

EFT Interpretations using the Higgs boson in the ATLAS experiment

Yicong Huang

On behalf of the ATLAS collaboration

Higgs Hunting 2024

Sep 24, 2024

Introduction

- Interpretation of measurements of Higgs boson production and decay rates and differential cross sections with Run 2 data, arXiv:2402.05742.
 - **STXS-0**^{*}: only distinguishes inclusive production processes.
 - STXS-1.2: partition production processes in kinematic regions.

Decay channel	Binning	SMEFT	Production mode	L [fb ⁻¹]
$H \rightarrow \gamma \gamma$	STXS-1.2	\checkmark	ggF, VBF, VH, ttH, tH	139
	Differential p_{T}^{H}	\checkmark		
$H \rightarrow ZZ \rightarrow 4l$	STXS-1.2	\checkmark	$ZZ \rightarrow 4l$: ggF, VBF, VH, ttH+tH	139
	Differential p_{T}^{H}	\checkmark		
$H \rightarrow \tau \tau$	STXS-1.2	\checkmark	ggF, VBF, VH, ttH, tH	139
	differential	\checkmark		139
$H \rightarrow WW$	STXS-1.2	\checkmark	ggF, VBF	139
$H \rightarrow bb$	STXS-1.2	\checkmark	VH, ttH+tH, VBF, inclusive (boosted)	139, 126 (VBF)
$H \rightarrow Z\gamma$	STXS-0*	\checkmark	inclusive	139
$H \rightarrow \mu \mu$	STXS-0*	\checkmark	ggF+ttH+tH, VBF+VH	139

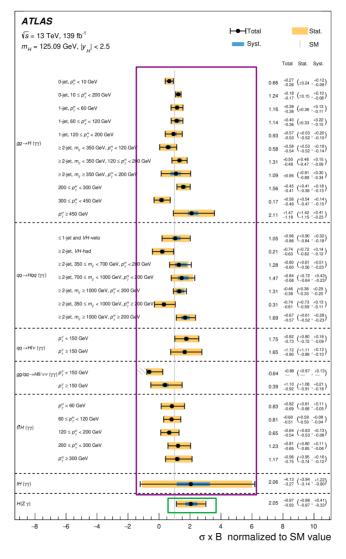
* $H \rightarrow \tau \tau$ differential results from another stand-alone publication **arXiv:2407.16320.**

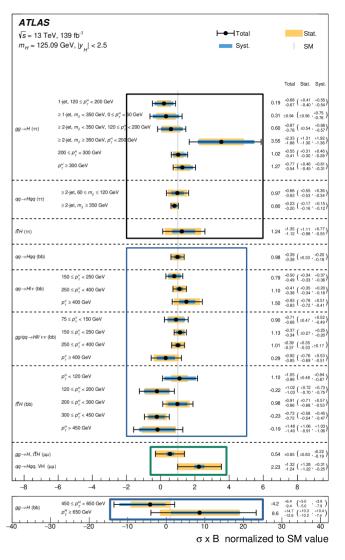
Interpretation based on SMEFT

• SMEFT Lagrangian:
$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

• c_i – Wilson coefficients with $d = 6$ operators with $d = 8$

- Only d = 6 operators are considered, impact of d = 8 operators might be non-negligible.
- SMEFT cross section relative to SM expectation:

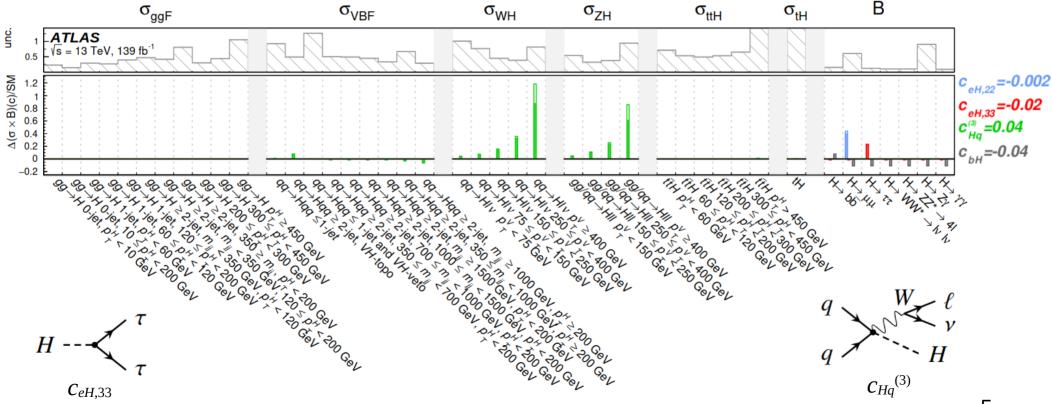

$$\frac{\sigma_{\rm EFT}}{\sigma_{\rm SM}} = 1 + \sum_{i} A_i c_i + \sum_{ij} B_{ij} c_i c_j$$


Arise from interference between the SMArise from BSM processes,and the BSM processes, suppressed by Λ^{-2} suppressed by Λ^{-4}

