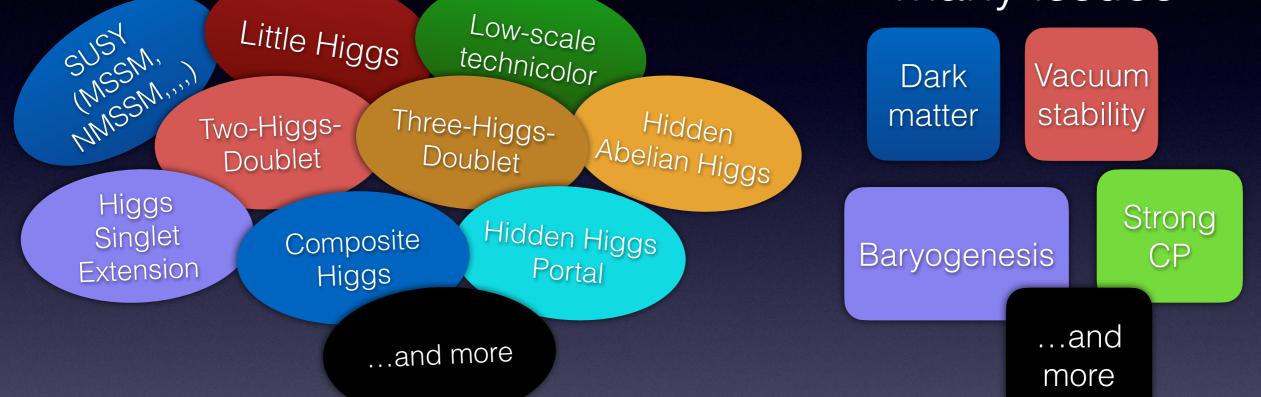
Search for BSM Scalar Bosons at ATLAS

Erich W. Varnes University of Arizona for the ATLAS Collaboration

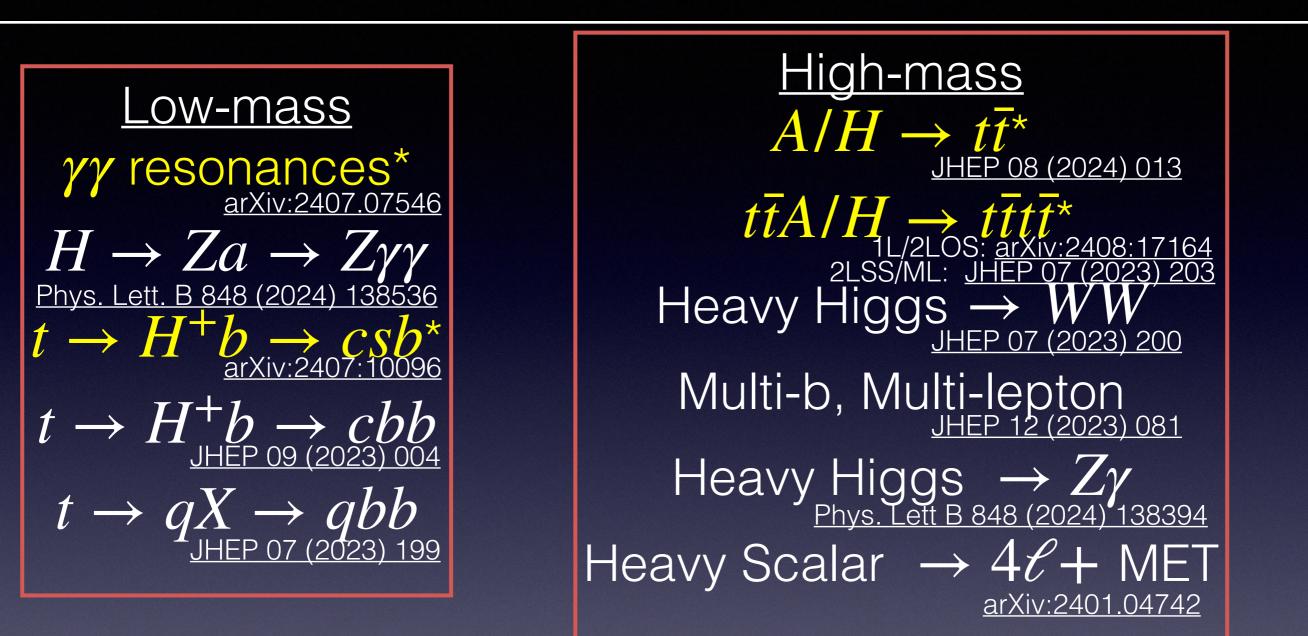
Scalars in the SM and Beyond


- What we know:
 - the SM requires a complex doublet scalar field
 - + leading to one massive scalar boson (the Higgs)
 - we have observed one scalar boson at 125 GeV
 - the properties of that boson are consistent with SM predictions (so far)
- What we don't know:
 - what (if anything beyond random chance) stabilizes the Higgs mass
 - if there are scalar fields beyond the minimum prescribed in the SM

Scalars in the SM and Beyond

• What else might there be?

Many models...


... that could explain many issues

Additional scalars that might be neutral, charged, light, heavy, CP-even (H), CP-odd (A), etc.

A broad search program is required

BSM Scalar Searches at ATLAS

*recent results, highlighted in this talk All searches discussed in this talk use the Run II data set [2015-2018, 140 fb⁻¹, $\sqrt{s} = 13$ TeV]

Low-mass $\gamma\gamma$ search

Unique motivations

Light scalar partner to dark matter could explain excess of gamma rays from galactic center and AMS cosmic-ray \bar{p} spectrum

Spin-0 axion with weak coupling to Higgs could account for baryon asymmetry Searches conducted for both generic scalar (narrow and finitewidth) and lowmass Higgs

Experimental complication: conversions

20 - 65% of photons convert in the inner detector (depending on η)

Converted and unconverted photons are subject to different backgrounds

Solution

Divide diphoton data into three subsets, based on the number of converted photons (UU, UC, CC)

Low-mass $\gamma\gamma$

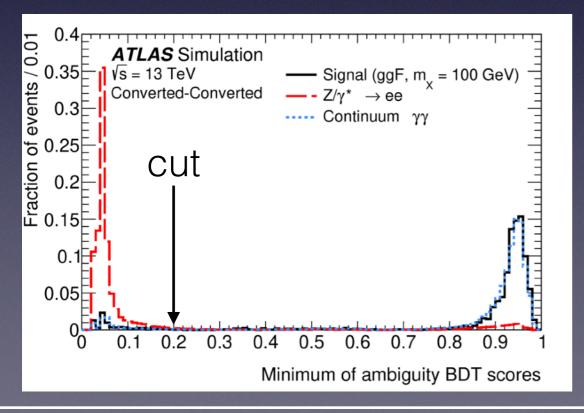
• Search in range $62 < m_{\gamma\gamma} < 120$ GeV

