

Searches for Additional Scalar Bosons with CMS

Efe Yazgan on behalf of the CMS Collaboration

Are there additional Higgs-like States?

Many extensions of the SM involve additional Higgs bosons.

To explain baryogenesis, dark matter, hierarchy problem, ...

- Such scalar particles at mass scales < 1 TeV within the reach of the LHC.
- Many searches complemented by model-dependent interpretations
 - 2HDM/MSSM: 5 physical Higgs bosons (h, A, H, H^{\pm})

• ...

- Generalized 2HDM (g2HDM): 2HDM w/o Z_2 symmetry
- 2HDM+Scalar Singlet/NMSSM: 7 physical Higgs bosons: $h_{1,2,3}, a_{1,2}, H^{\pm}$

Selected recent CMS Measurements $tH \rightarrow tt\bar{c}, tt\bar{u}$ [PLB850(2024)138478] g2HDM $A \rightarrow Zh_{125} \rightarrow (\ell'\ell')(\tau \tau)$ [CMS-PAS-HIG-22-004]MSSM $X \rightarrow ZZ \rightarrow 4\ell'$ [CMS-PAS-HIG-24-002]Model-independent $X \rightarrow Yh_{125} \rightarrow 4b$ [CMS-PAS-HIG-20-012]NMMSM $A/H \rightarrow t\bar{t}$ [CMS-PAS-HIG-22-013]2HDM, $t\bar{t}$ bound state

 $X \rightarrow HH/YH$ covered by Élise Jourd'Huy $H \rightarrow aa$ by Chen Zhou & Lakshmi Priya Nair $A/H \rightarrow t\bar{t}$ by Samuel Baxter

A/H with FCNC based on g2HDM

b g2HDM: 2HDM w/o Z_2 symmetry can drive electroweak baryogenesis w/ sub-TeV extra Higgs bosons [Hou & Kikuchi EPL 123 (2018) 11001].

Alignment $(h \rightarrow h_{125})$ in g2HDM if **extra Yukawa couplings** (ρ) are $\mathcal{O}(1)$.

No HVV, AVV interactions.

No FCNC for h but allowed for H and A.

Many parameters and extra processes but focus on ρ_{tu}/ρ_{tc} -induced **same-sign top quark** final states: $qg \rightarrow tH \rightarrow tt\bar{q} \rightarrow (\ell^+ b\nu)(\ell^+ b\nu)\bar{q}$

BDTs trained independently for different data-taking periods, mass, w/ and w/o A-H interference and coupling ($\rho_{tu} = 0.4$ and $\rho_{tc} = 0.4$) hypothesis.

4 bins of BDT score in each decay mode simultaneously fit to extract limits for each signal mass-coupling hypothesis.

A/H with FCNC based on g2HDM

Observed (expected) mass limit [GeV]				
	without	with	with	
	interference	interference	interference	
	$m_{\rm A}$ or $m_{\rm H}$	$m_{\rm A}$	$m_{ m H}$	
$ ho_{tu}$				
0.4	920 (920)	1000 (1000)	950 (950)	
1.0	1000 (1000)	1000 (1000)	950 (950)	
ρ_{tc}				
0.4	no limit	340 (370)	290 (320)	
1.0	770 (680)	810 (670)	760 (620)	

 p_{tu} largely excluded, but still large portion of phase space not constrained for ρ_{tc} .

Stricter limits

▷ for ρ_{tu} : higher signal cross section <— PDF effect.

▷ w/ interference: higher signal cross section <— having A & H simultaneously.</p>

 \triangleright Dominant uncertainties: Flavor tagging, nonprompt lepton, $t\overline{t}W$ cross section, statistical.

▶ First search based on g2HDM considering A-H interference.

