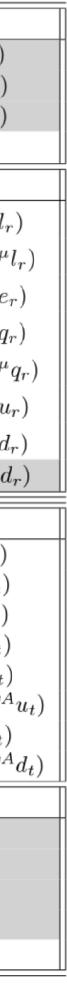
(Some) Challenges in constraining SMEFT with experimental data

1. Large number of (dim-6) Wilson coefficients, many of which could be correlated between each other.

- 1D fit with one parameter at a time ignores the possibility of such correlations, resulting in too strong limits.
- Global fit of all parameters simultaneously requires a combination of many complementary observables.
- **2. Each measurement affected by a large number** systematic uncertainties, with non-trivial uncertainty correlations between measurement

Marginalized likelihoods

(phenomenology approach: computing-efficient, but not exact Nuisance parameters in a measurement are integrate correlation of uncertainties between measurements treated through covariance matrices.


Profiled likelihoods

(experimental approach: computing intensive, but more accur Separate treatment of each uncertainty in a measure detailed treatment of correlations between measurem

3. EFT validity/truncation:

Quadratic dim-6 terms (c_i^2/Λ^4) could be of same size as unknown dim-8 terms \rightarrow need to minimize their impact.

5	X^3		H^6 and H^4D^2		$\psi^2 H^3$		
	\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	${\cal O}_{\scriptscriptstyle H}$	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
	$\mathcal{O}_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(ar{q}_{p}u_{r}H)$	
a	\mathcal{O}_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	${\cal O}_{_{dH}}$	$(H^{\dagger}H)(ar{q}_{p}d_{r}H)$	
	$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
X^2H^2		X^2H^2	$\psi^2 X H$		$\psi^2 H^2 D$		
	$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	\mathcal{O}_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle l}}^{(1)}$	$(H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
f	$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{_{Hl}}^{(3)}$	$(H^{\dagger}iD^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l$	
rot	\mathcal{O}_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{{}_{uG}}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{{}_{He}}$	$(H^{\dagger}iD_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
	$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	${\cal O}_{{}_{Hq}}^{(1)}$	$(H^{\dagger}iD_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
	$\mathcal{O}_{_{HB}}$	$H^\dagger H B_{\mu u} B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{H} B_{\mu u}$	${\cal O}_{{}_{Hq}}^{(3)}$	$(H^{\dagger}i D^{I}_{\mu} H) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q)$	
its.	${\cal O}_{H{\widetilde B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \stackrel{\rightarrowtail}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r$	
	\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{{}_{Hd}}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
	$\mathcal{O}_{_{H\widetilde{W}B}}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	${\cal O}_{{}_dB}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$\mathcal{O}_{{}_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{\mu})$	
ct)		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
	\mathcal{O}_{ii}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
ed out,	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
	$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
	$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	
	$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
			$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A)$	
			$\mathcal{O}_{ud}^{(8)}$	$\left((\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right)$	$egin{array}{c} \mathcal{O}_{qd}^{(1)} \ \mathcal{O}_{qd}^{(8)} \end{array}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
		$(\bar{D}I) = 1(\bar{I}D)(\bar{I}D)$	 			$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A q_r)$	
irate)	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
omont 8	\mathcal{O}_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	\mathcal{O}_{duq}	$ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right] $			
ement &	$\mathcal{O}_{quqd}^{(1)} \ \mathcal{O}_{quqd}^{(8)}$	$\frac{(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})}{(\bar{a}_{p}^{j}T^{A}u_{r})\varepsilon_{rk}(\bar{a}_{s}^{k}T^{A}d_{r})}$	\mathcal{O}_{qqu}	$ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(u_s^{\gamma})^T C e_t \right] $			
ments.	$\mathcal{O}_{quqd} \ \mathcal{O}_{lequ}^{(1)}$	$\begin{array}{c} (\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \\ (\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t}) \end{array}$	$\mathcal{O}_{_{qqq}} \ \mathcal{O}_{_{duu}}$	$ \begin{aligned} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right] \\ \varepsilon^{\alpha\beta\gamma}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(u_{s}^{\gamma})^{T}Ce_{t}\right] \end{aligned} $			
	$\mathcal{O}_{lequ}^{(3)}$	$\frac{(\bar{l}_p^j e_r) \varepsilon_{jk}(q_s u_t)}{(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk}(\bar{q}_s^k \sigma^{\mu\nu} u_t)}$	U_{duu}	$z \sim \lfloor (a_p) \rfloor$	$ [u_r] [0]$	$[a_s] \cup c_t$	
	- lequ	$(p - \mu \nu - l) = J h (1s - \omega l)$					

ATLAS & CMS SMEFT interpretations of combined Higgs data

Simultaneous profiled likelihood fit of Wilson coefficients grouped into PCA-based eigenvectors.