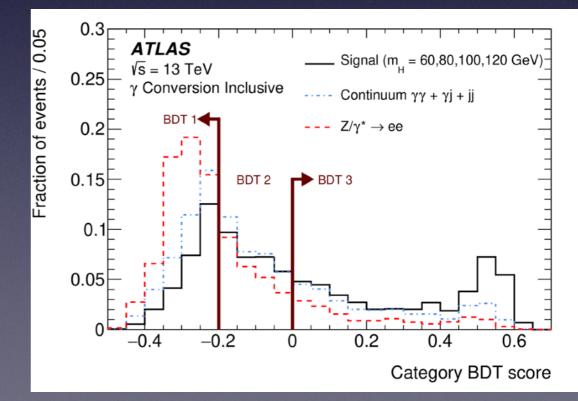
above trigger turn-on effects below SM <u>Higgs</u> mass

misidentified as γ

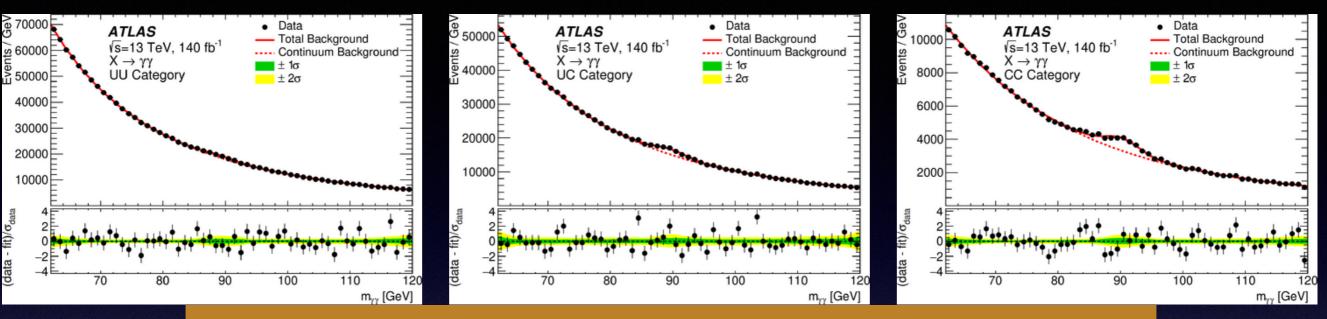
Yields determined

by fitting $m_{\gamma\gamma}$

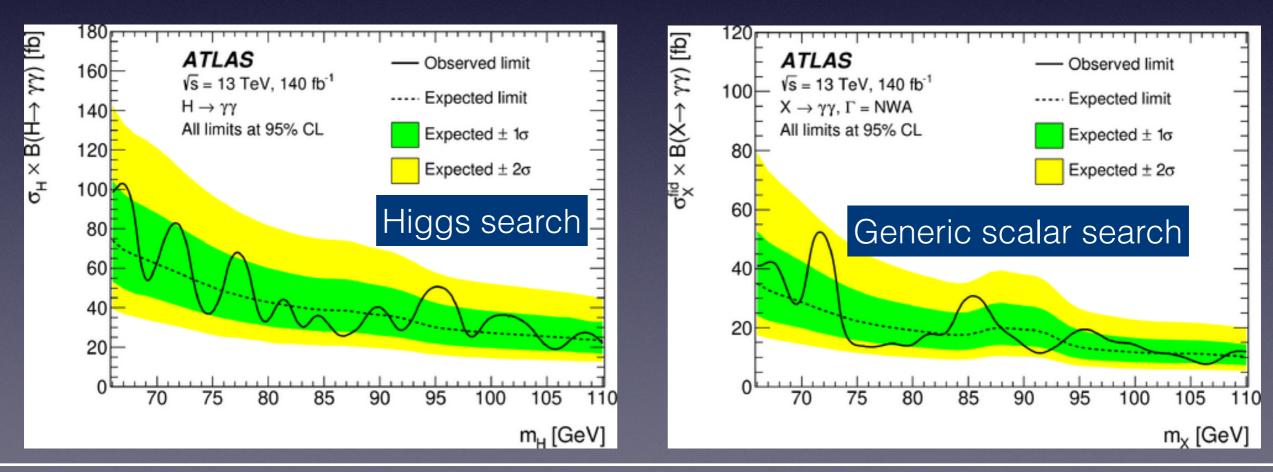

distributions


• Backgrounds: continuum $\gamma\gamma$, γj , jj, $Z \rightarrow ee$

BDT used to distinguish converted γs from prompt electrons

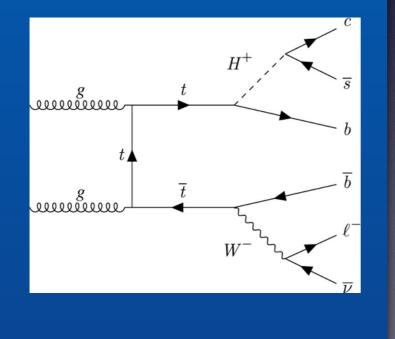

dominant

Second BDT used for S/B discrimination in *H* search



Low-mass $\gamma\gamma$ results