PLB 850 (2024) 138478 Phys. Briefing

 $A \to Zh_{125} \to (\ell\ell)(\tau\tau)^{\text{Phys. Briefing}}$

- ▶ Search range: $m_A = 225 800$ GeV
- \ge 0 and \ge 1 b-jet categories.
- Signal from maximum likelihood fit combining $m_A = m_{\ell\ell\tau\tau}^{cons}$ from each search channel.
- Matrix Element Method based $h(\tau\tau)$ reconstruction correcting the effect of neutrinos with constraint $m_{\tau\tau} = 125 \ GeV.$

 $\gg m_{\ell \ell \tau \tau}^{cons}$ mass resolution 5-7%.

▶ Irreducible bkg. from simulation:

 \geqslant ZZ/H, $t\bar{t}Z/H$, VVV.

Reducible bkg. from data:

 \triangleright jet misidentified as τ_{had} or lepton.

 $A \to Zh_{125} \to (\ell\ell)(\tau\tau)$

CMS-PAS-HIG-22-004 Phys. Briefing

No signal in data —> Model-independent limits assuming $h_{125} = h_{SM}$

▶ Most stringent limits on $A \to Zh_{125} \to (\ell \ell)(\tau \tau)$ to date.

Dominant systematics: backgrounds, signal modelling.

▷ w.r.t. 2016 CMS analysis: increased integrated luminosity, better hadronic τ lepton id and b jet tagger, added bbA production, and the range extended by ~2x.

 $A \to Zh_{125} \to (\ell\ell)(\tau\tau)$

CMS-PAS-HIG-22-004 Phys. Briefing

MSSM $M_{h,EFT}^{125}$ benchmark w/ $M_{SUSY} \approx 10^{16}$ GeV and model adjusted to values compatible with $m_h \approx 125$ GeV.

lan β < 2.2 excluded for 225 ≤ m_A ≤ 350 GeV.
lbA probes higher tan β.
At higher m_A, A → tt̄ becomes allowed and suppresses A → Zh₁₂₅ decay.

$$X \to ZZ \to 4\ell$$

CMS-PAS-HIG-24-002

Phys. Briefing

▶ Golden channel: High efficiency & resolution, low backgrounds.

- ▶ Model-independent search for X(spin-0) with ggF and VBF in $M_X = 130 3000$ GeV with $\Gamma_X/M_X = 0 30\%$.
- Signal vs bkg. from fit to 2D templates: $M_{4\ell}^{reco}$ vs D_{bkg}^{kin} .
- Matrix element (ME) approach both for likelihood parametrisation and to construct event-categorisation observables.

 $\mathcal{P}_{bkg}^{q\bar{q}}$: Prob. of event to be $q\bar{q} \rightarrow 4\ell$ -like (ME).

 \mathcal{P}^{gg}_{sig} : Prob. of event to be SM H from ggF (ME).

Two event categories: VBF-tagged using VBF Tagging cuts & D_{2jet}^{VBF} > 0.46 and non-VBF (mainly ggF).

$X \to ZZ \to 4\ell$

Phys. Briefing

CMS-PAS-HIG-20-012

NEW

 $X \rightarrow Yh_{125} \rightarrow$

Search range:

 $m_X = 400 \text{ GeV} - 1.6 \text{ TeV}, m_Y = 60 \text{ GeV} - 1.4 \text{ TeV}$

▷ Signal extracted from a 2D fit in $m_X - m_Y$ parameter space.

Signal simulated w/o a specific model with X, Y widths = 1 MeV.

▶ 4 jets w/ highest DeepJet b-tag scores.

 $\gg m_h^{reco}$ and m_Y^{reco} from pairing jets.

 $\gg m_h^{reco}$ used to define signal, CR, and VRs.

 $\gg m_h^{reco} = 125$ GeV and momentum adjusted.

Minimize impact of mismodeling of trigger and jet reconstruction:

▶ exclude $m_X^{reco} - m_Y^{reco} < 120$ GeV

Analysis not optimised for highly boosted Y decays:

let exclude regions with high m_X^{reco} and low m_Y^{reco} .