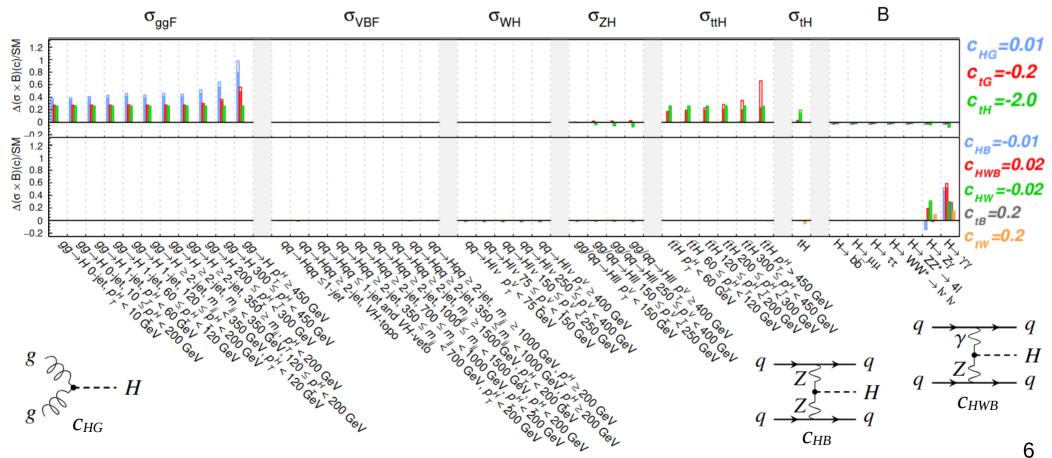
- *A_i*, *B_{ij}*: calculated using MC.
- STXS and differential measurements are reparameterised in terms of the impact of EFT operators.
- Constraints measured on the corresponding Wilson coefficients (Warsaw basis).

STXS measurement

ATLAS					
√ <i>s</i> = 13 TeV, 139 fb ⁻¹			⊢● ⊣Total		Stat.
m _H = 125.0	09 GeV, y _H < 2.5		Syst.		SM
			7		Total Stat. Sys
	0-jet, <i>p</i> ^{<i>H</i>} ₇ < 200 GeV			1.27	+0.18 -0.17 (±0.08,+0.1
	1-jet, p_+ < 60 GeV			0.66	+0.59 (+0.30 ,+0.5
	1-jet, 60 ≤ p ^H ₂ < 120 GeV	H I		0.68	+0.49 -0.46 (±0.32 ,+0.3
$gg \rightarrow H (WW^*)$	1-jet, 120 ≤ p ^H ₇ < 200 GeV			1.43	+0.89 (+0.63 +0.6
	≥ 2-jet, p ^H ₇ < 200 GeV			1.54	+0.95 (+0.43 +0.8
	p ^H ₇ ≥ 200 GeV			1.37	+0.91 (+0.63 +0.6 -0.76 (-0.62 ,-0.4
	p ₇ 2 200 GeV				-0.76 \-0.62 '-0.4
	≥ 2-jet, 350 ≤ m _g < 700 GeV, p ^H ₇ < 200 GeV	H 		0.12	+0.60 (+0.45 -0.58 (-0.41,±0.4
	≥ 2-jet, 700 ≤ m _g < 1000 GeV, p _T ^H < 200 GeV			0.57	-0.58 (-0.41 +0.4 +0.68 (+0.57 +0.3 -0.61 (-0.51 + -0.3
$qq \rightarrow Hqq (WW^*)$	≥ 2-jet, 1000 ≤ m _i < 1500 GeV, p ^H _T < 200 GeV			1.32	-0.61 \-0.51 '-0.3 +0.64 (+0.50 +0.4 -0.51 (-0.45 -0.2
	≥ 2 -jet, $m_{\tilde{g}} \geq 1500$ GeV, $p_{T}^{H} < 200$ GeV				-0.51 (-0.45 '-0.2 +0.48 (+0.42 +0.2 -0.42 (-0.38 -0.1
				1.19	
	≥ 2-jet, m _j ≥ 350 GeV, p ^H _T ≥ 200 GeV		_	1.54	+0.61 (+0.51 +0.3 -0.51 (-0.46 '-0.2
	0-jet, $p_{\tau}^{H} < 10 \text{ GeV}$	-		0.93	+0.36 (+0.30 +0.1 -0.30 (-0.27 -0.1
	0-jet, $10 \le p_T^H < 200 \text{ GeV}$			1.15	+0.23 (+0.18 +0.1 -0.20 (-0.17 , -0.1
	1-jet, p_r^H < 60 GeV	He -1		0.31	+0.43 (+0.40 +0.10
$gg \rightarrow H (ZZ^*)$	1-jet, 60 ≤ p ^{<i>it</i>} ₇ < 120 GeV			1.42	+0.52 (+0.42 +0.3
gg→n (zz.)	1-jet, 120 ≤ p ^H ₇ < 200 GeV			0.41	+0.84 (+0.80 +0.2 -0.59 (-0.58 '-0.0
	≥ 2-jet, p ^H ₊ < 200 GeV			0.35	+0.60 (+0.55 +0.2 -0.53 (-0.51 ,-0.1
	$p_T^H \ge 200 \text{ GeV}$				-0.53 (-0.51 '-0.1 +1.52 (+1.32 +0.7 -1.09 (-1.04 -0.3
	p ₇ = 200 000			2.41	-1.09 \-1.04 '-0.3
qq→Hqq (ZZ*)	VBF			1.49	+0.63 (+0.61 +0.1 -0.50 -0.0
	≥ 2-jet, 60 < m_{j} < 120 GeV		-	1.51	+2.83 (+2.79 ,+0.4 -2.24 (-2.22 ,-0.2
	\geq 2-jet, $m_{j} \geq$ 350 GeV, $\rho_{\tau}^{\rm H} \geq$ 200 GeV			0.18	+2.09 (+2.08 ,+0.1
VH-lep (ZZ*)		— •—	•	1.29	+1.67 (+1.67 +0.1 -1.05 (-1.05 , -0.0
tĨH (ZZ*)			_	1.73	+1.77 (+1.72 +0.3

