

Higgs coupling measurements

Tiziano Bevilacqua (UZH, PSI)
On behalf of the CMS Collaboration

Outline

- * State of the art:
 - Where we stand
- Probing the Yukawa sector:
 - H+c.
 - H+b.
- * Run 2 crowning moving towards Run 3:
 - Run 2 combination.
 - Run 3 cross section measurements.
- * Conclusions.

Where we stand 10+ years after

- * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model.
 - Separate observation of the **bosonic** decay channels O(15%).
 - Spin and parity compatible with $J^P = 0^+$.

Phys. Lett. B 716 (2012) 30-61

Where we stand 10+ years after

- * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model.
 - Separate observation of the **bosonic** decay channels O(15%).
 - Spin and parity compatible with $J^P = 0^+$.
- * Run II: Firmly established the existence of Yukawa couplings.
 - Separate observation of vector bosons O(8%) and third generation fermions couplings O(10-20%).
 - First evidence of second generation coupling.

Nature 607, 60-68 (2022)

Where we stand 10+ years after

- * Run I: Discovery of a boson in 2012 compatible with the scalar sector of the Standard Model.
 - Separate observation of the **bosonic** decay channels O(15%).
 - Spin and parity compatible with $J^P = 0^+$.
- * Run II: Firmly established the existence of Yukawa couplings.
 - Separate observation of vector bosons O(8%) and third generation fermions couplings O(10-20%).
 - First evidence of second generation coupling.
- * Run III and beyond: Era of precision.
 - Tackle second generation coupling and Higgs self coupling to complete the picture.

Nature 607, 60-68 (2022)

Probing the 2nd and 3rd generation Yukawas

2nd generation Yukawas: Probing y_c

- Great improvements in the last few years.
- * Yukawa probed directly: $VH(H \to c\bar{c})$ decay yields the most stringent (CMS) observed (exp.) limit of μ < 14 (7.6).
- * Indirect approaches: Exclusive rare decays, $p_T(H)$ differential measurements.
- * New attempt: Probe y_c in the production side with associated production.

* $H \rightarrow \gamma \gamma$ decay channel.

Main backgrounds:

- \Rightarrow Higgs production through gluon fusion (ggH),
- \Rightarrow continuous diphoton background (CB) from $\gamma\gamma$ and $\gamma + jets$ events.
- ★ Full Run 2 dataset of 138 fb⁻¹:
 - Uses dedicated NLO+PS simulation of the y_c dependent H production.
 - Flavour Scheme studies to address signal generation theoretical uncertainty.
 - Kinematic based BDTs used to categorise the events.

$$[fb] \rightarrow A = 254.5, B = -3.5, C = 34.5$$

$$\sigma(hc) = A + B \cdot y_c + C \cdot y_c^2$$

CMS-PAS-HIG-23-010

- * $H \rightarrow \gamma \gamma$ decay channel.
- * Main backgrounds:
 - \Rightarrow Higgs production through gluon fusion (ggH),
 - \Rightarrow continuous diphoton background (CB) from $\gamma\gamma$ and $\gamma + jets$ events.
- ★ Full Run 2 dataset of 138 fb⁻¹:
 - Uses dedicated NLO+PS simulation of the y_c dependent H production.
 - Flavour Scheme studies to address signal generation theoretical uncertainty.
 - Kinematic based BDTs used to categorise the events.

H66

S/

CH

cH vs CB

Results:

- * μ_{cH} is extracted via a **simultaneous maximum likelihood fit** in the $m_{\gamma\gamma}$ distribution in the 27 event categories.
- Assuming the standard model (SM) cross sections times branching fractions for all other Higgs production processes.
- * The observed (expected) upper limit at 95% confidence level on the cH signal strength is 243 (355) times the SM prediction.
- * Result interpreted considering the "flat direction" approach (PRD 100 (2019) 073013):
 - The observed (expected) allowed interval is $|\kappa_c| < 38.1$ ($|\kappa_c| < 72.5$) at 95% confidence level.

CMS-PAS-HIG-23-010

- Signal: cH
- Res. Bkg: ggH, ttH, VH, VBF, bH $\mu_{cH} = \frac{1}{2}$
- Cont. Bkg: $\gamma\gamma$, γ +jets

bbH associated production

ullet Search for b-quark associated Higgs boson production followed by decay to au lepton pair or WW.