No significant deviations from background



 $t \to H^+ b \to csb$

Motivations

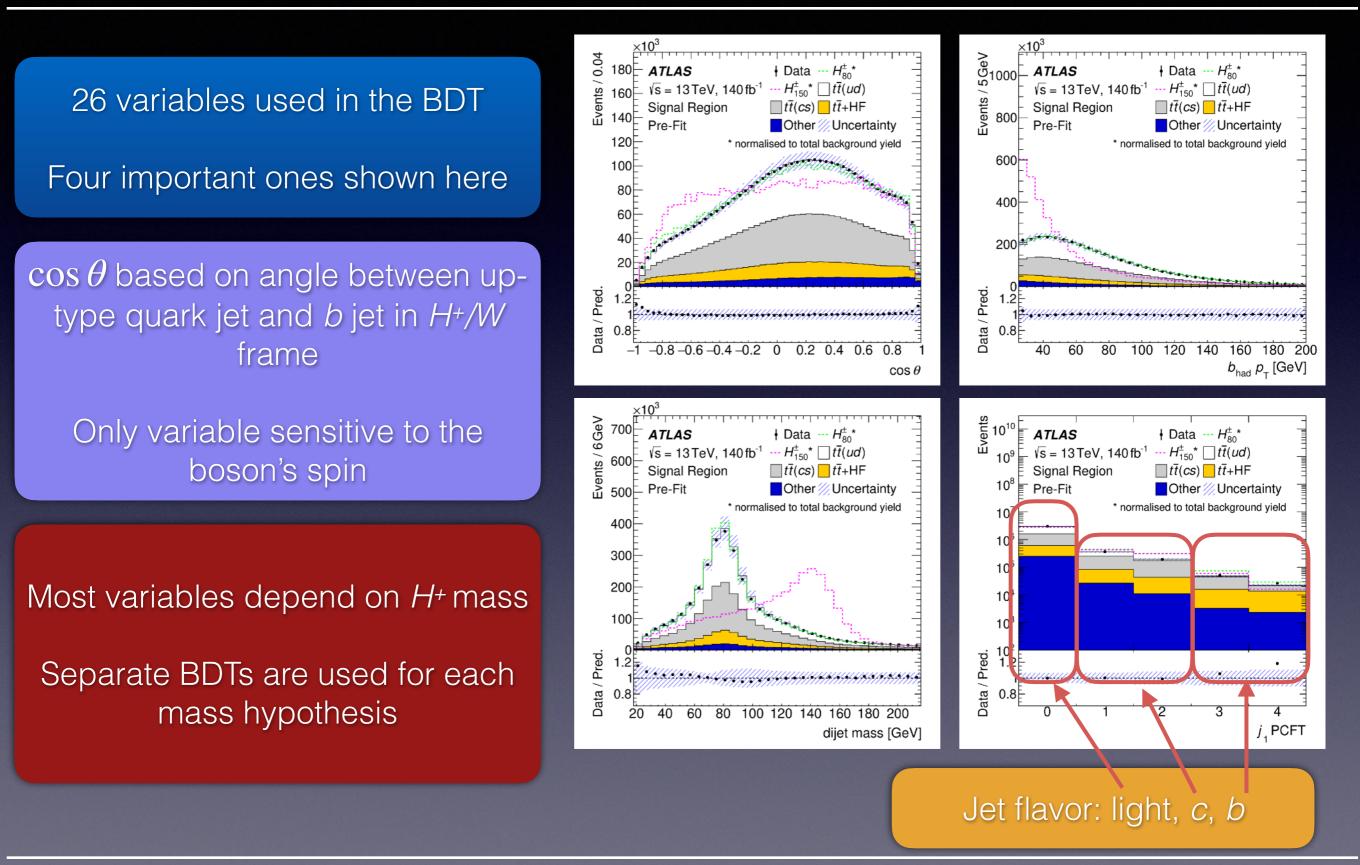
In many 2HDM models, leading source of H^+ production is via $t\bar{t}$ events (if $m_{H^+} < m_t$)

and leading decay mode is to *cs:*

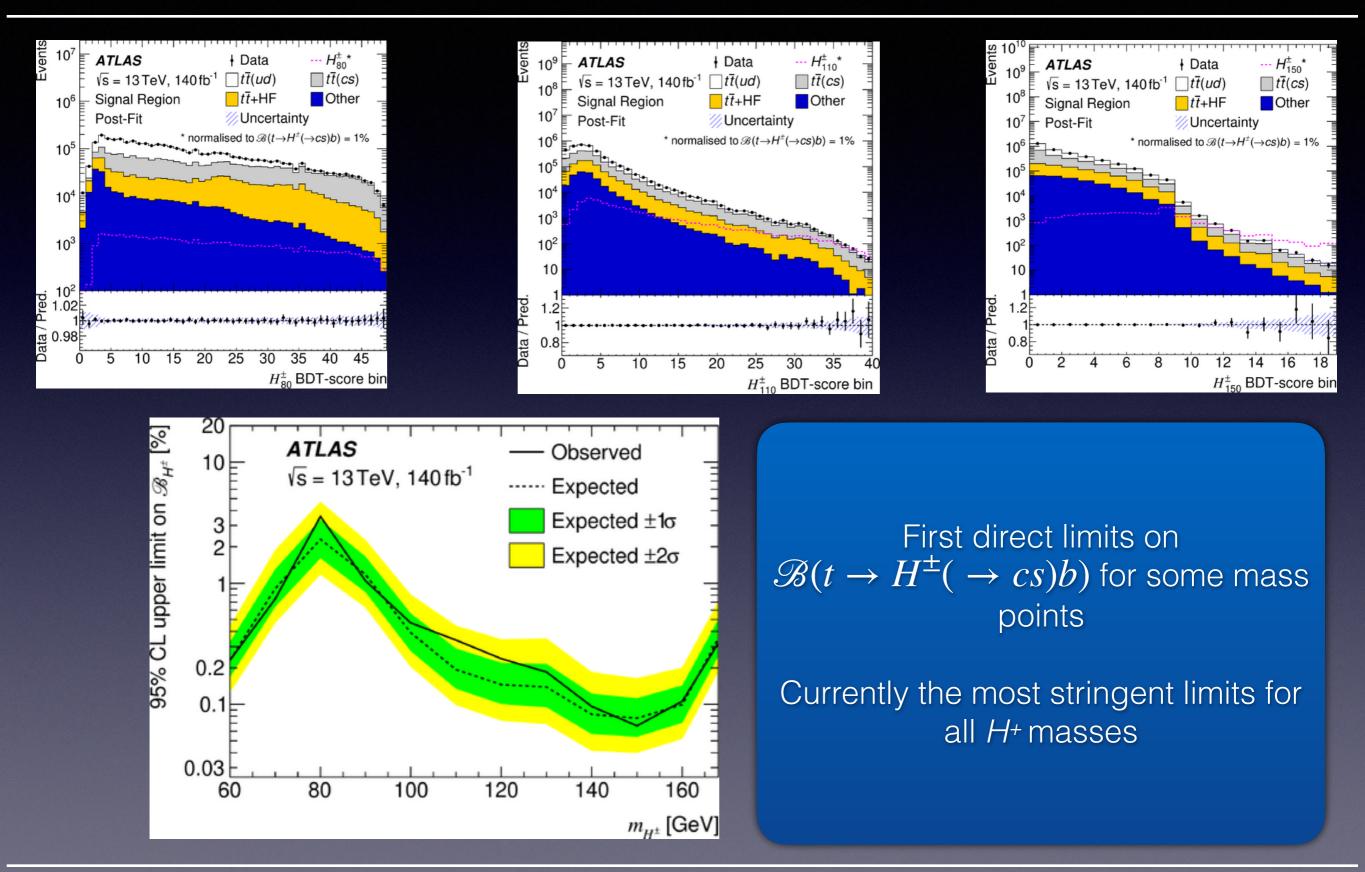
S/B discrimination

Main background is $t\bar{t}$ +jets Distinguish from signal by:

Jet flavor tagging


Multivariate tagger used, with both *b*-tag and *c*-tag outputs. Based on values, jet is classified as *b*, *c* or light

