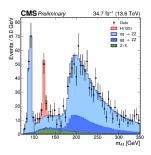
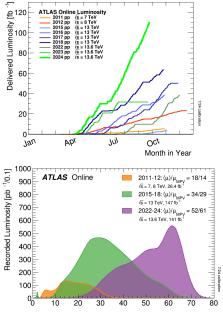
Experimental concluding talk

Higgs Hunting 2024 September 25, 2024

Kerstin Tackmann (DESY and Universität Hamburg)

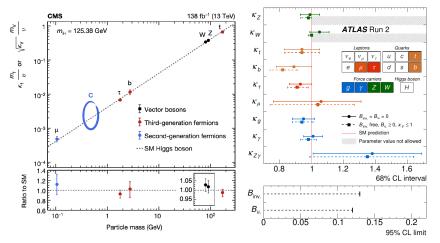



A few comments to start....

- Thank you to organizers, speakers, session chairs, ... for a very nice conference!
- Cannot do justice to everything shown in the past days just a biased selection
- Please excuse if your favorite topic/your talk is not represented here!
- Picking results from one or the other collaboration in many cases, the other collaboration has similar results as well, see https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults and https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults and https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
- Note: I am giving the references to the talks where the material was discussed, further references can be found there.

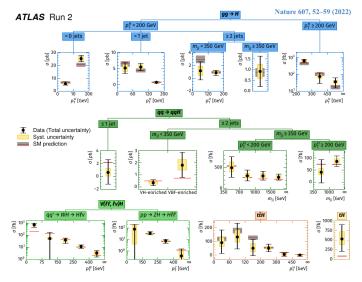
Where are we standing?

- Most precise measurements and most stringent limits from full Run2 dataset, and we are still seeing new results from Run2 data
- Run3 recorded luminosity now more than Run2 recorded luminosity – much to look forward to for the next Higgs Hunting(s)

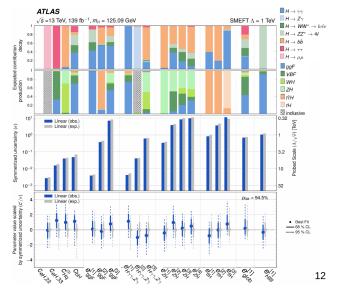

Mean Number of Interactions per Crossing 3/35

Higgs boson couplings (to other particles)

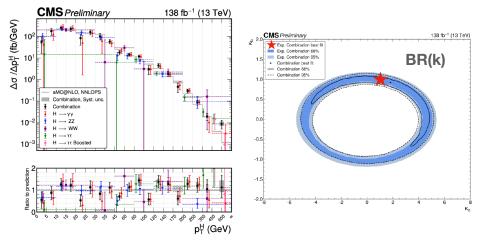
Combinations and updated/new analyses beyond the combinations


Combined couplings measurements.

 Most precise measurements of (most) Higgs couplings to-date from combinations of Run2 data: from 6% (to weak bosons) to 7-12% (for third generation fermions)


Simplified Template Cross Sections (STXS).

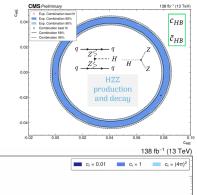
 Cross sections in various kinematic regions, split by production process chosen to reduce theory uncertainties and to optimize BSM sensitivity


EFT interpretation.

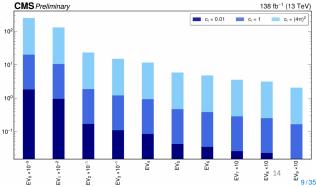
- SMEFT interpretation of STXS
- Linear: no Λ^4 terms
- Fit basis of linear combinations of Wilson coefficients

Couplings from Higgs p_T .

- Dedicated differential measurements can be obtained in finer bins, and with less model-dependence
- Interpreted in terms of *b* and *c*-quark couplings considering only the p_T shape (weaker) or also the branching ratios (stronger)



EFT interpretation.


