Higgs coupling measurements Tiziano Bevilacqua (UZH, PSI) On behalf of the CMS Collaboration # Outline - * State of the art: - Where we stand - Probing the Yukawa sector: - H+c. - H+b. - * Run 2 crowning moving towards Run 3: - Run 2 combination. - Run 3 cross section measurements. - * Conclusions. # Where we stand 10+ years after - * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model. - Separate observation of the **bosonic** decay channels O(15%). - Spin and parity compatible with $J^P = 0^+$. #### Phys. Lett. B 716 (2012) 30-61 # Where we stand 10+ years after - * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model. - Separate observation of the **bosonic** decay channels O(15%). - Spin and parity compatible with $J^P = 0^+$. - * Run II: Firmly established the existence of Yukawa couplings. - Separate observation of vector bosons O(8%) and third generation fermions couplings O(10-20%). - First evidence of second generation coupling. Nature 607, 60-68 (2022) # Where we stand 10+ years after - * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model. - Separate observation of the **bosonic** decay channels O(15%). - Spin and parity compatible with $J^P = 0^+$. - * Run II: Firmly established the existence of Yukawa couplings. - Separate observation of vector bosons O(8%) and third generation fermions couplings O(10-20%). - First evidence of second generation coupling. - * Run III and beyond: Era of precision. - Tackle second generation coupling and Higgs self coupling to complete the picture. Nature 607, 60-68 (2022) # Probing the 2nd and 3rd generation Yukawas # 2nd generation Yukawas: Probing y_c - Great improvements in the last few years. - * Yukawa probed directly: $VH(H \to c\bar{c})$ decay yields the most stringent (CMS) observed (exp.) limit of μ < 14 (7.6). - * Indirect approaches: Exclusive rare decays, $p_T(H)$ differential measurements. - * New attempt: Probe y_c in the production side with associated production. * $H \rightarrow \gamma \gamma$ decay channel. #### Main backgrounds: - \Rightarrow Higgs production through gluon fusion (ggH), - \Rightarrow continuous diphoton background (CB) from $\gamma\gamma$ and $\gamma + jets$ events. - ★ Full Run 2 dataset of 138 fb⁻¹: - Uses dedicated NLO+PS simulation of the y_c dependent H production. - Flavour Scheme studies to address signal generation theoretical uncertainty. - Kinematic based BDTs used to categorise the events. $$[fb] \rightarrow A = 254.5, B = -3.5, C = 34.5$$ $$\sigma(hc) = A + B \cdot y_c + C \cdot y_c^2$$ CMS-PAS-HIG-23-010 - * $H \rightarrow \gamma \gamma$ decay channel. - * Main backgrounds: - \Rightarrow Higgs production through gluon fusion (ggH), - \Rightarrow continuous diphoton background (CB) from $\gamma\gamma$ and $\gamma + jets$ events. - ★ Full Run 2 dataset of 138 fb⁻¹: - Uses dedicated NLO+PS simulation of the y_c dependent H production. - Flavour Scheme studies to address signal generation theoretical uncertainty. - Kinematic based BDTs used to categorise the events. **H66** S/ CH cH vs CB #### Results: - * μ_{cH} is extracted via a **simultaneous maximum likelihood fit** in the $m_{\gamma\gamma}$ distribution in the 27 event categories. - Assuming the standard model (SM) cross sections times branching fractions for all other Higgs production processes. - * The observed (expected) upper limit at 95% confidence level on the cH signal strength is 243 (355) times the SM prediction. - * Result interpreted considering the "flat direction" approach (PRD 100 (2019) 073013): - The observed (expected) allowed interval is $|\kappa_c| < 38.1$ ($|\kappa_c| < 72.5$) at 95% confidence level. #### CMS-PAS-HIG-23-010 - Signal: cH - Res. Bkg: ggH, ttH, VH, VBF, bH $\mu_{cH} = \frac{1}{2}$ - Cont. Bkg: $\gamma\gamma$, γ +jets # bbH associated production ullet Search for b-quark associated Higgs boson production followed by decay to au lepton pair or WW. Subdominant y_b dependent contribution - Direct probe of Higgs couplings to the bottom quark (y_b) in production. - * Challenging analysis experimentally with 4 final states ($e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$): - Larger background than in the ttH channel. - Complex contribution of y_t dependent diagrams