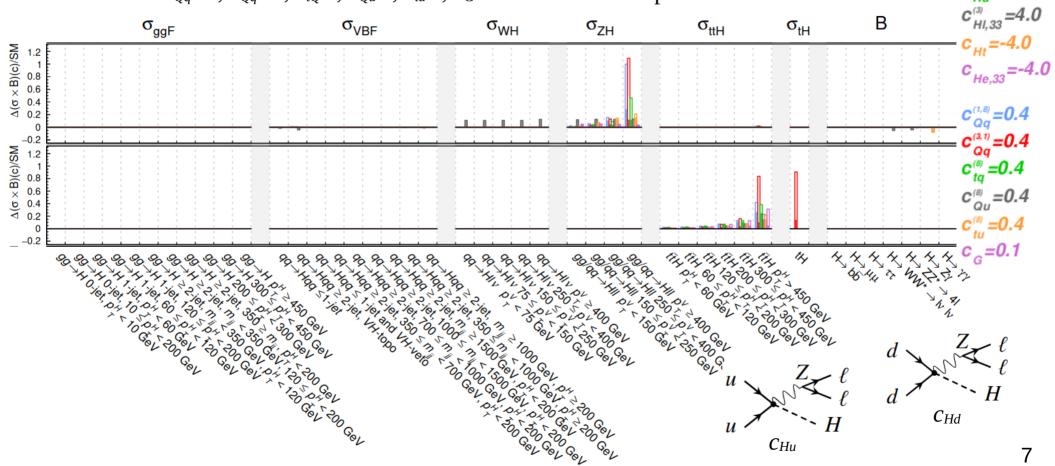


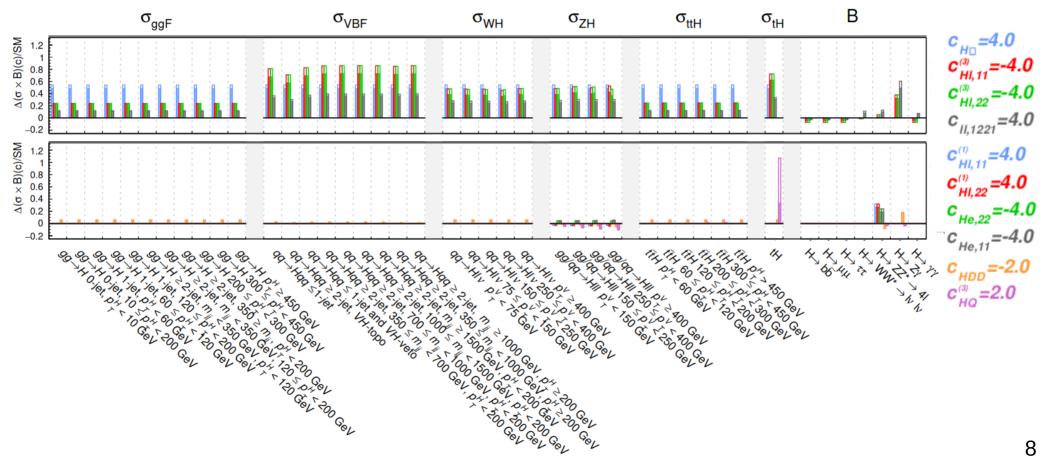
 $H \rightarrow \tau \tau, H \rightarrow bb, H \rightarrow \mu \mu$


 $H \rightarrow WW^*, H \rightarrow ZZ^*$

 $H \rightarrow \gamma \gamma, H \rightarrow Z \gamma$

- Wilson coefficients $c_{eH,22}$, $c_{eH,33}$, c_{bH} : Yukawa coupling modifiers of $H \rightarrow \mu\mu$, $H \rightarrow \tau\tau$, $H \rightarrow bb$, c_{bH} also affects the total Higgs boson width.
- Coefficient $c_{Hq}^{(3)}$: mainly affects *WH* and *ZH* production, impact increase as a function of p_T^V .


- Coefficients c_{HG} , c_{tG} , c_{tH} : mainly affect ggF and ttH production.
- Coefficients c_{HB} , c_{HWB} , c_{HW} , c_{tB} , c_{tW} : affect branching ratio of $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$.


• Coefficients C_{Hu} , $C_{Hq}^{(1)}$, C_{Hd} , C_{Ht} , $C_{Hl,33}^{(3)}$, $C_{He,33}$: mainly constrained by $VH(H \rightarrow bb)$ decay channel. $c_{Hu}^{(2)} = -0.08$

c_{Hd}=-0.1

• Coefficients $c_{Qq}^{(1,8)}$, $c_{Qq}^{(3,1)}$, $c_{tQ}^{(8)}$, $c_{Qu}^{(8)}$, $c_{tu}^{(8)}$, c_G : affect *ttH* and *tH* production modes.