Eigenvector definitions are measurement-dependent, making direct comparisons difficult. \rightarrow comparing eigenvectors that have the strongest relation to a given Warsaw-basis Wilson coefficient.

CMS $EV1: (0.94c_{HG}, 0.26c_{HB}, -0.15c_{HWB}, 0.08c_{HW}, 0.14c_{bH}, -0.03c_{tG}, 0.01c_{tB})$ ATLAS $E_{ggF}^{[1]}$: (1.00 c_{HG} , -0.03 c_{tG})

ATLAS Higgs STXS-1.2, arXiv:2402.05742: $(ggH, VBF, WH, ZH, ttH, tH) \times (p_T^H, N_{iets}, m_{ii})$ combining $\gamma\gamma$, $Z\gamma$, WW, ZZ, bb, $\tau\tau$ & $\mu\mu$ decays * lin-only & lin+quad parametrization

CMS differential p_T^H , CMS-PAS-HIG-23-013:

inclusive Higgs production, combining $\gamma\gamma$, WW, ZZ, & $\tau\tau$ decay channels *in+quad parametrization*

- STXS-based eigenvectors more strongly related to a single WC.
- Comparable sensitivity from STXS & differential measurements, but STXS adds some more sensitivity to Hqq, HII and HVqq vertices.
- Significant dependence on quadratic terms for c_{HB} , c_{tG} , c_{tH} , $c_{Hq}^{(1)}$ (4 10 times stronger limits).