Kinematic variables

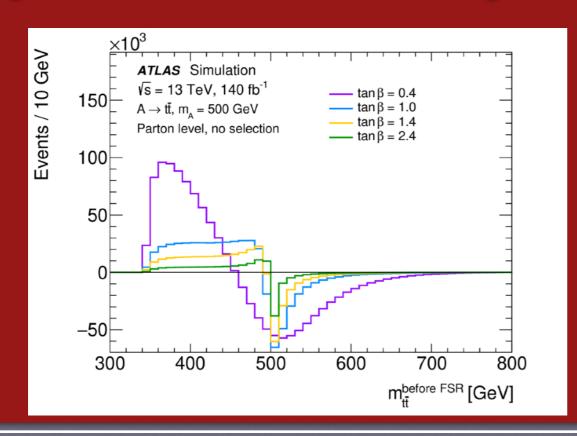

 $t\bar{t}$ event is reconstructed, and most likely assignment of reconstructed to true jets determined, allowing kinematic variables to be computed

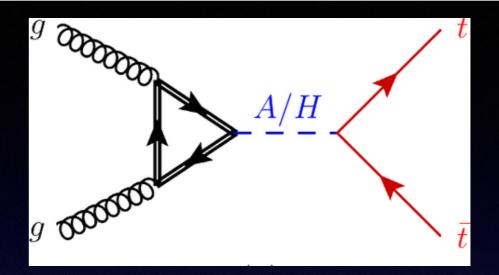
The above are combined in a BDT

 $t \to H^+b \to csb$

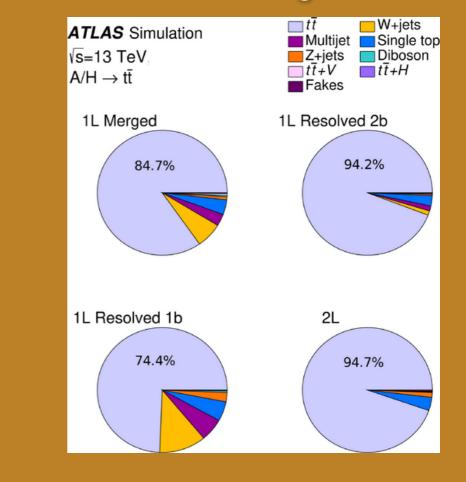
$t \rightarrow H^+b \rightarrow csb$ results

$A/H \rightarrow t\bar{t}$ (1 and 2 lepton)