- Coefficient $c_{Hl,11}^{(3)}$, $c_{Hl,22}^{(3)}$, $c_{ll,1221}$, $c_{H\Box}$: overall scale factor across different production and decay modes.
- Coefficients $c_{Hl,11}^{(1)}$, $c_{Hl,22}^{(1)}$, $c_{He,22}$, $c_{He,11}$, c_{HDD} , $c_{HQ}^{(3)}$: mainly constrained by $H \rightarrow ZZ^* \rightarrow 4l$ decay.

Interpretation based on SMEFT

Interpretation based on EFT: obtain constraints on the Wilson coefficients c_i through a maximum likelihood analysis of the Higgs boson STXS measurements.

- Difficult to constrain all *c*_{*i*} simultaneously.
- Solution: a new fit basis expressed in terms of linear combinations of c_i (eigenvector $e^{[i]}$).
- To determine this new basis (can be measured from data):
 - V_{STXS} : the SM-based expected covariance matrix from the STXS measurement of $\{\mu^{i,k',X}\}$.
 - V^{-1}_{STXS} is obtained, rotated to SMEFT basis $\{c_j\}$

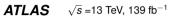
$$V_{\text{SMEFT}}^{-1} = P_{(i,k',X)\to(j)}^T V_{\text{STXS}}^{-1} P_{(i,k',X)\to(j)}$$

expected Jacobian matrix $P_{(i,k',X) \rightarrow (j)}$ obtained from simulation, assuming Wilson coefficients not 0.

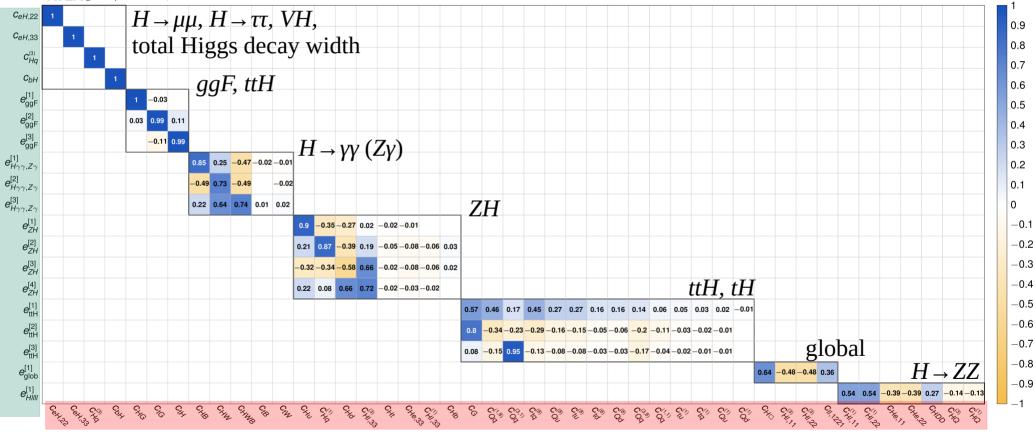
- *V*⁻¹_{SMEFT}: the Fisher information matrix of its linearized SMEFT model re-parameterization.
 - The information matrix yields the eigenvectors *e*^[*i*].

Sensitivity estimate: information matrix

ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$



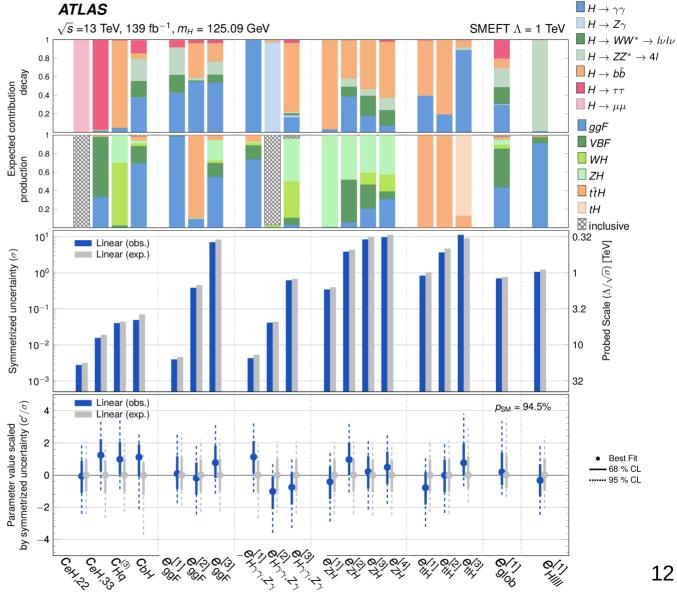
Eigenvectors, obtained from expected measurements accounting for the observed values of NPs, ranked by eigenvalue λ , $\sigma_{exp.} = 1/\sqrt{\lambda}$.


