WH, 150 < p

 < 150 GeVW,t
T

WH, 75 < p

ATLAS Preliminary -1=13 TeV, 140 fbs b b→VH, H
Obs. Tot. unc. Stat. unc. Theo. unc.

            Tot.                         ( Stat.,  Syst. )

 0.96−
1.29+-0.89       0.89−

1.24+      0.36−
0.37+                     (               )          ,

0.61−
0.70+0.98       0.56−

0.63+      0.23−
0.30+                     (               )          ,

0.34−
0.38+0.84       0.31−

0.32+      0.15−
0.21+                     (               )          ,

0.30−
0.34+0.94       0.24−

0.25+      0.18−
0.24+                     (               )          ,

0.62−
0.67+1.00       0.47−

0.47+      0.41−
0.47+                     (               )          ,

0.95−
1.16+1.33       0.92−

1.11+      0.23−
0.32+                     (               )          ,

 0.51−
0.55+-0.11       0.42−

0.48+      0.28−
0.27+                     (               )          ,

0.34−
0.36+1.34       0.29−

0.31+      0.16−
0.18+                     (               )          ,

0.41−
0.43+0.95       0.27−

0.28+      0.31−
0.33+                     (               )          ,

1.32−
1.23+0.04       0.52−

0.52+      1.21−
1.12+                     (               )          ,

12

0 5 10 15 20 25 30 35
cc
VH
µ95% C.L. limit on 

σ 1±
σ 2±

Observed
Expected

ATLAS Preliminary
-1=13 TeV, 140 fbs

c/cb b→VH, H 

0 lepton
 SM×Exp.= 17 
 SM×Obs.= 14 

1 lepton
 SM×Exp.= 17 
 SM×Obs.= 20 

2 lepton
 SM×Exp.= 18 
 SM×Obs.= 22 

Combination
 SM×Exp.= 10 
 SM×Obs.= 11 

ATLAS-CONF-2024-010 

Legacy  (2/2) V( → lep)H( → bb̄/cc̄)
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• Analysis shows 15% improvement in precision of  
(resolved, boosted) compared to previous analysis 
• Better object reconstructions/calibrations, improved 

analysis strategies 
• , with obs. (exp.) significance  

μbb̄
VH

μbb
VH = 0.91+0.16

−0.14 7.4 σ (8.0 σ)

•  obs. (exp.) upper limit
 x SM @ 95% CL  

• Uncertainties improved by x3 wrt 
previous results 

• Constrain on  at 95% CL 
• Constrain on ratio  at 95% CL 

• Total coupling strength smaller for charm 
than the bottom

μcc
VH = 1.0+5.4
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Boosted  production in fully hadronic VH qqbb̄
• Highly boosted topology using fully 

hadronic final state:  
•  NN algorithms employed to tag boosted 

 
• Larger BR than ,  
• Fully hadronic decays large irreducible 

multijet contribution though 
• Signal strength  in 

agreement with SM 
• Significance at  observed (  

exp.)

V( → qq′￼)H( → bb̄)

H → bb̄
V( → lep)H( → bb̄)

μ = 1.4+1.0
−0.9

1.7σ 1.2σ
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)(→ 22)-(→ ..) [HIGG-2021-11]
• VH(bb) in highly boosted topology

• Sensitive to higher-order effective operators in high &", important to test new 
physics

• Run 2 '(→ 44)!(→ ##) analysis: first study in two large-R topology in 
ATLAS!

• Greater BR than ' → lep $(→ ##) → potential to probe Higgs properties in 
higher -* to TeV scale!

• Large-R jets used to identify/reconstruct high 0! hadronic V, H

• W/Z tagger: optimized using .+, /,-./, 0012, as a function of &"+  
• Dedicated Hbb tagger (Xbb): discriminate $ → ## decay from gluon, light or top 

quark jets

• Dominant multijet background modeled by the data-driven method

| Higgs properties using highly boosted objects at ATLAS | Kunlin Ran, 31.07.2024

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-019/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.131802
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Conclusions
• Higgs couplings measured up to date are compatible with SM, no significant 

deviation is observed  
• Crucial for constraining Higgs-fermion and Higgs-boson couplings 

• Going to precision era of <10% in some, other still suffer from statistical 
uncertainties 

