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My only experience with theory summary talks at the Higgs Hunting was the talk by Guido Altarelli in 2013.
| don't remember what he said at all but | do remember that the talk was brilliant and inspiring.




When, on July 4th 2012, R.D. Hoyer cried to the world “I think we have it”, we all thought we finally got the
elusive Higgs boson. In fact what we really got was the full Standard Model as the theory of Nature since,

once the Higgs boson mass is fixed, the predictive power of the Standard Model becomes absolute. This is
both a blessing and a curse.

.




Just this summer, the superb ability of the Standard Model to describe Nature was again on full display, with BMW
collaboration showing us the way out of the twenty-year-long muon g-2 crises, and the CMS collaboration
measuring the W-mass in a spectacular agreement with predictions of the precision electroweak fit.
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Combine this with null results from direct searches and with overall across-the-board agreement of many measured
cross sections with theoretical predictions, and you certainly get a feeling that the Standard Model may indeed be
the only game in town.
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Even if the SM seems to be right at the moment, there are still important issues that it cannot address, at least not in
a straightforward way. Several of them are related to the physics of Higgs field.

e ynification of interactions

e nature of EW symmetry breaking
e origin of quark/lepton families

® masses and Yukawa couplings

e matter anti-matter asymmetry

e nature of dark matter

} H Talk by Bibhushan Shakya

® connection to gravity



The Higgs boson is a crucial element of the SM, it would not work without it. Our fascination with the Higgs boson is
related to two nearly exclusive features that this particle brings to the table.

On the one hand, it makes the Standard Model On the other hand, the Higgs mechanism in the SM is

augmented with general relativity, the first example of embarrassingly simple and sort of ad hoc, but it
a complete (and correct!) theory of all known seems to be doing what we want it to do. We keep

fundamental forces that does not require any coming to this conclusion over and again.
ultraviolet completion.

Vo

Tau
neutrino

Electron
neutrino




We may not be too happy about the fact that the renormalizability of the SM — a direct consequence of the Higgs
mechanism — ensures that there is no indication of an energy scale where the Standard Model gives way to

something else. But it is quite obvious that the SM is a fantastic intellectual achievement of the 20th-century
ohysics.

Core elements of the SM — the gauge principle and the idea of spontaneous symmetry breaking by the ground
state of the theory — allow us to describe all fundamental interactions that we know about in a uniform way.
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The second point — a single Higgs field being a trigger of electroweak symmetry breaking — begs the question of

the reason for the apparent simplicity especially because additional complexity would make the SM a “better
theory”.

j/ = t’iﬁblz-\ vV {(is) + C};i 13‘; }U;,%'* k. c.



For example:

1) additional Higgs fields can provide new (largely needed) sources of CP violation and make the electroweak
ohase transition stronger, allowing to generate the observed matter-anti-matter asymmetry.
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production at the LHC

2) it the Higgs boson is a composite particle its selt-interaction potential would generically be described by the
fourth-degree polynomial as in the SM. However, in contrast to the SM where his polynomial is the whole story, in
composite models, these will be the first view terms in the expansion of a much more complex effective potential
that we have not seen yet. This is what happens in the Landau theory of phase transitions where the analog of

the vacuum value of the Higgs field is a generic “order parameter” which always has a microscopic origin.
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3) new particles with masses below a TeV make the Higgs mass, as measured at the LHC, much more natural.
Supersymmetry is an example of a theory that can do this elegantly but, so far, Nature is not cooperating.
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Hence, there were, and still are, good reasons to believe that
the Higgs sector of the SM is just a placeholder for something
much more fundamental, that we still have to discover.

At the same time, the SM with its Higgs sector provides
complete and calculable example of a fundamental theory of
Nature which gave many of us an opportunity to discuss
ohysics of the SM Higgs in great detail, before its discovery.

The Higgs
Hunters Guide
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The discovery of the Higgs boson was followed by a period, during which our knowledge about this particle was
consolidated. As the result of this, we seem to be coming to a conclusion that none of the more exciting things that
we came to expect from the Higgs sector are being realised in Nature, at least not in grand style.
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This (somewhat premature) conclusion has a somewhat negative connotation, but this is a very important scientific
result that particle physicists, as a community, managed to achieve. The path towards this result was not particularly
srtaightforward.