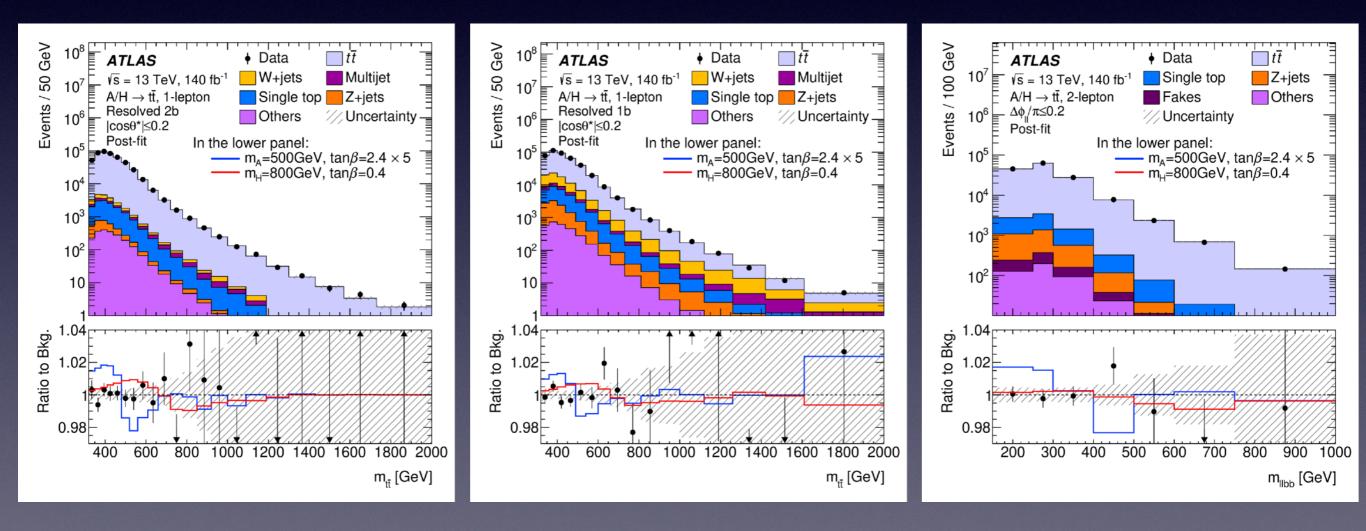

<u>Motivation</u>

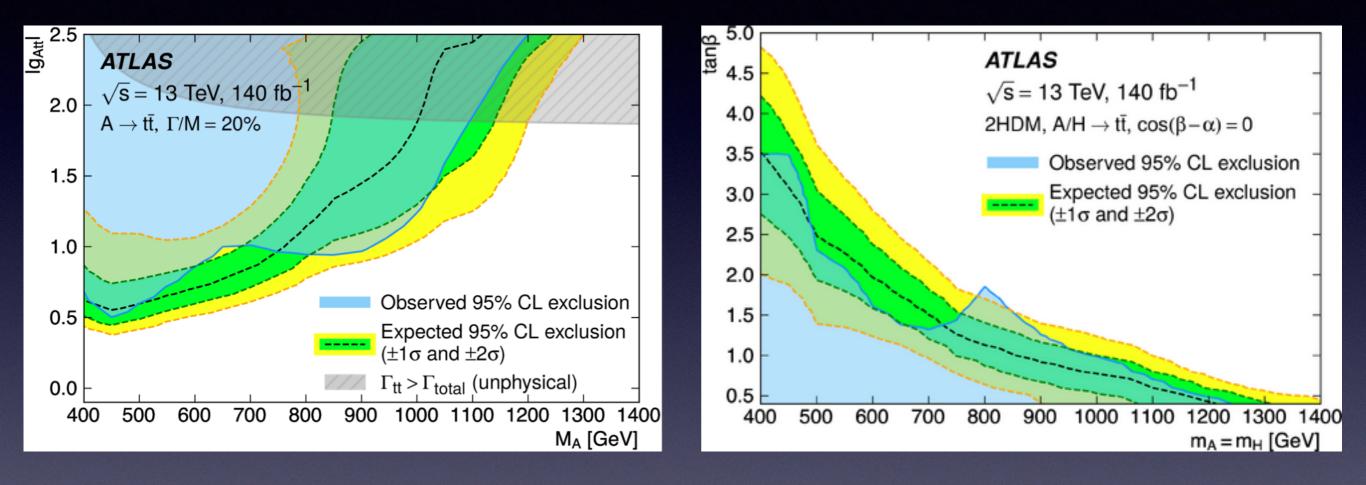

 $t\bar{t}$ is dominant A/H decay mode at low $tan\beta$

<u>Challenges</u>


Large SM $t\bar{t}$ background

Significant interference with SM diagrams

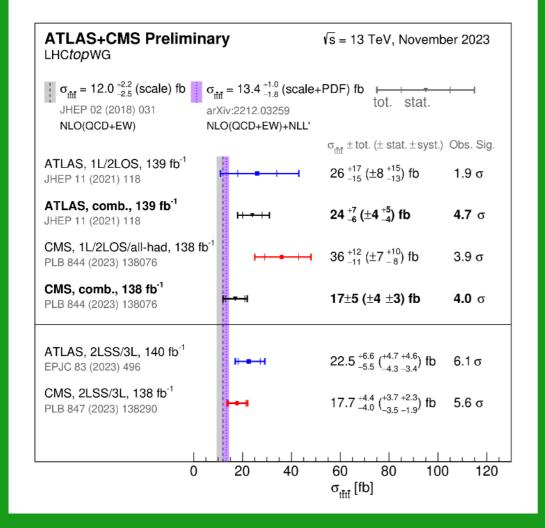

Search categories

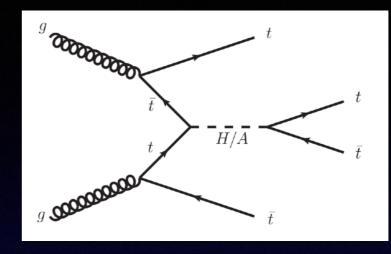

$A/H \rightarrow t\bar{t}$ (1 and 2 lepton) results

Examples of data/background comparisons

No significant deviations, leading to model-dependent limits

$A/H \rightarrow t\bar{t}$ (1 and 2 lepton) results




$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

 $A/H \rightarrow t\bar{t}$ also accessible in $t\bar{t}t\bar{t}$ events

Interference effects are much smaller

 $t\bar{t}t\bar{t}$ recently observed, and measured cross section leaves room for BSM contributions

Analysis topologies: Single lepton or two opposite-sign leptons (1L/2LOS)

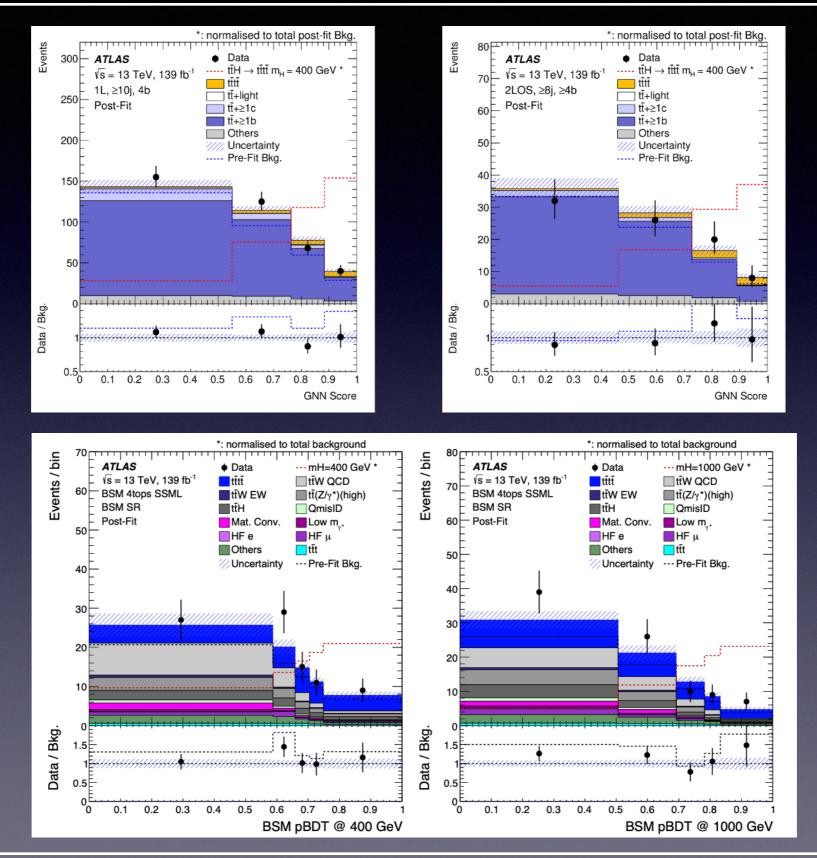
Large branching fraction, but also large background from $t\overline{t}$ +jets

Two same-sign leptons or ≥ 3 leptons (2LSS/ML)

Smaller branching fraction, but much smaller backgrounds (dominant: $t\overline{t} + (W, Z, H)$)

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

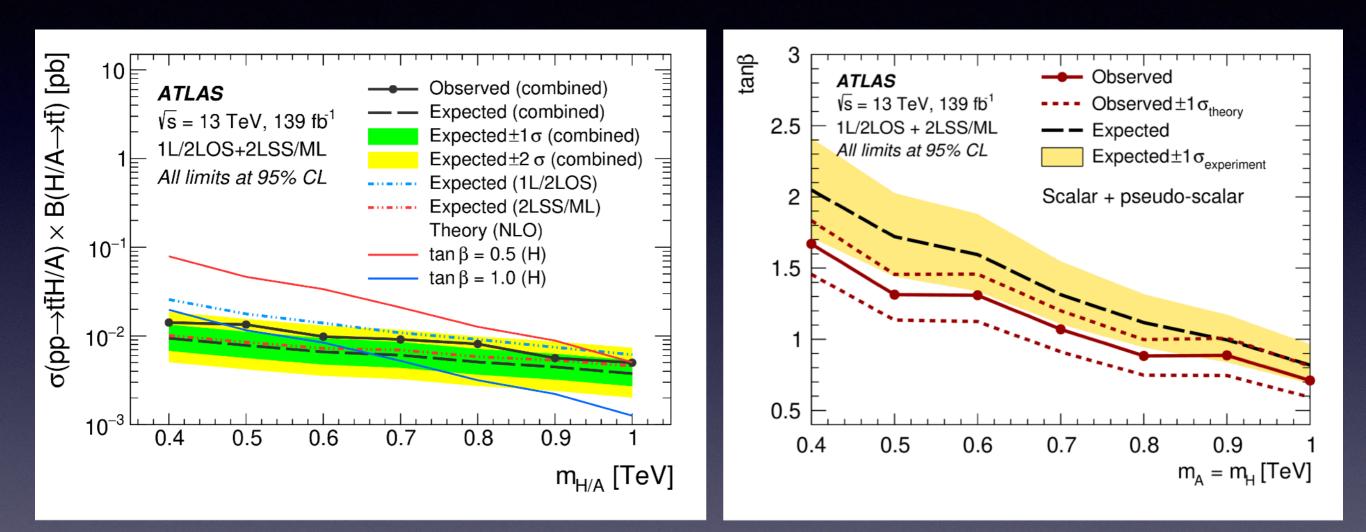
1L/2LOS analysis regions ≥5b Signal regions Control 4b regions 3bH Flavour rescaling 3bV Validation regions 1L3bL 2b NN kinematic correction 7j 8j 9j ≥10j Signal regions ≥4b Control regions 3bH Flavour 2LOS3bV Validation regions rescaling 3bL 2b NN kinematic correction 5i 6i ≥8i 7i