- EFT interpretation of p_T
- 2d constraints for pairs of CP-even and CP-odd operators

c_i / (95% CL) (TeV)

>

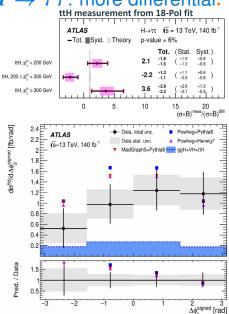
- Fit for 10 linear combinations of Wilson coefficients
- Limits on the BSM energy scale for different values of Wilson coefficients

EFT: Sandra's comparison.

ATI

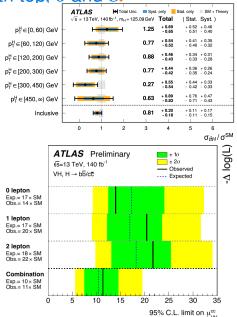
 \rightarrow comparing eigenvectors that have the strongest relation to a given Warsaw-basis Wilson coefficient.

 $EV1: (0.94c_{HG}, 0.26c_{HB}, -0.15c_{HWB}, 0.08c_{HW}, 0.14c_{bH}, -0.03c_{tG}, 0.01c_{tB})$ $F^{[1]}$: ((1.00a) 0.02


ATLAS $E_{ggF}^{(11)}$: (1.00 c_{HG} , - 0.03 c_{tG})			$\mathcal{O}(\text{Uncertainty on } c_i/\Lambda^2)$			
ATLAS Higgs STXS-1.2, arXiv:2402.05742: (ggH, VBF, WH, ZH, ttH, tH) x (p_{T}^{H} , N_{jets} , m_{jj}) combining $\gamma\gamma$, $Z\gamma$, WW, ZZ, bb, $\tau\tau \& \mu\mu$ decays * lin-only & lin+quad parametrization	EV dominated by a single WC	Warsaw-basis Wilson coeff.	ATLAS STXS	CMS differential p_T^H	Vertex	Most sensitive observables
		CHW, CHB, CHWB	0.001 - 0.1	0.001 - 1	HVV	STXS (yy, Zy) & diff
		CHG	0.001	0.001	Hgg	STXS (ggH) & diff
CMS differential p_T^H , CMS-PAS-HIG-23-013: inclusive Higgs production, combining $\gamma\gamma$, <i>WW</i> , <i>ZZ</i> , & $\tau\tau$ decay channels * <i>lin+quad parametrization</i>	EV with	CtG		0.1	Hgtt	STXS (ggH) & diff
	a strong contribution from a given WC	CtH		-	Hqq	STXS (ttH)
		Срн	0.01	0.1		STXS (Higgs width)
		CeH,22	0.001	- 1	ні	STXS (mumu)
		CeH,33	0.01			STXS (tautau)
 STXS-based eigenvectors more strongly related to a single WC. 	EV with moderate/small contribution from a given WC	CHq3	0.01	0.1	HVqq	STXS (VHbb)
		CHu	0.1	10		STXS (ZHbb)
Comparable sensitivity from		CHq1	1	1		STXS (VHbb)
		CHd	10	10		STXS (VHbb)
STXS & differential measurements,		-710				12

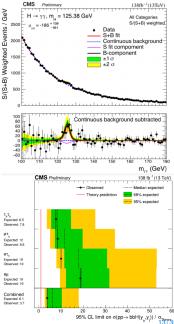
but STXS adds some more sensitivity to Hag. HII and HVag vertices.

• Significant dependence on quadratic terms for c_{HB} , c_{tG} , c_{tH} , $c_{Ha}^{(1)}$ (4 - 10 times stronger limits).

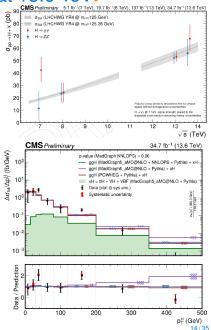

Updated measurement of H ightarrow au au: more differential.

- tt
 t H measurement improved with multiclass classifiers to separate signal and backgrounds, and neural network reconstruction of Higgs p_T
 - ★ Differential analysis of Higgs p_T in tt̄H in this channel, still with large uncertainties
- Differential analysis of Higgs p_T and m_{jj} in VBF, with good precision at high p_T and/or m_{jj} thanks to low backgrounds
- Fiducial differential cross section measurement in $H \rightarrow \tau \tau$ in VBF enhanced phase space

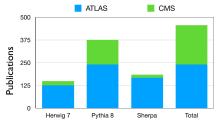
Updated measurements with top, b and c.