• Extend coupling measurements to second-generation fermions  
• New advanced techniques have been adopted along with increased statistics 

allow more and more channels to be exploited but also improve the existing ones 
• STXS interpretations to extensively test the validity of the SM in different 

regions of phase space  
• Looking forward to Run 3 results with improved statistics and analysis methods
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H → μμ
• Large Drell-Yan background.  
• Events sorted targeting different 

production modes (ggF, VBF, ) 
• Observed (expected) significance over 

background-only hypothesis is  
( ) for   

• Upper limit of  is 2.2x SM 
@ 95% CL 

• Best fit for signal strength 

VH, tt̄H
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1.7 σ mH = 125.09 GeV
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μ = 1.2 ± 0.6
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Global  Signal strengthH
• The Higgs boson production rates are probed by the 

likelihood fit to observed signal yields 
• Global signal strength measured for all production 

processes and decays together  
• Expressed in terms of a single signal-strength modifier 𝜇: 

 

• Systematic uncertainty reduced by factor of 2 since the 
discovery 

• Total measurement uncertainty decreased by ~30% 
• SM compatibility (p-value): 39%

μ =
σ × B

(σ × B)SM
= 1.05 ± 0.06

Nature 607, 52–59 (2022)

μ = 1.05 ± 0.03(stat.) ± 0.03(exp.) ± 0.04(sig . th.) ± 0.02(bkg . th.)

https://doi.org/10.1038/s41586-022-04893-w
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κ-Framework
• Event rates for Higgs production and decay processes can be expressed in 

terms of coupling modifiers (κ) multiplying the SM Higgs coupling strengths 
to other particles.  

• Three classes of models with progressively fewer assumptions: 
1. Single modifier for vector bosons  and single modifier for 

fermion couplings  : 
    best-fit values: ,  p-value: 14% 

➡ Compatible with SM predictions ( ) 

2. Coupling strength modifiers for 𝑊, 𝑍, 𝑡, 𝑏, 𝑐, 𝜏 and 𝜇 are treated 
independently (only SM particles assumed, loop processes resolved) 

3. Same as 2) but allows for the presence of non-SM particles in the loop-
induced processes with coupling modifiers κg, κγ, κZγ

κV( = κW = κZ)
κF

κV = 1.035 ± 0.031, κF = 0.95 ± 0.05
κV = κF = 1
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Nature 607, 52–59 (2022)
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Couplings to individual particle
• VH(cc) data in the combination allows to have 

 for the first time in this model (free param.) 

• Upper limit (when left unconstrained) on  is 
 obs. (exp.) at 95% CL 

(improve from Eur. Phys. J. C 82 (2022) 717)

κc
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Nature 607, 52–59 (2022)

All measured coupling strength modifiers are compatible 
with their SM predictions

• Effective photon, 𝒁𝜸 and gluon couplings 
• Improves the current best limit of 

   limit from 
earlier search:  arXiv:2202.07953  

• Statistical and the systematic uncertainty 
contribute almost equally  
• exceptions are the 𝜅𝜇, 𝜅𝑍𝛾, 𝜅𝑐 and 𝐵u 

where statistical uncertainty dominates

Binv. < 0.145 → Binv. < 0.13

2nd Model

3rd Model

SM p-value (61%)

https://link.springer.com/article/10.1140/epjc/s10052-022-10588-3
https://doi.org/10.1038/s41586-022-04893-w
https://arxiv.org/abs/2202.07953
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SMEFT
• The strongest constraints can be found on coefficients which affect SM 

processes that are suppressed by small Yukawa couplings or include quantum 
loops.  

• The operators corresponding to  are effectively modifiers for 
the Higgs Yukawa coupling to  quarks, respectively, while non-zero 
values of  would modify WH and ZH production.  

• The eigenvectors  encapsulate changes to the ggF production and 
could affect the  and  decays. 

ceH,22, ceH,33, cbH
μ, τ, b

cHq

e[i]
ggF e[i]

Hγγ,Zγ
H → γγ H → Zγ
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• For Run 3 new algorithms have been developed to:  
• identify the  production vertex  
• RNN to discriminate  against jets and a separate one to veto electrons 
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Legacy V( → lep)H( → bb̄/cc̄)
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Schematic of the flavour tagging regions as used in 
the resolved regime. The efficiencies for the various 
jet flavours in the various regions are extracted from 

a simulated  samplett̄

The fitted values of the WH,  and 
ZH,  signal strengths, along with 

their combination along with the significance

H → bb̄
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