Wilson coefficients

Definition of fit basis

- Definition of the fit basis coefficients in terms of the Warsaw basis Wilson coefficients.
 - Achieves both fit stability and fit-parameter interpretability.

fit basis

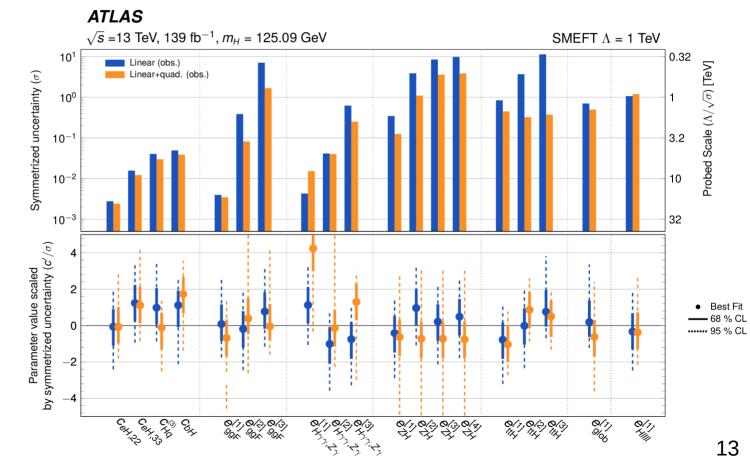

SMEFT result

SMEFT linear model: Λ^{-4} terms not included.

- *p*-value: corresponding to **94.5%**
- Statistical uncertainty dominates.

Symmetrised 68% CL uncertainty σ of each parameter measurement.

Measured parameter value (dot) and 68% and 95% CL intervals, divided by the symmetrised uncertainty shown above.


SMEFT result

SMEFT linear model: Λ^{-4} terms not included, SMEFT linear+quadratic: including Λ^{-4} terms.

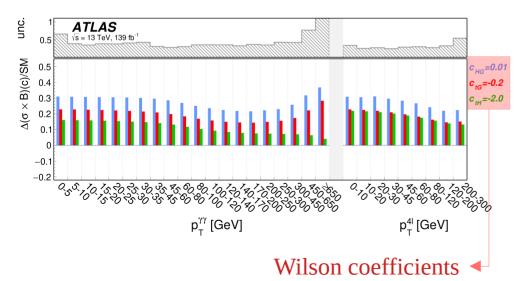
- Linear+quadratic *p*-value: corresponding to **98.2%**, improvement compared to previous result (59%).
- Stronger constraints with linear+quad.

Symmetrised 68% CL uncertainty σ of each parameter measurement.

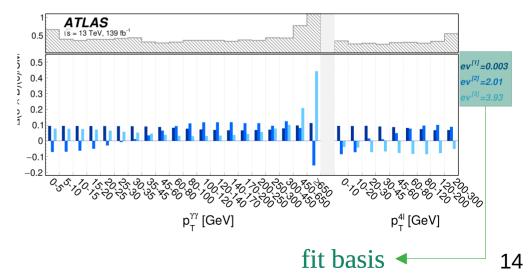
Measured parameter value (dot) and 68% and 95% CL intervals, divided by the symmetrised uncertainty shown above.

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ differential cross section

Expected impact of the SMEFT operators on the fiducial differential distributions of p_T^{γ} and p_T^{4l} , in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$ decays respectively.

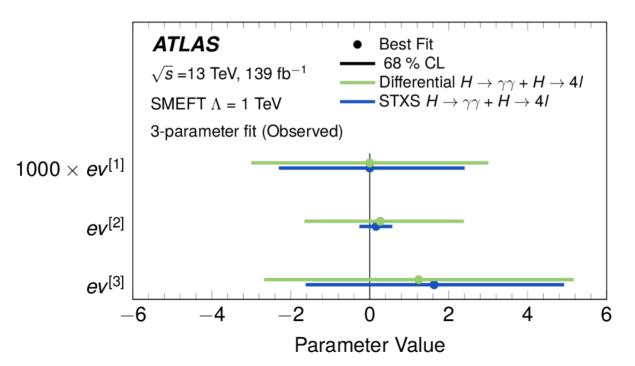

- Wilson coefficients of SMEFT operators sensitive to $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$: c_{HG} , c_{tG} , c_{tH}
- Impossible to constrain all three Wilson coefficients simultaneously, define a new fit basis:

 $ev^{[1]} = 0.999c_{HG} - 0.035c_{tG} - 0.003c_{tH},$

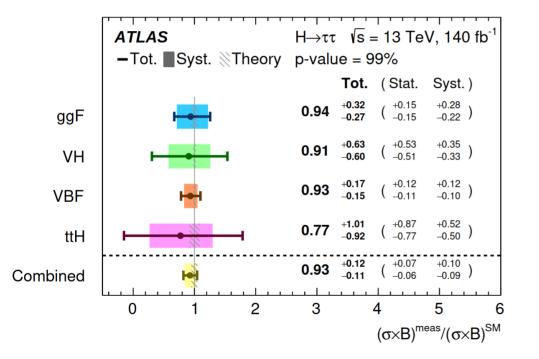

 $ev^{[2]} = 0.035c_{HG} + 0.978c_{tG} + 0.205c_{tH},$

$$ev^{[3]} = -0.005c_{HG} - 0.205c_{tG} + 0.979c_{tH}.$$

Expected impact of the SMEFT operators


Expected impact of rotated SMEFT operators

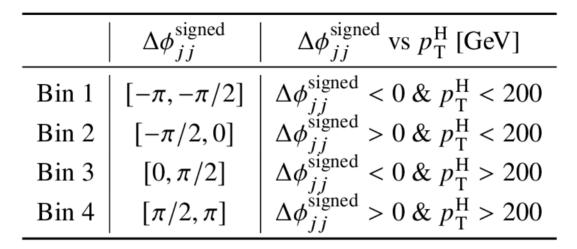
$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ results


Observed 68% CL intervals on the fit basis $ev^{[i]}$.