59.7 fb⁻¹ (13 TeV)

 $X \rightarrow Yh_{125} \rightarrow 4b$

▶ Largest excess at $m_X^{reco} = 700 \text{ GeV}, m_Y^{reco} = 400 \text{ GeV}$ with $4.1(2.5)\sigma$ local(global).

Local significance is highly reduced by the lookelsewhere-effect because of high number of mass points.

 $X \rightarrow Yh_{125} \rightarrow 4b$

Observed upper limits 138 fb⁻¹ (13 TeV) m_γ [GeV] → b<u>b</u>bb) [fb] 1400 CMS Preliminary **Observed** limit Limit below maximally 1200 allowed values in NMSSM ΗY 10² _ 1000 $\rightarrow X)B(X$ 800 600 σ(pp 10 400 200 600 800 1000 1200 1400 1600 400 m_x [GeV]

$A/H \rightarrow t\bar{t}$

- Signal extraction using m_{tt̄} and spin correlation observables in dilepton and lepton+jets channels.
 Interpretations with
 - Pseudoscalar color-singlet $t\bar{t}$ bound state (η_t) from a simplified model of non relativistic QCD (NRQCD) [Fuks et al. arXiv:2102.11281].
 - A and/or H including interference with SM $t\overline{t}$ production w/ & w/o η_t background.
 - ▶ No interference between A and H.

$A/H \to t\bar{t}$ New

CMS-PAS-HIG-22-013

 $> 5\sigma$ deviation. More pronounced for A

Pseudoscalar ${}^{1}S_{0}^{[1]}$ $t\bar{t}$ **bound state:** —> Consistent with the simplified model prediction in arXiv:2102.11281. —> $\sigma(\eta_{t})^{CMS} = 7.1 \text{ pb} (\delta \sim 11\%)$ assuming a bkg. model of resonant $t\bar{t}$ production at NLO pQCD.

Including $\eta_{t'}$ stringent constraints on A, H, and A+H covering $m_{A/H} = 365-1000$ GeV and rel. widths 0.5-25% excluding coupling values as low as 0.4 (0.6) for A and H.

Are there additional Higgs-like States?

- Still no sign of additional Higgs-like states from many CMS measurements: <u>https://cms-results-search.web.cern.ch/</u>
- ▶ Improving measurements with machine learning for object reconstruction and signal extraction
- Extending phase space of searches.
- Effects of Higgs width and different interference effects being studied (between signal and backgrounds, between different Higgs bosons, ...)
- Improving constraints
 - with models incorporating inputs from LHC and others.
 - Effects of $t\bar{t}$ bound state started to be studied.
 - Starting to limit possible BSM contributions to di-Higgs production.
- Significant improvements expected with LHC Run 3 and HL-LHC with increased statistics, improved analysis techniques, and modelling.

Additional Slides

A/H with FCNC based on g2HDM

Summary of systematic uncertainties for $\rho_{tc} = 0.4$ and $m_A = 350$ GeV with A-H interference assuming $m_A - m_H = 50$ GeV. The first column indicates the source of uncertainty. The second column specifies whether the shape of the fit discriminant is affected by the nuisance parameter (\checkmark) or not (dash). The impact in percent of these nuisance parameters on the pre-fit expected event yields is displayed in the third column. This column is subdivided into three event categories representing the analysis channels. The percentage impacts are given as a range of values representing the minimum and maximum differences obtained in the different bins of the BDT distribution through the four data-taking periods. The numbers for the normalization component of the nonprompt lepton background represent the uncertainties used for each data-taking period. Whether or not a nuisance parameter is taken correlated across years and categories is specified in the last two columns. The luminosity and jet flavor identification nuisances are only partially correlated across years.