- Updated measurement of $t\bar{t}H(\rightarrow b\bar{b})$ with e.g. improved modeling of backgrounds $(t\bar{t}b(\bar{b}),...)$ and uncertainties
- Most precise single-channel analysis of $t\bar{t}H$
- Updated measurement of $VH(\rightarrow b\bar{b}|c\bar{c})$ with e.g. better heavy flavor tagging, improved boosted analysis, ...
- 15% improvement on $\mu_{VH}^{b\bar{b}}$ and x3 for $\mu_{VH}^{c\bar{c}}$
- |κ_c| < 4.2 at 95% CL (exp. 4.1)

Looking for very rare production processes.


• Search for $H(\rightarrow \gamma \gamma) + c$

- Higgs background from ggH production
 μ <243 at 95% CL (exp. 355)
- Search for $bar{b}H$ with H o au au|WW
- μ <3.7 at 95% CL (exp. 6.1)



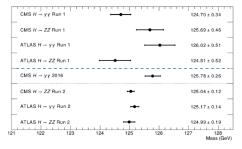
Cross section measurements at 13.6 TeV.

- 34.7 fb⁻¹ of Run3 (2022) data at 13.6 TeV
- Using new lightweight data format important development towards HL-LHC
- Use of normalizing flows to correct data/MC differences in shower shapes, isolation and energy resolution, based on $Z \rightarrow ee$

Uncertainties on parton shower modeling. Citations: LHC Higgs

- ATLAS cites Pythia + 1 or 2 others
- CMS cites mainly Pythia or none (i.e. MG5_aMC and/or POWHEG BOX)

Estimating PSEG Uncertainties

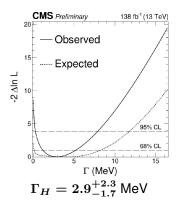

- ATLAS: compare Pythia with Herwig
- CMS: vary parameters within Pythia
- Both have their dangers!

- These uncertainties can be very sizable or even the leading systematic uncertainties
- Profile likelihood relies on good uncertainty estimates!
- We would really benefit from theory/experiment collaboration on this!

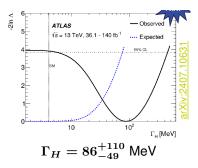
Other Higgs boson properties

Higgs mass.

- Measurements with full Run2 dataset individually with uncertainties better than 200 MeV
- For ATLAS, better precision from $H \rightarrow \gamma \gamma$ after reduction of the systematic uncertainties on the photon energy calibration
 - * Precision of 0.09% from Run1+2, $H \rightarrow \gamma \gamma + H \rightarrow 4\ell$



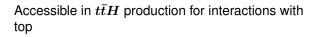
- New CMS measurement with full Run2 $H
 ightarrow 4\ell$ with precision of 0.1%
- Ongoing effort to reduce the dominant systematic uncertainty on non-uniformity of light collection in CMS $H \rightarrow \gamma \gamma$ measurement

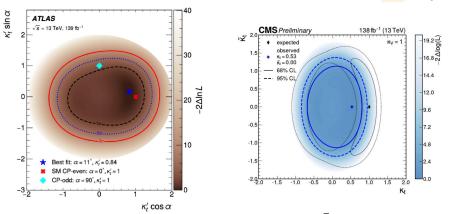

 $H \to 4\ell$ still dominated by statistical uncertainties, $H \to \gamma\gamma$ competitive thanks to large effort put to reduce uncertainties on photon energy calibration

Higgs width.

- Higgs width from $H
 ightarrow 4\ell$
 - Relies on on- and off-shell couplings being the same, and no contributions to ggH loop

- First attempt to constrain Higgs width from $t\bar{t}t\bar{t}$ production cross section and Higgs on-shell measurements
 - Assume on- and off-shell couplings to top are the same

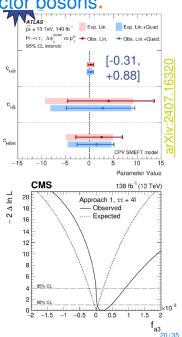

 Some discussion here – theory uncertainties play important role


d 200000

g 2000004

н

Tests of CP in fermion interactions.