Subdominant y_b dependent contribution

- Direct probe of Higgs couplings to the bottom quark (y_b) in production.
- * Challenging analysis experimentally with 4 final states ($e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$):
 - Larger background than in the ttH channel.
 - Complex contribution of y_t dependent diagrams and interference.

bbH associated production

Results:

- lacktriangle Dominant backgrounds: $tar{t}$, DY, and $j o t_h$ misidentification \Rightarrow require dedicated classes.
- * Fit to BDT score, inclusive measurement:
 - The different contributions to the signal are scaled by varying proportionally the y_b^2 , y_t^2 and $y_b y_t$ terms.

Channel	еµ	$\mathrm{e} au_h$	$\mu \tau_h$	$ au_h au_h$
BDT Categories	bbH(\rightarrow WW), bbH(\rightarrow $\tau\tau$)	DY, TT, bbH($ o au au$)	DY, TT, bbH($ o$ $ au au$)	DY+Higgs, TT, $j{ ightarrow} au_{h}$ fakes, $bbH({ ightarrow} au au)$

* Observed **obs (exp)** upper limits at **3.7 (6.1)** times the SM expectation.

CMS PAS HIG-23-003

H + b associated production

K-framework interpretation:

- * Scan performed on coupling modifiers k_t and k_b , with k_τ freely floating.
- * Combined with the results from STXS $H \to \tau\tau$ cross-section measurement (with veto on b-jets) to better constrain k_t .
- * The best fit point is $(k_t, k_b) = (-0.73, 1.58)$
- Limits on the couplings are compatible with the SM at 95% CL.

CMS PAS HIG-23-003

Run 2 crowning moving towards Run 3

Combination of H boson production XSections

- * Fiducial differential cross section, most model independent approach:
 - Fiducial regions defined by selections at generator level.
 - Each analysis performs measurements in different fiducial phase spaces.
 - Small coupling variations could lead to significant distortions of the shape of the differential observables.

* Three main parts:

Experimental sensitivity

 \Rightarrow Combination of spectra (fid. diff. σ_s extrapolated to the full phase space).

Model independence

- ⇒ K-framework based interpretation.
- ⇒ SMEFT based interpretation.

Full Run 2:

•
$$H \rightarrow \gamma \gamma$$

•
$$H \rightarrow ZZ^*$$

•
$$H \rightarrow WW^*$$

•
$$H \rightarrow \tau \tau$$

• $H \rightarrow \tau \tau$ (boosted)

Individual channels

Extrapolation to inclusive phase space

Combination

$$\mu = \frac{\sigma_i \times BF_i \times A_i}{\sigma_{SM} \times BF_{SM} \times A_{SM}}$$

$$\mu = \frac{\sigma}{\sigma_{SM}}$$

[1] Nature 607, 60–68 (2022) [2] PoS(ICHEP2022)509 [3] CMS-PAS-HIG-23-013

Combination of H boson production XSections

K framework interpretation:

- No significant deviations from the standard model are observed in any differential observable:
 - p_T^H , N_{jets} , $|y_H|$, $p_T^{j_1}$, m_{jj} , $|\Delta \eta_{jj}|$, τ_C^j .
- * The obtained $p_T(H)$ spectra are interpreted in the **k-framework**:
 - Constraints on the Higgs couplings using two models:
 - $\Rightarrow k_b k_c, p_T^H$ effects from light quarks.
 - $\Rightarrow k_b k_t c_g$, c_g gives direct H-gluon coupling.
 - Two different treatment for BRs in the fit:
 - \Rightarrow BRs(k).
 - \Rightarrow BRs freely floating.

CMS-PAS-HIG-23-013

Combination of H boson production XSections

EFT interpretation:

- Interpretation with a model agnostic EFT approach.
 - ⇒ No extrapolation to inclusive phase space needed!
- * Scan: fit a couple of Wilson coefficients and the others are fixed to the SM values.
 - Results consistent with SM and the same scan performed by Atlas in the $H\rightarrow\gamma\gamma$ channel.
- * Eigenvector decomposition:
 - Linear combinations of the original coefficients:
 - ⇒ indication of their constraining power.
 - Highest constraining power ones are then left floating.
 - Results are consistent with the SM.

CMS-PAS-HIG-23-013

Run 3 measurements

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ at 13.6 TeV:

HIG-24-013

- Inclusive and differential cross section measurements.
- ❖ Using \sim 35 fb⁻¹ from 2022 \rightarrow statistically limited.
- * Excellent validation of muon and electron performance in CMS in Run 3.
- Old strategies, new tools!
- More in Nico's talk.

$$H o ZZ$$

$$\sigma_{\text{fid}} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$$
 $H o \gamma \gamma$

$$\sigma_{\text{fid}} = 78 \pm 11 \text{ (stat.)}^{+6}_{-5} \text{ (syst.) fb}$$

HIG-23-01

Summary

- After more than 10 years of studying the properties of the Higgs Boson we're now targeting precision measurements of its properties.
- We've taken the most out of the Run 2 dataset:
 - Most coupling to 3rd generation fermions and vector bosons are know with < 10% uncertainty.
 - 2nd generation couplings are becoming accessible.
- * First measurements with Run 3 are being published and show good agreement with the SM.
- Much more to come! Looking forward to Run 3 and beyond.