Precise prediction of the Higgs boson production cross section at the LHC is the important success story of particle
theory. Without computed higher order corrections, we would be discussing n O(1) discrepancies between predictions
and measurements, instead of celebrating their agreement at a few percent level.

More details in the talk
by Steve Jones
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As the result, we currently have a picture of the Hlggs boson that is very consistent with the Standard Model. However,
some elements in this picture are missing, for very practical reasons. Indeed, it was known since long that the

exploration of some of the Higgs boson properties at a hadron collider is extremely difficult...
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Before the start of the LHC, the general perception was that
- the measurement of the Higgs coupling to bottom and charm quarks are either very difficult or plain impossible;
the measurement of the Higgs self-coupling will only give us an and order of magnitude estimates

the measurement of the Higgs decay width with a precision that is better than a factor O(200) cannot happen at the
LHC.

These expectations turned out to be too pessimistic and as of now
the bottom Yukawa coupling is measured to about 20 percent;
the Higgs boson width is measure to about 70 percent;

there are plenty of ideas on how to constrain the charm Yukawa coupling, so that we will certainly see this happening
at the HL-LHC;

and there will be significant improvements in what is known about Higgs trilinear coupling by the end of HL-LHC.



The key behind this progress was, amusingly, Quantum Mechanics.

Recently the correctness of Quantum Mechanics was confirmed in top quark pair production by the LHC
collaborations, so we are going to use it with confidence.

- At production threshold in 1 — bZvbZ’ v events
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At the threshold, top quarks in a color-singlet
channel will have the zero-spin wave function
which means that spins of top and anti-top are
fully correlated.
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A key feature of Quantum Mechnics is the interference of probability amplitudes. If an interesting final state can be
reached from the initial state in two different ways, there must be an interference of qguantum amplitudes. If the

two amplitudes have drastically different magnitude, then the interferences is significantly larger than the square of
the small amplitude.

A=A, + 904, 0 < 1

A" = [A1]" + 6 Re [A1A] + c.c] + 67 [Asf*

Some ideas about measuring the charm Yukawa, and the Higgs width
are based on the observation that the interference with a large quantum
amplitude can lift up a tiny signal that otherwise would be impossible to
observe.

Baron Munchhausen pulls himself and the horse he sits
on from the swap by the hair.



A well-known example of the interference arises in the main discovery channel: Higgs production in gluon fusion
followed by the Higgs decay to two photons. In this case, the amplitude is two-loop and the signal is one-loop,

therefore the signal-background interference might be enhanced by a loop factor!
Dicus and Willenbrock (1988)
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The estimate is way too naive. It turns out that all relevant one-loop amplitudes are real (equal helicity photons can
not annihilate to massless fermions) and, for this reason, the interference does not occur at one-loop. At two-loops

the interference is present, but it only affects Higgs production cross-section at a few percent level. o and S

See the talk byFederico Bunccioni about the role of the interference in Higgs decays to Z-gamma.



Although not very important for the total cross section, this interference introduces a process-dependent shift in the
measured value of the Higgs boson mass. The shift is bigger in the di-photon channel than in the four-lepton one.
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Requiring that the signal cross section remains what it is, one can relate the mass shift to the width of the Higgs boson.
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Taking the current mass differences in diphoton and four-lepton channels at the face value, we estimate
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Events / 4 GeV

The measurement of the Higgs width uses off-shell production and interference — Quantum Mechanics at its best!

Large off-shell contribution

Small off-shell contribution: interference
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To reach O(25) percent precision on the extracted width, significant theoretical progress is required. Just to for the
calibration — note that the NLO (top quark loop) background computation was completed only recently because
(two and more) massive loops is a problem. However, one will have to go one order higher (N3LO) and include

electroweak effects. This is a hard problem but it is well defined, and it isn't a science fiction on the scale of a few
years.
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Another famous interference example is the story of the charm Yukawa measurement. It started as an interference of

two ways to produce a J/psi and a photon in Higgs decays but evolved towards different ways to produce a Higgs in
collisions of gluons.
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Interestingly, measuring the Higgs width to 25 percent at the LHC can also help to constrain the charm Higgs
Yukawa coupling.

I'.<1l'yg—1y—1v

Imagine that from the couplings constraints, the width measurement and the SM calculations, we have

Ty Tal Ty Tal Pe =3 x 107 s re
SM SM

With the current constraint on the width, one gets a similar constraint on the charm Yukawa coupling that
what is expected to be achieved at the HL-LHC (ke < 3) .