Uncertainty source	Shape	Category			Correlated across	
		e±e±	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$	Years	Categories
Experimental						
Luminosity	_	1.2-2.5	1.2-2.5	1.2-2.5	1	1
Pileup	1	<0.1–2.8	<0.1-1.8	<0.1-2.3	1	1
Trigger efficiency	1	0.4–2.6	0.2–1.1	0.3–1.2	_	_
L1 trigger inefficiency	1	0.1-0.8	0.1-0.3	0.1-0.4	1	1
Lepton identification	1	0.1–1.7	<0.1-0.4	<0.1-0.6	_	1
Lepton energy scale	1	_	<0.1-0.2	<0.1-0.2	_	1
Charge misid.	1	1.2-13.1	_	_	_	_
Jet energy scale	1	<0.1-4.5	<0.1–1.7	<0.1–1.5	1	1
Jet energy resolution	1	<0.1–2.6	<0.1-1.8	<0.1–1.6	_	1
Unclustered energy	1	<0.1–2.6	<0.1-0.5	<0.1-0.8	_	1
Jet flavor identification	1	<0.1–12.1	<0.1-8.8	<0.1–11.6	1	1
Nonprompt lepton BG						
statistical component	1	<0.1-27.2	1.9–16.2	3.0-13.2	_	1
Nonprompt lepton BG	—	27,15,11,10	27,15,11,10	27,15,11,10	—	1
Theoretical						
Signal OCD scales	1	10.3–10.5	10.0-10.2	9.9–10.0	1	1
Signal PDF	1	0.7	0.6–0.7	0.5–0.6	1	1
Signal parton shower	1	3.6-4.3	4.0-4.3	6.3–7.3	1	1
tī	_	6.1	6.1	6.1	1	1
VV	_	4.5	4.5	4.5	1	1
VBS	_	10.4	10.4	10.4	1	1
tĪH	_	7.8	7.8	7.8	1	1
tĪW	_	10.7	10.7	10.7	1	1
Other backgrounds	_	5.4	5.4	5.4	1	1

 $A \to Zh_{125} \to (\ell\ell)(\tau\tau) \xrightarrow{\text{HIG-22-004}}{\text{Phys. Briefing}}$

Source of uncertainty	Magnitude	Process			
Experimental uncertainties					
$\tau_{\rm h}$ id.	2–4%	All simulations			
$\tau_{\rm h}$ energy scale [†]	0.5–1.5%	All simulations			
electron energy scale [†]	1–2%	All simulations			
e id. & isolation	1.5-4.5%	All simulations			
e trigger	2%	All simulations			
μ id. & isolation	1.5-4.5%	All simulations			
μ trigger	2%	All simulations			
<i>b-tag</i> uncertainties	1–4% (heavy flavor) 5–10% (light flavour)	All simulations			
$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ unclustered energy scale [†]	2–4%	All simulations			
Jet energy scale [†]	1–3%	All simulations			
Jet energy resolution [†]	< 1%	All simulations			
Limited statistics of MC events	bin-by-bin unc.	All simulations			
Integrated luminosity	< 2%	All simulations			
Uncertainties in reducible background estimate					
		misidentified $ au$ leptons			
		(data-driven estimate)			
statisicts in AR	20 - 40%	(<i>b-tag</i> category)			
	10-20%	(no b-tag category)			
nonclosure of method	30%	${ m e} au_{ m h}$ channel			
	20%	$\mu \tau_{\rm h}$ channel			
	20%	$\tau_{\rm h} \tau_{\rm h}$ channel			
Theoretical uncertainties in background estimate					
$qq \rightarrow ZZ$ cross section	5%	qq ightarrow ZZ			
$gg \rightarrow ZZ$ cross section	10%	$gg \rightarrow ZZ$			
$gg \rightarrow ZZ$ NNLO K factor estimate	10%	gg ightarrow ZZ			
$t\bar{t}Z$ cross section	25%	tīZ			
triboson cross section	25%	triboson			
Theoretical uncertainty in $\mathcal{B}(h o au au)$	<2%	$gg ightarrow A$, b $ar{b}A$, Higgs bkg.			
PDFs	1.3-3.6%	Higgs bkg.			
$\mu_{\rm F}$ and $\mu_{\rm R}$ scales	1-8%	Higgs bkg			
Theoretical uncertainties in signal estimate (applied in MSSM interpretation)					