Nature 607, 60-68 (2022)

Summary

- After more than 10 years of studying the properties of the Higgs Boson we're now targeting precision measurements of its properties.
- * We've taken the most out of the Run 2 dataset:
 - Most coupling to 3rd generation fermions and vector bosons are know with < 10% uncertainty.
 - 2nd generation couplings are becoming accessible.
- * First measurements with Run 3 are being published and show good agreement with the SM.
- Much more to come! Looking forward to Run 3 and beyond.

Nature 607, 60-68 (2022)

Back Up

Motivation

- * Direct search for $VH(H\to c\bar{c})$ arXiv:2205.05550: recent improvements, most stringent limit on $H\to c\bar{c}$.
 - Upper limit $\mu_{VH(H\to c\bar{c})} < 14 \ (7.6)$ observed (expected).
 - $1.1 < |k_c^{[*]}| < 5.5 \ (|k_c| < 3.4)$ observed (expected) at 95% C.L. [ATLAS: $|k_c| < 8.5(12.4)$ obs (exp) at 95% C.L.]
 - First observation of $Z \to c\bar{c}$ at a hadron collider (5.7 σ)
- * Boosted $ggH(H \rightarrow c\bar{c})$ HIG-21-012:
 - μ < 38 (45) observed (expected) at 95% C.L.

- $BR/BR_{SM} < 220 \ (170)$ observed (expected) at 95% C.L. [ATLAS: proj. for $3 \ ab^{-1} \ \mu < \mu_{SM}$ at 95% C.L.]
- * H differential measurements, variation of $p_T(H)$ as a function of k_c :
 - $-4.9 < k_c < 4.8 \ (-6.1 < k_c < 6.0)$ observed (expected) at 95% C.L.

H+c signal:

* Focusing on the signal simulation for H + c MC (not available in CMS up to now).

- * $\sigma(hc)$ does not scale trivially with y_c , tests were run with effective ggH coupling at LO.
- * Biggest contribution from the term that does not probe y_c , but small y_c proportional interference term (~10 times smaller than the y_c^2 dependent term), for sensitivity $O(10 \cdot SM)$ contribution of ~1%.
- * As first approximation one can generate signal probing y_c^2 and bkgs/interference in separate MC, orthogonality with H + jets MCs.

Focus on the y_c^2 term:

- * Simulated with MadGraph_aMC@NLO ([QCD] NLO) + Pythia8 Parton Shower.
- * Simulated using loop_sm model to have y_c in the \overline{MS} renormalisation scheme and include running of $y_c \to \overline{y}_c(\mu_R)$ and $m_c \to \overline{m}_c(\mu_R)$.
- Simulated using 4 Flavour Scheme (4FS), to have c-quarks in the initial state, and with FXFX-merging to better describe the kinematics.
 - To assess the 3FS vs 4FS theory uncertainty we compare samples produced using both methods: \Rightarrow FS uncertainty O(30%) of the yields in analysis categories, dominant w.r.t. Scales, PDFs, PS.

LO diagrams

BDT training:

- We use two Boosted Decision Trees (BDT) to separate the two main backgrounds:
 - * cH vs ggH (BDT1): cH (signal), ggH (background),
 - * cH vs CB (BDT2): cH (signal), $\gamma\gamma$ and $\gamma + jets$ (backgrounds).
- Separation is achieved exploiting the kinematics of the Photons and Jets in the event.
- * c-tag scores are NOT used in the training, so that ggH + c fraction is stable w.r.t BDT outputs. This limits the impacts of ggH + HF mismodelling.
- Training performed with the XGBoost package.

Categorisation:

- * The events are divided into 9 categories for each year, according to the scores of BDT1 and BDT2.
- The category boundaries are simultaneously optimised using MCs:
 - To reduce the correlation between the cH and ggH processes,
 - To maximise the sensitivity.
- Boundaries are optimised separately for each year.
- * Migration uncertainties and data/MC agreements are extracted from $Z \rightarrow e^+e^-$ events.

Higgs processes modelling:

- * The statistical analysis is performed with the $H\rightarrow\gamma\gamma$ FlashggFinalFit framework.
- The signal and the Higgs backgrounds are modelled with MC simulations.
- Mass shapes are:
 - Parametrised with sum of multiple gaussian functions.
 - The parametrisation is derived independently for each process X category X vtx scenario.
 - Yields are extracted from simulation.