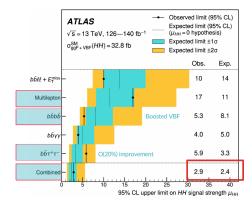


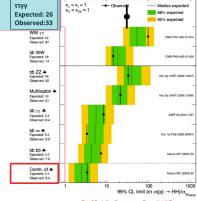
• Recent results from ATLAS and CMS use $H
ightarrow b ar{b}$, compatible with the SM

Tests of CP in interactions with vector bosons.

- Accessible in VBF, but also decays to vector bosons
- Various parametrizations, now mostly SMEFT operators or anomalous couplings (AC)
 - Results from different analyses not always easy to compare
- New VBF $H \rightarrow \tau \tau$ (ATLAS) yields strongest constraints to-date on c_{HW}
- Constraints on AC in many channels from CMS
- All results compatible with the SM

Higgs boson self-coupling

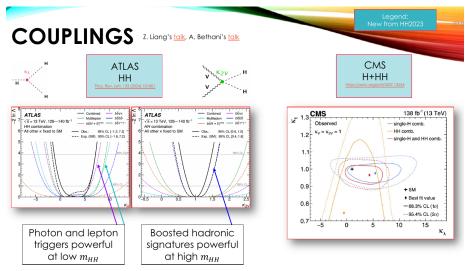

Valentina's summary:


HH CROSS SECTION

Z. Liang's talk, A. Bethani's talk

Legend: lew from HH202

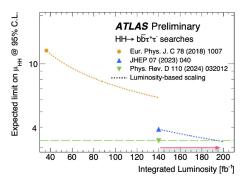
138 fb⁻¹ (13 TeV)


CMS Preliminary

CMSPublic/SummaryResultsHIG

Phys. Rev. Lett. 133 (2024) 101801

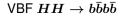
V.M.M.CAIRO

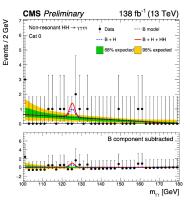

Valentina's summary

Latest observed (expected) constraints on k_{λ} at 95% CL: ATLAS [-1.2;7.2] (-1.6;7.2), CMS [-1.2;7.5] (-2.0;7.7) V.M.LCAIRO

Analysis improvements

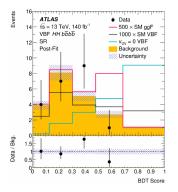
Significant improvements in analyses beyond more data, $H \rightarrow b \bar{b} \tau \tau$ as example:




- Improved MC modeling
- Improved MVA discriminants
- Improved event categorization optimized for κ_λ and κ_V constraints

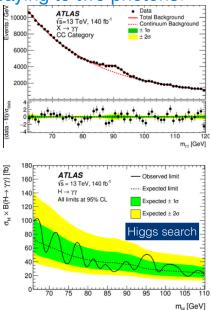
- In general also improvements in object performance and calibrations
- All this is promising for Run3 and HL-LHC

New channels in HH searches.



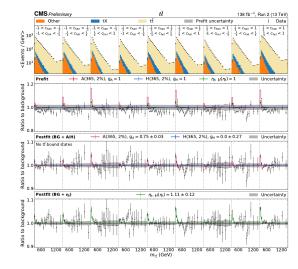
Clean, but small BR Using ML-based event categorization Limits on cross section: $33 \ge \sigma_{SM}$ (expected $26 \ge \sigma_{SM}$)

Constraints on κλ: κλ [-13, 18] (expected [-11, 16])

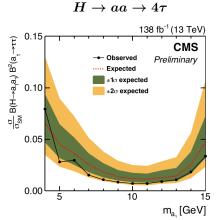

Using ML-tagger for boosted $b\bar{b}$ in large-R jets Observed: $\kappa_{2V} \in [-0.55, 1.49]$ Expected: $\kappa_{2V} \in [-0.37, 1.67]$

The rare and the not (yet?) seen

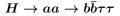
Searches for many different signatures, I can only cover a very small subset! I picked some of the results that brought some discussion

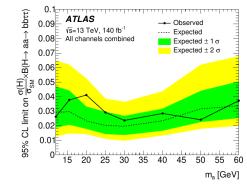

Search for light resonance decaying to two photons.