and interference. # bbH associated production #### **Results:** - lacktriangle Dominant backgrounds: $tar{t}$, DY, and $j o t_h$ misidentification \Rightarrow require dedicated classes. - * Fit to BDT score, inclusive measurement: - The different contributions to the signal are scaled by varying proportionally the y_b^2 , y_t^2 and $y_b y_t$ terms. | Channel | еµ | $\mathrm{e} au_h$ | $\mu \tau_h$ | $ au_h au_h$ | |----------------|---|----------------------------|------------------------------|---| | BDT Categories | bbH(\rightarrow WW), bbH(\rightarrow $\tau\tau$) | DY, TT, bbH($ o au au$) | DY, TT, bbH($ o$ $ au au$) | DY+Higgs, TT,
$j{ ightarrow} au_{h}$ fakes,
$bbH({ ightarrow} au au)$ | * Observed **obs (exp)** upper limits at **3.7 (6.1)** times the SM expectation. CMS PAS HIG-23-003 # H + b associated production ## K-framework interpretation: - * Scan performed on coupling modifiers k_t and k_b , with k_τ freely floating. - * Combined with the results from STXS $H \to \tau\tau$ cross-section measurement (with veto on b-jets) to better constrain k_t . - * The best fit point is $(k_t, k_b) = (-0.73, 1.58)$ - Limits on the couplings are compatible with the SM at 95% CL. CMS PAS HIG-23-003 # Run 2 crowning moving towards Run 3 # Combination of H boson production XSections - * Fiducial differential cross section, most model independent approach: - Fiducial regions defined by selections at generator level. - Each analysis performs measurements in different fiducial phase spaces. - Small coupling variations could lead to significant distortions of the shape of the differential observables. #### * Three main parts: **Experimental sensitivity** \Rightarrow Combination of spectra (fid. diff. σ_s extrapolated to the full phase space). Model independence - ⇒ K-framework based interpretation. - ⇒ SMEFT based interpretation. #### Full Run 2: • $$H \rightarrow \gamma \gamma$$ • $$H \rightarrow ZZ^*$$ • $$H \rightarrow WW^*$$ • $$H \rightarrow \tau \tau$$ • $H \rightarrow \tau \tau$ (boosted) # Individual channels Extrapolation to inclusive phase space Combination $$\mu = \frac{\sigma_i \times BF_i \times A_i}{\sigma_{SM} \times BF_{SM} \times A_{SM}}$$ $$\mu = \frac{\sigma}{\sigma_{SM}}$$ [1] Nature 607, 60–68 (2022) [2] PoS(ICHEP2022)509 [3] CMS-PAS-HIG-23-013 # Combination of H boson production XSections #### K framework interpretation: - No significant deviations from the standard model are observed in any differential observable: - p_T^H , N_{jets} , $|y_H|$, $p_T^{j_1}$, m_{jj} , $|\Delta \eta_{jj}|$, τ_C^j . - * The obtained $p_T(H)$ spectra are interpreted in the **k-framework**: - Constraints on the Higgs couplings using two models: - $\Rightarrow k_b k_c, p_T^H$ effects from light quarks. - $\Rightarrow k_b k_t c_g$, c_g gives direct H-gluon coupling. - Two different treatment for BRs in the fit: - \Rightarrow BRs(k). - \Rightarrow BRs freely floating. CMS-PAS-HIG-23-013 # Combination of H boson production XSections #### **EFT** interpretation: - Interpretation with a model agnostic EFT approach. - ⇒ No extrapolation to inclusive phase space needed! - * Scan: fit a couple of Wilson coefficients and the others are fixed to the SM values. - Results consistent with SM and the same scan performed by Atlas in the $H\rightarrow\gamma\gamma$ channel. - * Eigenvector decomposition: - Linear combinations of the original coefficients: - ⇒ indication of their constraining power. - Highest constraining power ones are then left floating. - Results are consistent with the SM. CMS-PAS-HIG-23-013 ## Run 3 measurements #### $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ at 13.6 TeV: HIG-24-013 - Inclusive and differential cross section measurements. - ❖ Using \sim 35 fb⁻¹ from 2022 \rightarrow statistically limited. - * Excellent validation of muon and electron performance in CMS in Run 3. - Old strategies, new tools! - More in Nico's talk. $$H o ZZ$$ $$\sigma_{\text{fid}} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$$ $H o \gamma \gamma$ $$\sigma_{\text{fid}} = 78 \pm 11 \text{ (stat.)