- $ev^{[1]}$: almost aligned c_{HG} ; $ev^{[2]}$: close to c_{tG} ; $ev^{[3]}$: close to c_{tH} .
- Result obtained using SMEFT linear model, with STXS (blue) or fiducial *p*_T differential cross-section measurements (green).
 - STXS: only $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$ included.

$H \rightarrow \tau \tau$ STXS measurement

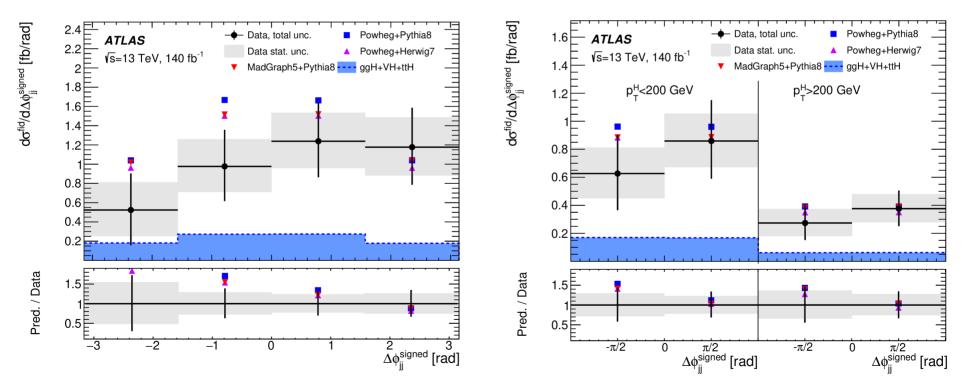
- STXS and fiducial differential cross section measurement in $H \rightarrow \tau \tau$ decay, Run 2 data 140 fb⁻¹, arXiv:2407.16320.
 - Production modes: all modes were measured, particular focus on *VBF* (~ 83% signal events).



Production mode	$\sigma_H \times B(H \to \tau \tau) \text{ [pb]}$		
	SM prediction	Measurement	
ggF	2.77 ± 0.09	2.6 ± 0.9	
VH	0.117 ± 0.003	0.11 ± 0.07	
VBF	0.220 ± 0.005	0.20 ± 0.04	
$t\bar{t}H$	0.031 ± 0.003	0.02 ± 0.03	

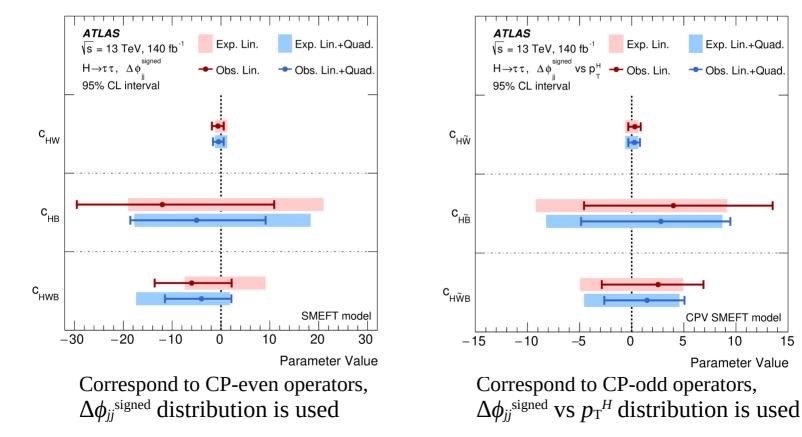
measured values of $\sigma_H \times BR(H \rightarrow \tau \tau)$ relative to the SM expectations

$H \rightarrow \tau \tau$ differential cross section


• Kinematic variables of *VBF* Higgs boson production sensitive to BSM effects:

- Signed angle of the two jets in transverse plane: $\Delta \phi_{jj}^{signed}$, provides sensitivity to the charge (C) and Parity (P) of the Higgs boson.
- $\Delta \phi_{jj}^{\text{signed}}$ as a function of p_{T}^{H} .

$H \rightarrow \tau \tau$ differential cross section


- Measured differential cross sections for $\Delta \phi_{jj}^{\text{signed}}$, $\Delta \phi_{jj}^{\text{signed}}$ vs p_{T}^{H} .
 - Overall good agreement between measured cross sections and SM predictions. Per-bin precision is typically 25%-50%.
 - Experimental precision dominated by statistical uncertainties in most of the bins.