HIG-22-004

signal cross section

 $(\mu_{\rm F}, \mu_{\rm R} \text{ scale}, \text{PDFs}, \alpha_{\rm S})$

 $gg \rightarrow A \, (b\bar{b}A)$

 $A \to Zh_{125} \to (\ell\ell)(\tau\tau)$

• Expected upper limits at 95% CL from the previous CMS analysis (2016) vs the new result from the present analysis based on the same dataset.

$X \to ZZ \to 4\ell$

Experimental uncertainties							
Year	2016 2017 2018		Effects	Affected processes			
Luminosity	1.2%	2.3%	2.5%	norm	all except Z +X		
e efficiency	3-10%	3-9%	3-9%	norm	all except Z +X		
μ efficiency	1-2%	1-2%	1-2%	norm	all except Z +X		
$e(\mu)$ energy scale	0.15(0.03)%			shape	all with energy convolution		
$e(\mu)$ energy resolution	10(3)%		shape	all with energy convolution			
jet energy scale	$\approx 1\%$		norm	all except Z +X			
jet energy resolution	$\approx 1\%$		norm	all except Z +X			
jet b-tagging efficiency	0.1%			norm	all except Z +X		
ggF interference	9-11%		norm	interferences			
VBF interference	13-18%			norm	interferences		
$Z + X (4\mu)$	30% 30% 30%		norm	Z +X			
Z + X (4e)	31%	31%	30%	norm	Z +X		
$Z + X$ (2e2 μ)	31%	30%	30%	norm	Z +X		
Theoretical uncertainties							
$BR(X \rightarrow ZZ)$	ZZ) 2%		norm	signals			
QCD scale	1-15%		shape: qqZZ norm: others	all except Z +X			
PDF	0.1-7%		shape: qqZZ norm: others	all except Z +X			
α_{S}	0.1-7%			norm	all except Z +X		
pythia scale	0.4-10%		norm	all except Z +X			
qqZZ K factor	r 0.1-30%		shape	qqZZ			
ggZZ K factor 10%			norm	ggZZ			

HIG-24-002

 $X \to ZZ \to 4\ell$

• $\Gamma_X / M_X = 0 - 30 \%$

$A/H \rightarrow t\bar{t}$ CMS-PAS-HIG-22-013 CMS Fit constraint (exp.) +1o impact (exp.) -1σ impact (exp.) Preliminary $\hat{\mu}(\eta) = 1.11 \pm 0.12$ Top quark Yukawa coupling PS FSR (tt) PS FSR (η) $\mathsf{ME}\;\mu_{_{\mathsf{R}}}\;(\mathsf{t}\bar{\mathsf{t}})$ PDF PDF α Top quark mass Color reconnection (QCD-inspired) EW correction scheme Jet p_ scale (rel. balance, corr.) $\mathsf{ME}\;\mu_{_{\mathsf{P}}}\left(\mathsf{Z}/\gamma^{*}\right)$ EW + QCD shape (μ , \geq 4 jets) b tagging (gluon splitting) EW + QCD shape (e, \geq 4 jets) Jet p_{T} resolution (2016pre) Jet p_{T} scale (b flavor response) Jet p_{T} scale (rel. sample, 2018) Jet p_{_} scale (abs. scale, 2016pre) Pileup b tagging (charm template) $\begin{array}{c} \hline 0.02 \\ \Delta \widehat{\mu}(\eta_{t}) \end{array}$ $\frac{1}{(\hat{\theta}-\theta_0)}/\Delta\theta$ -2 -0.04-0.02 0 -1 0 1