}^{+6}_{-5} \text{ (syst.) fb}$$ HIG-23-01 # Summary - After more than 10 years of studying the properties of the Higgs Boson we're now targeting precision measurements of its properties. - We've taken the most out of the Run 2 dataset: - Most coupling to 3rd generation fermions and vector bosons are know with < 10% uncertainty. - 2nd generation couplings are becoming accessible. - * First measurements with Run 3 are being published and show good agreement with the SM. - Much more to come! Looking forward to Run 3 and beyond. Nature 607, 60-68 (2022) # Summary - After more than 10 years of studying the properties of the Higgs Boson we're now targeting precision measurements of its properties. - * We've taken the most out of the Run 2 dataset: - Most coupling to 3rd generation fermions and vector bosons are know with < 10% uncertainty. - 2nd generation couplings are becoming accessible. - * First measurements with Run 3 are being published and show good agreement with the SM. - Much more to come! Looking forward to Run 3 and beyond. Nature 607, 60-68 (2022) # Back Up ## Motivation - * Direct search for $VH(H\to c\bar{c})$ arXiv:2205.05550: recent improvements, most stringent limit on $H\to c\bar{c}$. - Upper limit $\mu_{VH(H\to c\bar{c})} < 14 \ (7.6)$ observed (expected). - $1.1 < |k_c^{[*]}| < 5.5 \ (|k_c| < 3.4)$ observed (expected) at 95% C.L. [ATLAS: $|k_c| < 8.5(12.4)$ obs (exp) at 95% C.L.] - First observation of $Z \to c\bar{c}$ at a hadron collider (5.7 σ) - * Boosted $ggH(H \rightarrow c\bar{c})$ HIG-21-012: - μ < 38 (45) observed (expected) at 95% C.L. - $BR/BR_{SM} < 220 \ (170)$ observed (expected) at 95% C.L. [ATLAS: proj. for $3 \ ab^{-1} \ \mu < \mu_{SM}$ at 95% C.L.] - * H differential measurements, variation of $p_T(H)$ as a function of k_c : - $-4.9 < k_c < 4.8 \ (-6.1 < k_c < 6.0)$ observed (expected) at 95% C.L. #### H+c signal: * Focusing on the signal simulation for H + c MC (not available in CMS up to now). - * $\sigma(hc)$ does not scale trivially with y_c , tests were run with effective ggH coupling at LO. - * Biggest contribution from the term that does not probe y_c , but small y_c proportional interference term (~10 times smaller than the y_c^2 dependent term), for sensitivity $O(10 \cdot SM)$ contribution of ~1%. - * As first approximation one can generate signal probing y_c^2 and bkgs/interference in separate MC, orthogonality with H + jets MCs. # Focus on the y_c^2 term: - * Simulated with MadGraph_aMC@NLO ([QCD] NLO) + Pythia8 Parton Shower. - * Simulated using loop_sm model to have y_c in the \overline{MS} renormalisation scheme and include running of $y_c \to \overline{y}_c(\mu_R)$ and $m_c \to \overline{m}_c(\mu_R)$. - Simulated using 4 Flavour Scheme (4FS), to have c-quarks in the initial state, and with FXFX-merging to better describe the kinematics. - To assess the 3FS vs 4FS theory uncertainty we compare samples produced using both methods: \Rightarrow FS uncertainty O(30%) of the yields in analysis categories, dominant w.r.t. Scales, PDFs, PS. LO diagrams ## **BDT** training: - We use two Boosted Decision Trees (BDT) to separate the two main backgrounds: - * cH vs ggH (BDT1): cH (signal), ggH (background), - * cH vs CB (BDT2): cH (signal), $\gamma\gamma$ and $\gamma + jets$ (backgrounds). - Separation is achieved exploiting the kinematics of the Photons and Jets in the event. - * c-tag scores are NOT used in the training, so that ggH + c fraction is stable w.r.t BDT outputs. This limits the impacts of ggH + HF mismodelling. - Training performed with the XGBoost package. ## Categorisation: - * The events are divided into 9 categories for each year, according to the scores of BDT1 and BDT2. - The category boundaries are simultaneously optimised using MCs: - To reduce the correlation between the cH and ggH processes, - To maximise the sensitivity. - Boundaries are optimised separately for each year. - * Migration uncertainties and data/MC agreements are extracted from $Z \rightarrow e^+e^-$ events. ## Higgs processes modelling: - * The statistical analysis is performed with the $H\rightarrow\gamma\gamma$ FlashggFinalFit framework. - The signal and the Higgs backgrounds are modelled with MC simulations. - Mass shapes are: - Parametrised with sum of multiple gaussian functions. - The parametrisation is derived independently for each process X category X vtx scenario. - Yields are extracted