$H \rightarrow \tau \tau$ interpretation of diff. xs measurement in EFT

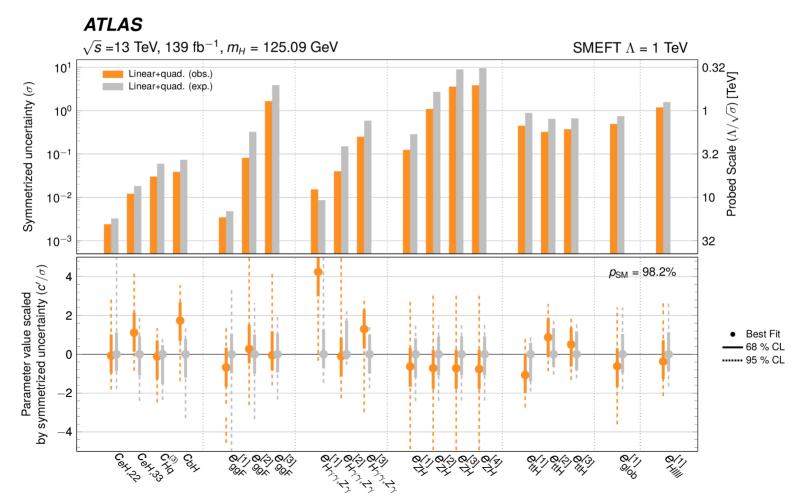
Expected and observed 95% CL intervals for each of the six considered Wilson coefficients.

- Wilson coefficients: c_{HW} , c_{HB} , c_{HWB} , $c_{H\overline{W}}$, $c_{H\overline{B}}$, $c_{H\overline{W}B}$. Each coefficient is fitted individually.
- both the linear and linear + quadratic models are considered.

10

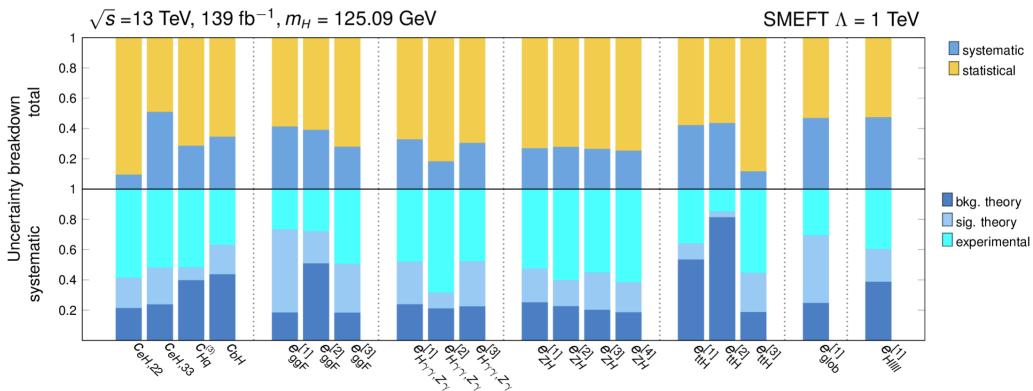
15

Conclusion


- SMEFT interpretations of the combined ATLAS measurements of Higgs boson STXS.
 - Linear model and linear+quadratic model results provided.
 - The effects of operators suppressed by Λ^{-4} terms can significantly affect constraints on Wilson coefficients for a mass scale of $\Lambda = 1$ TeV.
- Fiducial differential cross-section measurements for $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4l$.
 - Significantly weaker constraints on top-gluon coupling compared to STXS measurement.
- Fiducial differential cross-section measurements for $VBF H \rightarrow \tau \tau$.
 - Provides also sensitivity to CP-odd EFT operators.
- No significant deviations from the SM are observed.

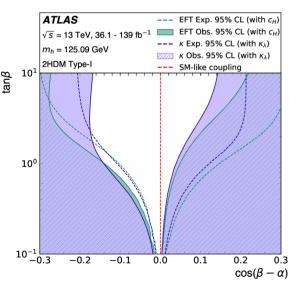
Rotate of fit basis. $c = \{c_{eH,22}\} \cup$ $\{c_{eH33}\} \cup$ $\{c_{Ha}^{(3)}\} \cup$ $\{c_{hH}\} \cup$ $\{c_{HG}, c_{tG}, c_{tH}\} \cup$ $\{c_{HB}, c_{HW}, c_{HWB}, c_{tB}, c_{tW}\} \cup$ $\{c_{Hu}, c_{Ha}^{(1)}, c_{Hd}, c_{Hl,33}^{(3)},$ $c_{Ht}, c_{He,33}, c_{HI,33}^{(1)}, c_{Hb} \} \cup$ $\{c_G, c_{Oa}^{(1,8)}, c_{Oa}^{(3,1)}, c_{ta}^{(8)}, c_{Ou}^{(8)}, c_{tu}^{(8)}, c_{td}^{(8)}, c_{t$ $c_{Od}^{(8)}, c_{Oa}^{(3,8)}, c_{Oa}^{(1,1)}, c_{tu}^{(1)}, c_{ta}^{(1)}, c_{Ou}^{(1)}, c_{Od}^{(1)} \} \cup$ $\{c_{H\Box}, c_{HL11}^{(3)}, c_{HL22}^{(3)}, c_{II,1221}\} \cup$ $\{c_{HL11}^{(1)}, c_{HL22}^{(1)}, c_{He,11}, c_{He,22}, c_{HDD}, c_{HO}^{(3)}, c_{HO}^{(1)}\}$