'y =4.5752 MeV Ty < 3Tay & ke <1l = k. < 3.3

T the HL width measurement constraint is reached, the limit on charm Yukawa becomes even stronger

Ke < 2.7



An important question about the symmetry breaking caused by the Higgs field is whether its self-interaction is as
oredicted by the Standard Model (which we said looks very simplistic). At the LHC this question can be studied in the

here two Higgs b duced.
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At the HL-LHC the Higgs self-coupling will be measured to about 50 percent and many other couplings to a few
oercent. Or, much more dramatic things can happen — see talk by Yevgeny Kats.

Vs = 14 TeV, 3000 fb™' per experiment
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s it possible to have models where Higgs (assumed to be 1/2 of Run 2)

self-coupling is very different from the SM
but all other couplings are close to it? What should one do with this precision?



't is possible to have extensions of the SM where BSM effects in the Higgs trilinear couplings are much larger than in the
other ones. Hence, even if couplings of H to vector bosons etc. are strongly constrained, it is still worth investigating if
Higgs trilinear coupling is properly described by the SM.
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Durieux, McCullough, Salvioni
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What is the right framework to extract maximal informations from the planned studies of the Hlggs boson?
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A common answer these days is to use effective field theory parametrization of the BSM physics.

The central idea of EFTs is that unknown physics at high energy scales is parametrized by an infinite numlber of local
operators in the low-energy Lagrangian; the only requirement that we impose on this Lagrangian is that it is invariant
under symmetries of our choosing (e.g. the SM gauge group).

Talks by Tevong You and John Gargalionis

L= ESM ™ Z A’rL)\

EFTs give up on the renormalizability of the SM. This is a direct conseguence of saying that the SM is incomplete
theory, there is nothing modern or not-so-modern in this step. | suppose that at the end of the day the fundamental
theory that we are after has to be either finite or renormalizable or it cannot be reconstructed.

Interest in EFTs stems from the fact that current and even future LHC precision in Higgs physics allows us to probe
“reasonable” deviations from the SM using this framework..

For an on-shell perspective on EFTs, see a talk by Lance Dixon



Precision measurements can be used to constrain possible BSM contributions and the scale of New Physics. To see how
this works let us add one operator to the Standard Model (not motivated but easy to understand what is going on.)
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However, we can add another operator and it will also modifty the HZZ
interaction strength.
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The two operators can be disentangled by considering Higgs boson decay to ZZ and the associated production.
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Given that one has to deal with O(50) operators at once, this becomes a very complex endeavour that cannot be solved
without global fits. However, even the results of global fits at this point do not look very enlightening.

Experimental constraints on SMEFT from LEP electroweak observables and LHC measurements:
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Slide from Tevong You's talk



Measurements of Higgs production at high transverse momentum are very interesting from the BSM/EFT viewpoint.
Such measurements are still statistically limited but we do not see very large deviations which tells us that the Higgs is
indeed produced through a top quark loop, without substantial ultra-short-range component.
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Although EFT arguments and the current, as well as expected, precision of the coupling measurements still allows for
BSM physics in the TeV range which will be accessible at the LHC through new generation of precision measurement, it
IS probably important to think about the SM narrative if these expectations do not bear out.

SM Lagrangian extended to high-field values shows signs of a strange behaviour because values of low-energy
oarameters put the SM on the boarder of stable and meta-stable phases.
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Masses of the Higgs boson, the top quark and the strong coupling constant are extremely important for reaching o
definite conclusion about the ultimate fate of the Universe. What this would imply is an open question.
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There is an old idea that one can reduce theoretical uncertainties by considering ratios of cross sections and other
observables. Ratios may be attractive it common uncertainties in cross section/observables cancel out. The usual
oroblem with ratios is to what extent the good things keep happening in fiducial regions. However, computations for
fiducial, realistic cross sections have come a long way, so probably one should take advantage of this.

INn the ggH process, the theory uncertainty (strong coupling constant and PDFs) and un-calculated higher-orders is
orobably 4 percent; they fully cancel in the ratio below:

I'(H — v7y)
T(H — ZZ* — 4])

o(gg = H — vv)
o(gg — H — ZZ* — 4l)

These widths are affected by QCD and EW radiative corrections. QCD corrections are tiny and are known to very high
orders. It would be interesting to “observe” (highly-nontrivial) electroweak corrections to be in agreement with the SM.
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