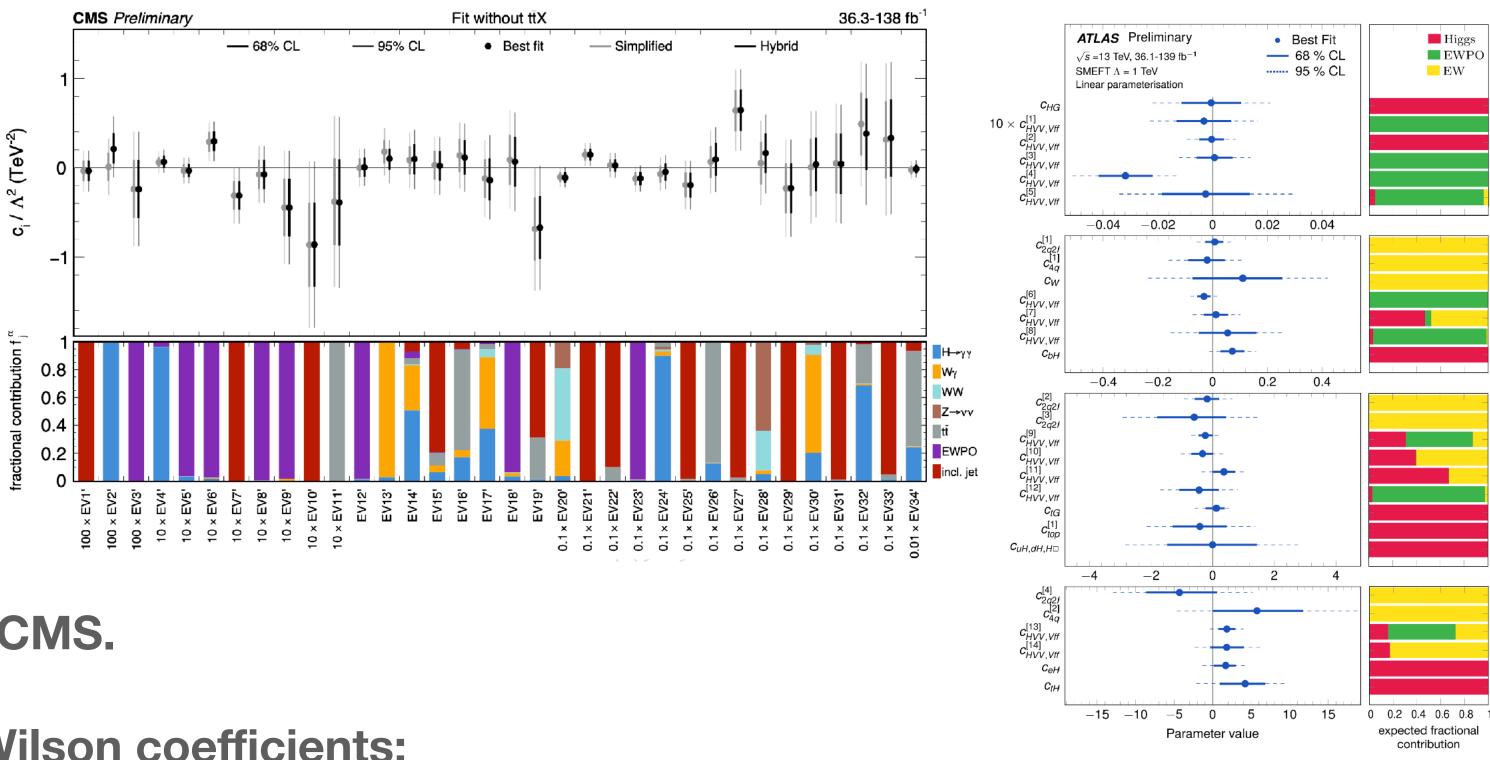
EV dominated by a single WC

EV with a strong contribution from a given WC

EV with moderate/small contribution from a given WC

		0(Uncertaint	y on c_i/Λ^2)		
d C	Warsaw-basis Wilson coeff.	ATLAS STXS	CMS differential p_T^H	Vertex	Most sensitive observables
	CHW, CHB, CHWB	0.001 - 0.1	0.001 - 1	HVV	STXS (yy, Zy) & dif
	Снд	0.001	0.001	Hgg	STXS (ggH) & diff
h	CtG	0.1	0.1	Hgtt	STXS (ggH) & diff
9	CtH	10	_	Наа	STXS (ttH)
	Сьн	0.01	0.1	Hqq	STXS (Higgs width
	CeH,22	0.001	4	HII	STXS (mumu)
	СеН,33	0.01			STXS (tautau)
h	Сназ	0.01	0.1		STXS (VHbb)
	CHu	0.1	10		STXS (ZHbb)
n C	CHq1	1	1	HVqq	STXS (VHbb)
	CHd	10	10		STXS (VHbb)

Global SMEFT interpretations (Higgs+EW+Top/QCD+EWPO)


CMS-PAS-SMP-24-003:

Higgs: differential p_T^H in $H \to \gamma \gamma$, EV: $WW(m_{\ell\ell}), W\gamma(p_T^{\gamma}x | \phi_f |), Z \to \nu\nu(p_T^Z)$

Top/QCD: tt, ttX, incl. jets EWPO

ATL-PHYS-PUB-2022:

Higgs: STXS-1.2, EW: $WW(p_T^{\text{lead. lep.}}), WZ(m_T^{WZ}), ZZ(m_{Z2}), Zjj(\Delta \Phi_{jj})$ EWPO

Comparable sensitivities in ATLAS and CMS.

Additional sensitivity to Higgs-related Wilson coefficients: c_{tH} from **Top**; c_{Hu} , $c_{Hq}^{(1)}$, $c_{Hq}^{(3)}$ from **EWPO**; (up to an order of magnitude better limits)

Sensitivity to further Wilson coefficients (not probed by the Higgs data): EW: many operators affecting 2/2q vertices Top/QCD: C_G , C_{Ht} , and many operators affecting 4q vertices **EWPO**: many operators affecting VII, Vqq, HII, Hqq, HVII, HVqq, 41 vertices

What's next? An open list:

- Updates of combined Higgs interpretations:
 - individual measurements with improved analysis techniques
 - additional Higgs observables
- Additional EW/Top/Di-Higgs observables in the global EFT fit
- ATLAS+CMS global EFT interpretation
- Inclusion of CP-odd parameters in the global fit?
- Complementary approaches: matching of UV models to SMEFT, linear SM extensions in SMEFT...

 $(\Delta \Phi_{ii}, \text{ matrix-elements}, H + \gamma \text{ or other new channels}, Higgs decay kinematics ...)$

Improvements in th. predictions, better treatment of EFT truncation uncertainties ...