from simulation. #### Continuous background modelling: - The continuous background is modelled with a data driven approach. - The functional form and normalisation are extracted by fitting the data. - An F-test is performed to chose from different orders and families of analytical functions. - * A discrete nuisance parameter is used to extract an uncertainty due to the choice of one functional form over the others. - Normalisation is extracted from data. # H + b associated production - Cross section components coming from the different processes. - * Inclusive measurement: The different contributions to the signal are scaled by varying proportionally the y_b^2 , y_t^2 and $y_b y_t$ terms. - Infer limits on the Higgs coupling structure \rightarrow done by introducing the coupling scaling parameters k_t and k_b , and performing a likelihood ratio scan over the $k_t k_b$ parameter space. - b-quark contribution to the quark loop in the y_t^2 process, are accounted for by scaling it by $1.04k_t^2 0.04k_bk_t + 0.002k_b^2$, while the y_b^2 contribution and the interference term are scaled by k_b^2 and k_bk_t respectively. | term | σ(pb) | |-------------------------------|--------------------------| | \mathbf{y}_{t}^{2} | 1.040 (+0.468 -0.489) | | $\mathbf{y}_{\mathrm{b}}^{2}$ | 0.482 (+0.048 -0.070) | | $y_b y_t$ | - 0.033 (+0.007 -0.008) | # H + b associated production - The fit is performed on the BDT score distributions for both signal and background categories. - Lower-score regions are still dominated by background processes, - * Higher BDT score regions show an increasing contribution from bbH process in final states with τ leptons or W bosons. - * There must be a $e\mu$, $e\tau_h$, $\mu\tau_h$, or $\tau_h\tau_h$ pair with opposite electric charge. - No additional electrons or muons may be present in the event. - * The leptons and τ_h candidates must be separated by $\Delta R > 0.5(0.3)$ in the $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ ($e\mu$) channels. - There must be at least one, and no more than two, b-tagged jet. | Variable | | $e\tau_h$ | $\mu \tau_h$ | $\tau_h \tau_h$ | |--|--|-----------|--------------|-----------------| | $m_{ au au}$ | | ✓ | ✓ | ✓ | | m_{vis} | | ✓ | ✓ | ✓ | | Collinear mass | | ✓ | ✓ | × | | D_{ζ} | | ✓ | ✓ | × | | $\Delta\eta$ between lepton and $ au_{ m h}$ | | ✓ | ✓ | × | | Total transverse mass | | × | × | × | | Di- $ au$ $p_{ m T}$ | | ✓ | ✓ | \checkmark | | Electron $p_{\rm T}$ | | × | × | × | | Muon $p_{\rm T}$ | | × | × | × | | p_{T} of leading $ au_{\mathrm{h}}$ | | × | × | ✓ | | p_{T} of trailing τ_{h} | | × | × | ✓ | | Transverse mass | | ✓ | ✓ | × | | Number of b-jets | | × | × | \checkmark | | $p_{\rm T}$ of leading b-jet | | ✓ | ✓ | \checkmark | | $p_{\rm T}$ of trailing b-jet | | ✓ | ✓ | × | | B-tag score for leading b-jet | | ✓ | ✓ | ✓ | | $\Delta \eta$ between di- τ $p_{\rm T}$ and leading b-jet | | ✓ | ✓ | × | | B-tag score for trailing b-jet | | ✓ | ✓ | \checkmark | | Number of jets | | × | × | ✓ | | $p_{\rm T}$ of leading jet | | × | × | ✓ | | $p_{\rm T}$ of trailing jet | | × | × | \checkmark | | Di-jet invariant mass | | × | × | ✓ | | Di-jet Δη | | × | × | ✓ | | $p_{ m T}^{ m miss}$ | | × | × | ✓ | - One or two WCs left free to float, others fixed to SM value. - Fit: - $\Rightarrow c_{HG}, \tilde{c}_{HG},$ - $\Rightarrow c_{HB}, \tilde{c}_{HB},$ - $\Rightarrow c_{HW}, \tilde{c}_{HW},$ - $\Rightarrow c_{HWB}, \tilde{c}_{HWB}$ - * Set others to 0. - * c_{HG} , \tilde{c}_{HG} mostly affect ggH production. - * c_{HWB}, c_{HW}, c_{B} and their CP odd partners mostly affect VH, VBF production and the Higgs decays. - Same procedure repeated for a wider set of coefficients. - Derive lower bounds on the energy as a function of different operators for different coupling choices. ## **Principal Components Analysis:** - * When running a fit floating all the WCs, we can't fit all directions in SMEFT basis simultaneously. - Use PCA on the information matrix to find constrained direction in the parameter space. - Obtain linear combination of SMEFT Wilson coefficient. - Fit constrained directions, fix unconstrained directions to 0. - In this case this assumption is lead by data itself. From M. Galli From M. Galli