- Search for resonance decaying to $\gamma\gamma$ in 62 $< m_{\gamma\gamma}$ < 120 GeV
- Experimental challenge: suppressing and understanding background from $Z \rightarrow ee$ with *e* misreconstructed as (converted) photon
- No significant excess (largest excess: 1.7σ (local) at 95.4 GeV)
 - \star CMS: 2.9 σ (local) at the same mass
- Let's see what the Run3 data has to say...


Search for $A/H \rightarrow t\bar{t}$.

- Search for $t\bar{t}$ resonances
 - ★ Dominant A/H decay for low tanβ
 - Complicated peak-dip interference structure
- Excess of $>5 \sigma$ (local) close to threshold, fitted equally well by A and by color-singlet $t\bar{t}$ bound state
- Some things to be understood...




Searches for $H \rightarrow aa$.

Motivated in models with additional light pseudo scalar

Boosted a bosons \rightarrow non-isolated leptons

First search for this signature in ATLAS

HL-LHC and beyond

Towards HL-LHC: phase 2 upgrades.

Challenges: pile up, radiation dose, trigger rates, ...

Upgrades to many of the detector components:

New Inner Tracking Detector (ITk)

- · All silicon with 9 layers up to |n| = 4
- Less material, finer segmentation
- · Improve vertexing, tracking, b-tagging

New High Granularity Timing Detector (HGTD)

- Precision track timing (30 ps) with LGAD in the forward region
 Improved pile-up separation and bunch-by-bunch
- Improved pile-up separation and bunch-by-bunch luminosity

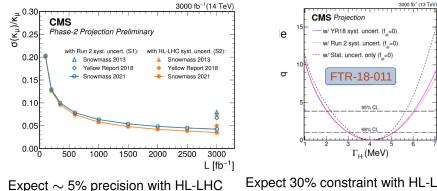
Calorimeter Electronics

- On-detector/off-detector electronics upgrades of LAr and Tile Calorimeter
- · Provide 40 MHz readout for triggering

New Muon Chambers and electronics

Inner barrel region with new RPCs, sMDTs, and TGCs
 Improved trigger efficiency/momentum resolution.

reduced fake rate

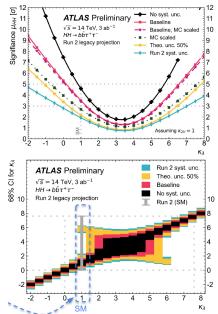

Upgraded Trigger and Data Acquisition System

Single Level Trigger with 1 MHz output (x 10 current)
 Improved DAQ system with faster FPGAs

$H ightarrow \mu \mu$ and Higgs width with HL-LHC.

 Improvements in tracker and muon spectrometer (extended acceptance, reduced material budget for tracker)

Expect 30% constraint with HL-LHC (with the usual assumptions)


$HH ightarrow b ar{b} au au$ at HL-LHC.

- Extrapolate new $HH \rightarrow b\bar{b}\tau\tau$ search to 3000 fb⁻¹ under various assumptions on systematic uncertainties
- New: projections for non-SM κ_{λ}
- Improvements in *b*-tagging, *τ* identification, triggers, ... can bring further improvements

MVAs have never been more accessible! Analyses will be able train advanced models

But let's be cautious!

- Explainability / interpretability tradeoffs
- > Harmonise tooling & models to minimise expensive trainings
 - Discussion: need improvements in theory predictions and uncertainties for HL-LHC (top mass renormalization scheme, EW corrections, ...)

Conclusions.

- New and improved results on Run2 data with improvements in object performance, analysis strategies, ...
- We have a sizeable Run3 dataset to explore
- In some places we are/will be impacted by theory uncertainties – close collaboration between theory and experiment is crucial
- Much effort in upgrades for phase 2
- There is much to look forward to for future Higgs Huntings

Thank you for a very nice conference!