GNN used for S/B discrimination

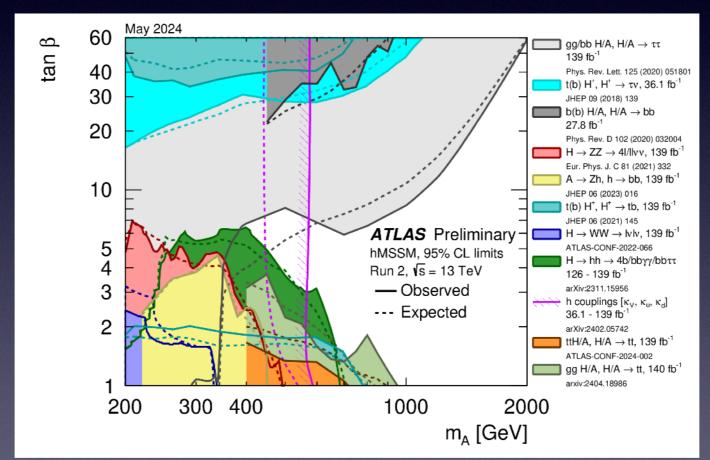
Name	$N_{b}^{60\%}$	$N_b^{70\%}$	$N_{b}^{85\%}$
2b	_	= 2	_
3bL	≤ 2	= 3	_
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	_	≥ 4	_
4b (1L)	_	= 4	_
≥5b (1L)	_	≥ 5	_

2LSS/3L analysis uses a single signal region with: \geq 6 jets (\geq 2 of them *b*-tagged), H_T > 500 GeV, and BDT trained for SM > 0.55

Separate BDT is trained to discriminate A/H production from SM $t\bar{t}t\bar{t}$


$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ results

14th Higgs Hunting Workshop, Orsay/Paris September 24, 2024


16

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ results

Summary

- The ATLAS search program for additional scalar bosons spans a wide range of masses, couplings, and signatures
 - no evidence uncovered so far, leading to exclusions of some models/parameters

Still plenty of reasons to look for additional scalars, and many places left to search

Backup

Low-mass yy Uncertainties

Source	Uncertainty [%]	Remarks
Signal yield		
Luminosity	±0.83	
Electron-photon ambiguity BDT efficiency	± 0.7	
Trigger efficiency	$\pm 1.0 - 1.5$	m_X -dependent
Photon identification efficiency	$\pm 1.8 - 3.0$	m_X -dependent
Photon isolation efficiency	$\pm 1.6 - 2.4$	m_X -dependent
Photon energy scale	$\pm 0.1 - 0.3$	m_X -dependent
Photon energy resolution	$\pm 0.1 - 0.15$	m_X -dependent
Pile-up	$\pm 1.6 - 5.0$	m_X -dependent
Production mode	$\pm 4.3 - 29$	m_X -dependent (model-independent only)
Signal modelling		
Photon energy scale	$\pm 0.3 - 0.5$	m_X - and category–dependent
Photon energy resolution	$\pm 3 - 10$	m_X - and category-dependent
Migration between categories		
Material	-2.0/+1.0/+4.1	category-dependent
DY background modelling		
Peak position	$\pm 0.1 - 0.2$	category-dependent
Peak width	$\pm 1.9 - 3.5$	category-dependent
Normalisation	$\pm 7.1 - 13$	category-dependent
Continuum background (model-dependent)		
Spurious signal, NWA	9 - 171 events, $(10% - 50%)$	m_X - and category-dependent
Continuum background (model-independent)		
Spurious signal, NWA	37 - 310 events, $(20% - 50%)$	m_X - and category-dependent
Spurious signal, $\Gamma_X/m_X = 1.0\%$	65-539 events, $(20%-50%)$	m_X - and category-dependent
Spurious signal, $\Gamma_X/m_X = 2.5\%$	92-879 events, (20%-50%)	m_X - and category-dependent

$t \rightarrow H^+b \rightarrow csb$ BDT inputs

Variable type	Variable name	Definition			
	Top-quark kinematic variables				
	$j_1 p_{\mathrm{T}}$	$p_{\rm T}$ of j_1 -labelled jet			
	$j_2 p_{\mathrm{T}}$	$p_{\rm T}$ of j_2 -labelled jet			
	$b_{ m had} p_{ m T}$	p_{T} of b_{had} -jet			
<i>t</i>	$b_{\rm had}^{t_{\rm had}-{\rm rest}} p$	Momentum of b_{had} -jet in t_{had} rest frame			
$t_{ m had}$	dijet mass	Invariant mass of j_1+j_2 jets			
	(j_1+b_{had}) mass	Invariant mass of $j_1 + b_{had}$ jets			
	$(j_2+b_{\rm had})$ mass	Invariant mass of j_2+b_{had} jets			
	$\cos heta$	Boson spin sensitive variable			
	$b_{ m lep} \ p_{ m T}$	$p_{\rm T}$ of $b_{\rm lep}$ -jet			
+	Lepton $p_{\rm T}$	$p_{\rm T}$ of reconstructed lepton			
$t_{ m lep}$	W mass	Invariant mass of reconstructed W boson			
	$t_{\rm lep}$ mass	Invariant mass of reconstructed $t_{\rm lep}$			
	$t_{ m lep} \; p_{ m T}$	$p_{\rm T}$ of reconstructed $t_{\rm lep}$			
$t\overline{t}$ -system	$\Delta R(b_{\rm lep}, b_{\rm had})$	ΔR between the b_{lep} -jet and b_{had} -jet			
tt mass		Invariant mass of $t_{\rm had} + t_{\rm lep}$			
	Ever	nt variables			
	$N_{ m jets}$	Number of jets in the event			
Event level	S_{T}	Scalar $p_{\rm T}$ sum of all calibrated objects			
	$\overline{P}_{t\overline{t}}$	Normalised probability of correct jet labelling			
Flavour-tagging variables					
	j_1 PCFT	PCFT score of j_1			
Flavour-tagging score	j_2 PCFT	PCFT score of j_2			
r lavour-tagging score	$b_{\rm had} \ {\rm PCFT}$	PCFT score of b_{had} -jet			
	$b_{\text{lep}} \text{ PCFT}$	PCFT score of b_{lep} -jet			
	$N_{c\text{-tagLo}}$	Number of jets passing loose c -tag WP (b -veto)			
Number of tags	$N_{c\text{-tagTi}}$	Number of jets passing tight c -tag WP (b -veto)			
rumber of tags	$N_{b-\mathrm{tag70}}$	Number of jets passing 70% <i>b</i> -tag WP			
	$N_{b-\mathrm{tag}60}$	Number of jets passing 60% <i>b</i> -tag WP			