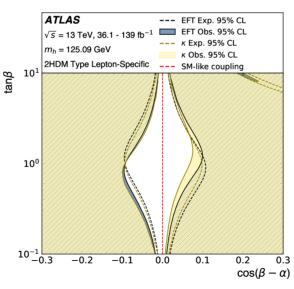
$$c' = \{c_{eH,22}\} \cup \{c_{eH,33}\} \cup \{c_{Hq}^{(3)}\} \cup \{c_{bH}\} \cup \{c_{bH}\} \cup \{c_{bH}\} \cup \{e_{ggF}^{[1]}, e_{ggF}^{[2]}, e_{ggF}^{[3]}\} \cup \{e_{H\gamma\gamma,Z\gamma}^{[1]}, e_{ggF}^{[2]}, e_{ggF}^{[3]}\} \cup \{e_{H\gamma\gamma,Z\gamma}^{[1]}, e_{H\gamma\gamma,Z\gamma}^{[2]}, e_{H\gamma\gamma,Z\gamma}^{[3]}, e_{H\gamma\gamma,Z\gamma}^{[3]}\} \cup \}$$

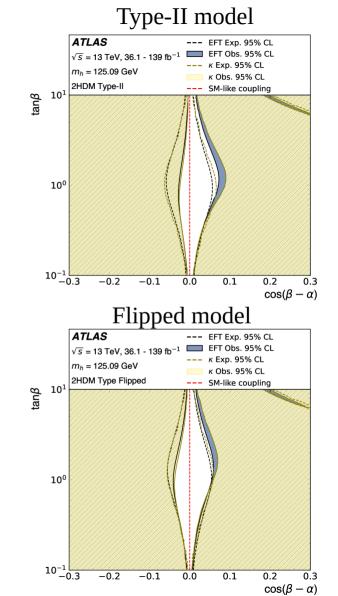

$$\rightarrow \{e_{zH}^{[1]}, e_{zH}^{[2]}, e_{zH}^{[3]}, e_{zH}^{[4]}\} \cup \{e_{ttH}^{[1]}, e_{ttH}^{[2]}, e_{ttH}^{[3]}\} \cup \{e_{glob}^{[1]}\} \cup \{e_{glob}^{[1]}\} \cup \{e_{glob}^{[1]}\}\}$$

SMEFT linear+quadratic model result.

Uncertainty breakdown of SMEFT linear model result.


ATLAS


Comparison of EFT approach and UV-complete approach.


- Comparison of the constraints from the approaches based on the κ and EFT-frameworks in the tan β , cos(β - α) plane.
- The κ_{λ} constraint is included in the Type-I model interpretation.

Type-I model

Lepton-specific model

 $H \rightarrow \tau \tau$ Wilson coefficients and EFT operators.

	CP-even		
Operator $O_i^{(d=6)}$	$H^{\dagger}HW^{n}_{\mu u}W^{n\mu u}$	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$H^{\dagger} au^n H W^n_{\mu u} B^{\mu u}$
Wilson coefficient	c_{HW}	C_{HB}	C_{HWB}
	CP-odd		
Operator $O_i^{(d=6)}$	$H^{\dagger}H ilde{W}^n_{\mu u}W^{n\mu u}$	$H^{\dagger}H ilde{B}_{\mu u}B^{\mu u}$	$H^{\dagger} au^{n}H ilde{W}^{n}_{\mu u}B^{\mu u}$
Wilson coefficient	$c_{H\tilde{W}}$	$c_{H\tilde{B}}$	$c_{H\tilde{W}B}$

$H \rightarrow \tau \tau$ fiducial differential cross section particle level event selection.

	$ au_e au_\mu$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
Per Channel			
Object counting	$N_e=1, N_{\mu}=1, N_{\tau_{\rm truth}}=0$	$N_{e/\mu} = 1, N_{\tau_{\mathrm{truth}}} = 1$	$N_{e/\mu} = 0, N_{ au_{ ext{truth}}} = 2$
$p_{\rm T}$ cut	e/μ : $p_{\rm T}$ cut 10 to 27.3 GeV	e/μ : $p_{\rm T}$ cut 27.0 to 27.3 GeV, $\tau_{\rm truth}$: $p_{\rm T} > 30 {\rm GeV}$	$\tau_{\rm truth}: p_{\rm T} > 40,30 {\rm GeV}$
Kinematics	$m_{ au au}^{\text{coll}} > m_Z - 25 \text{GeV}$ $30 < m_{e\mu} < 100 \text{GeV}$	$m_{\rm T} < 70 {\rm GeV}$	
Angular	$\Delta R_{e\mu} < 2.0, \Delta \eta_{e\mu} < 1.5$	$\Delta R_{\ell \tau_{\rm truth}} < 2.5, \Delta \eta_{\ell \tau_{\rm truth}} < 1.5$	$\begin{array}{l} 0.6 < \Delta R_{\tau_{\rm truth}\tau_{\rm truth}} < 2.5 \\ \Delta \eta_{\tau_{\rm truth}\tau_{\rm truth}} < 1.5 \end{array}$
x_1 and x_2	$0.1 < x_1 < 1.0, 0.1 < x_2 < 1.0$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.2$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.4$

Common selection	leading jet $p_{\rm T} > 40 \text{GeV}$, sub-leading jet $p_{\rm T} > 30 \text{GeV}$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
	Opposite charge of τ -decay products
	$m_{jj} > 600 \text{GeV}, \Delta \eta_{jj} > 3.4, p_{\mathrm{T}}(jj) > 30 \text{GeV}$
	$\eta(j_0) imes \eta(j_1) < 0$
	lepton centrality: visible decay products of the τ -leptons between VBF jets
	$p_{\rm T}(Hjj) < 50 { m GeV}$