Continuous background modelling:

- The continuous background is modelled with a data driven approach.
- The functional form and normalisation are extracted by fitting the data.
- An F-test is performed to chose from different orders and families of analytical functions.
- * A discrete nuisance parameter is used to extract an uncertainty due to the choice of one functional form over the others.
- Normalisation is extracted from data.

H + b associated production

- Cross section components coming from the different processes.
- * Inclusive measurement: The different contributions to the signal are scaled by varying proportionally the y_b^2 , y_t^2 and $y_b y_t$ terms.
 - Infer limits on the Higgs coupling structure \rightarrow done by introducing the coupling scaling parameters k_t and k_b , and performing a likelihood ratio scan over the $k_t k_b$ parameter space.
 - b-quark contribution to the quark loop in the y_t^2 process, are accounted for by scaling it by $1.04k_t^2 0.04k_bk_t + 0.002k_b^2$, while the y_b^2 contribution and the interference term are scaled by k_b^2 and k_bk_t respectively.

term	σ(pb)
\mathbf{y}_{t}^{2}	1.040 (+0.468 -0.489)
$\mathbf{y}_{\mathrm{b}}^{2}$	0.482 (+0.048 -0.070)
$y_b y_t$	- 0.033 (+0.007 -0.008)

H + b associated production

- The fit is performed on the BDT score distributions for both signal and background categories.
- Lower-score regions are still dominated by background processes,
- * Higher BDT score regions show an increasing contribution from bbH process in final states with τ leptons or W bosons.
- * There must be a $e\mu$, $e\tau_h$, $\mu\tau_h$, or $\tau_h\tau_h$ pair with opposite electric charge.
- No additional electrons or muons may be present in the event.
- * The leptons and τ_h candidates must be separated by $\Delta R > 0.5(0.3)$ in the $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ ($e\mu$) channels.
- There must be at least one, and no more than two, b-tagged jet.

Variable		$e\tau_h$	$\mu \tau_h$	$\tau_h \tau_h$
$m_{ au au}$		✓	✓	✓
m_{vis}		✓	✓	✓
Collinear mass		✓	✓	×
D_{ζ}		✓	✓	×
$\Delta\eta$ between lepton and $ au_{ m h}$		✓	✓	×
Total transverse mass		×	×	×
Di- $ au$ $p_{ m T}$		✓	✓	\checkmark
Electron $p_{\rm T}$		×	×	×
Muon $p_{\rm T}$		×	×	×
p_{T} of leading $ au_{\mathrm{h}}$		×	×	✓
p_{T} of trailing τ_{h}		×	×	✓
Transverse mass		✓	✓	×
Number of b-jets		×	×	\checkmark
$p_{\rm T}$ of leading b-jet		✓	✓	\checkmark
$p_{\rm T}$ of trailing b-jet		✓	✓	×
B-tag score for leading b-jet		✓	✓	✓
$\Delta \eta$ between di- τ $p_{\rm T}$ and leading b-jet		✓	✓	×
B-tag score for trailing b-jet		✓	✓	\checkmark
Number of jets		×	×	✓
$p_{\rm T}$ of leading jet		×	×	✓
$p_{\rm T}$ of trailing jet		×	×	\checkmark
Di-jet invariant mass		×	×	✓
Di-jet Δη		×	×	✓
$p_{ m T}^{ m miss}$		×	×	✓

- One or two WCs left free to float, others fixed to SM value.
- Fit:
 - $\Rightarrow c_{HG}, \tilde{c}_{HG},$
 - $\Rightarrow c_{HB}, \tilde{c}_{HB},$
 - $\Rightarrow c_{HW}, \tilde{c}_{HW},$
 - $\Rightarrow c_{HWB}, \tilde{c}_{HWB}$
- * Set others to 0.
- * c_{HG} , \tilde{c}_{HG} mostly affect ggH production.
- * c_{HWB}, c_{HW}, c_{B} and their CP odd partners mostly affect VH, VBF production and the Higgs decays.

- Same procedure repeated for a wider set of coefficients.
- Derive lower bounds on the energy as a function of different operators for different coupling choices.

Principal Components Analysis:

- * When running a fit floating all the WCs, we can't fit all directions in SMEFT basis simultaneously.
- Use PCA on the information matrix to find constrained direction in the parameter space.
- Obtain linear combination of SMEFT Wilson coefficient.
- Fit constrained directions, fix unconstrained directions to 0.
- In this case this assumption is lead by data itself.

From M. Galli

From M. Galli