$t \rightarrow H^+b \rightarrow csb$ Uncertainties

H_{80}^{\pm}		H_{150}^{\pm}	
Category	Relative contribution	Category	Relative contribution
Data statistical	6%	Data statistical	38%
Systematic	99.8%	Systematic	93%
Flavour-tagging	64%	$t\overline{t}$ modelling	72%
MC statistical	64%	MC statistical	35%
$t\overline{t}$ modelling	50%	Weak-boson & MJ modelling	27%
$\mu_{t \overline{t}} \ \& \ f_{ m LF}$	21%	Single-top-quark modelling	25%
Jet	19%	$\mu_{t\overline{t}} \ \& \ f_{ m LF}$	24%
Single-top-quark modelling	16%	Jet	23%
Luminosity & pileup	15%	Flavour-tagging	20%
Weak-boson & MJ modelling	12%	Lepton & $E_{\rm T}^{\rm miss}$	8%
Signal modelling	8%	Luminosity & pileup	7~%
Lepton & $E_{\rm T}^{\rm miss}$	7%	Signal modelling	5~%

$A/H \rightarrow t\bar{t}$ (1 and 2 lepton) Uncertainties

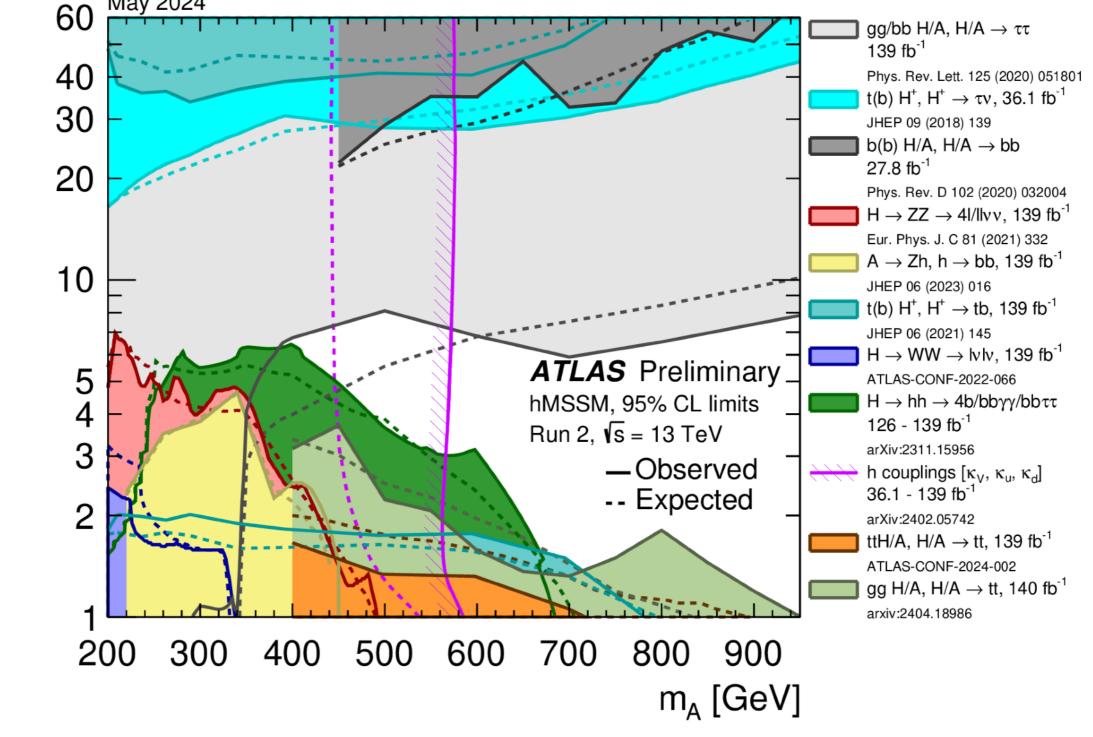
Uncertainty component	Fractional contribution [%]		
	$m_A = 800 \text{ GeV}$ $m_A = m_H = 500$		
	$\tan\beta = 0.4$	$\tan\beta = 2.0$	
Experimental	30	42	
Small-R jets (JER, JES)	22	29	
Large-VR jets	11	20	
Flavour tagging	13	17	
Leptons	4	5	
Other ($E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14	
Modelling: SM $t\bar{t}$ and signal	91	79	
tī NNLO	49	28	
tī lineshape	27	29	
$t\bar{t}$ ME-PS $(p_{\rm T}^{\rm hard})$	36	30	
tī ME-PS (h _{damp})	41	25	
tī ISR& FSR	9	13	
tī PS	29	41	
tī cross-section	21	31	
tī Scales & PDF	21	16	
m _t	6	4	
Signal	19	9	
Modelling: other	41	16	
W+jets	11	8	
Z+jets	1	2	
Multijet	27	10	
Fakes	<1	1	
Other bkg.	29	10	
MC statistics	18	26	
Total systematic uncertainty	±100	±100	
Total statistical uncertainty	< 1	< 1	

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ GNN variables (1L/2LOS)

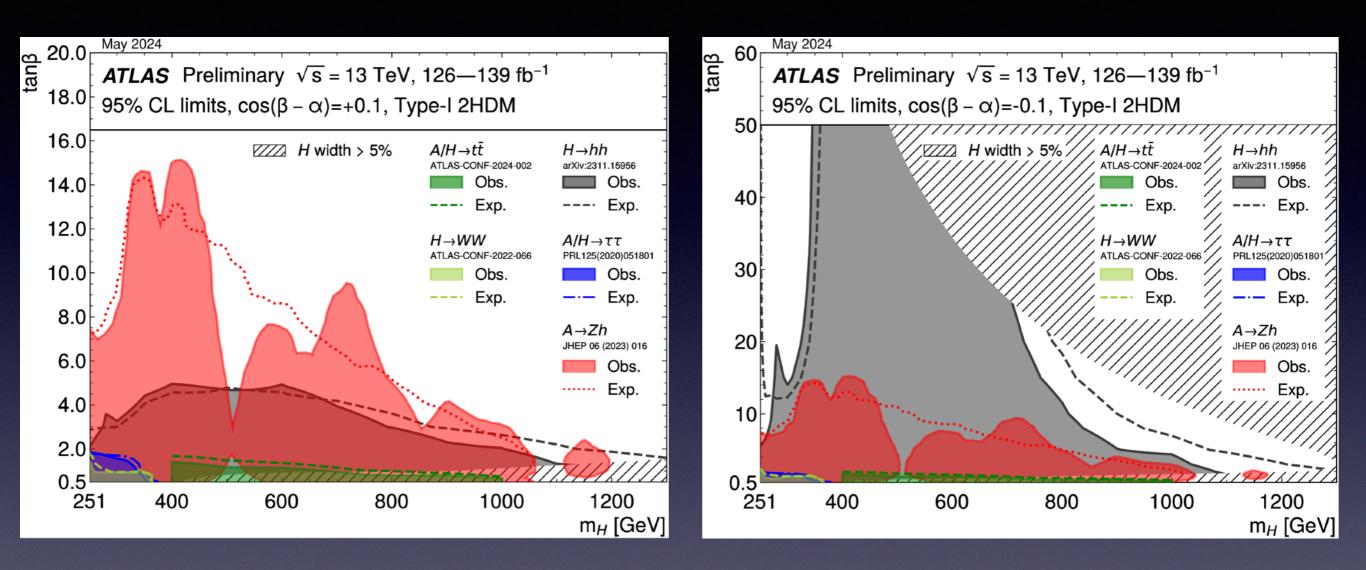
Variable	Description
$\sum_{i \in [1,6]} \operatorname{pcb}_i$	Sum of the pcb scores of the six jets with the highest scores
H_{T}	$p_{\rm T}$ sum of all reconstructed leptons and jets
N _{jets}	Number of jets
$H_{\mathrm{T}}^{\mathrm{ratio}}$	$p_{\rm T}$ sum of the four leading jets in $p_{\rm T}$ divided by the $p_{\rm T}$ sum of the remaining jets
$dR_{ii}^{\text{avg.}}$	Average ΔR across all jet pairs
$dR_{jj}^{ m avg.}$ $m_{ m T}^W$	W boson transverse mass calculated using the lepton four-momenta and $E_{\rm T}^{\rm miss}$ (1L only)
$\Delta R_{bb}^{\min.}$	Minimum ΔR between any pair of jets <i>b</i> -tagged at the 70% OP
$\Delta R_{\ell b}^{\min.}$	Minimum ΔR between any pair of lepton and jet <i>b</i> -tagged at the 70% OP
$m_{bbb}^{\mathrm{avg.}}$	Average invariant mass of all triplets of jets b-tagged at the 70% OP
$m_{jjj}^{\text{avg.}}$	Average invariant mass of all triplets of jets with an angular separation of $\Delta R < 3$
$\sum d_{12}$	Sum of the first k_t splitting scale d_{12} over all large-R jets
$\sum d_{23}$	Sum of the second k_t splitting scale d_{23} over all large-R jets
N _{LR-jets}	Number of large- <i>R</i> jets with a mass greater than 100 GeV
Centrality	$\sum_i p_T^i / \sum_i E_i$ where the sums are performed over all reconstructed jets and leptons
$m_{\ell\ell}$	Invariant mass of the two leptons (2LOS only)

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ Uncertainties (1L/2LOS)

Uncertainty source	$\Delta \sigma_{t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}}$ [fb]					
	$m_{H/A}$ =400 GeV		$m_{H/A}$ =700 GeV		$m_{H/A}$ =1000 GeV	
Signal Modelling						
BSM tītī modelling	< 1		+0.1	< 0.1	< 0.1	
Background Modelling						
$t\bar{t}+\geq 1b$ modelling	+11	-10	+3.7	-3.4	+1.9	-1.7
SM tītī modelling	+3	-3	+2.1	-2.1	+0.9	-0.9
tī+jets reweighting	+3	-3	+1.0	-1.0	+0.5	-0.5
$t\bar{t}+\geq 1c$ modelling	+2	-2	+0.9	-0.8	+0.4	-0.4
tī+light modelling	+1 -1		+0.2	-0.2	< 0.1	
Other background modelling		< 1	+0.4	-0.4	+0.2	-0.2
Experimental						
Jet energy scale and resolution	+4	-2	+1.3	-0.8	+0.5	-0.3
MC statistical uncertainties	+2	-3	+0.6	-0.7	+0.4	-0.4
b-tagging efficiency	+2	-1	+0.7	-0.4	+0.4	-0.4
Other uncertainties		< 1	+0.3	-0.5	+0.1	-0.2
Luminosity	< 1		+0.3	-0.1	< 0.1	
Total systematic uncertainty	+13	-12	+4.8	-4.6	+2.5	-2.4
Statistical uncertainty	+6	-6	+3.3	-3.2	+2.3	-2.2
Total uncertainty	+14	-13	+5.6	-5.4	+3.2	-3.0


$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ Uncertainties (2LSS/ML)

Uncertainty source	Δμ				
Signal modelling					
$t\bar{t}H(\rightarrow t\bar{t})$	+0.01	-0.00			
Background modelling					
tīttī	+0.17	-0.17			
$t\bar{t}W$	+0.07	-0.07			
tīt	+0.06	-0.05			
Non-prompt leptons	+0.05	-0.05			
$t\bar{t}Z$	+0.05	-0.05			
tĪH	+0.03	-0.03			
Other background	+0.03	-0.02			
Instrumental					
Jet uncertainties	+0.12	-0.09			
Jet flavour tagging (<i>b</i> -jets)	+0.05	-0.04			
Jet flavour tagging (light-flavour jets)	+0.04	-0.03			
Luminosity	+0.03	-0.02			
Jet flavour tagging (c-jets)	+0.02	-0.02			
Other experimental uncertainties	+0.02	-0.02			
MC statistical uncertainty					
Simulation sample size	+0.04	-0.04			
Total systematic uncertainty	+0.31	-0.28			
Statistical					
HF, Mat. Conv., and Low $m_{\gamma*}$ normalisation	+0.05	-0.04			
$t\bar{t}W$ QCD normalisation	+0.05	-0.04			
Total statistical uncertainty	+0.35	-0.32			
Total uncertainty	+0.46	-0.41			


Additional Exclusion Plots

May 2024

Additional Exclusion Plots

