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Higgs Couplings
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Figure 5: Reduced Higgs boson coupling strength modifiers and their uncertainties. They are defined as
^�<�/vev for fermions (� = C, 1, g, `) and

p
^+<+ /vev for vector bosons as a function of their masses <� and <+ .

Two fit scenarios with ^2 = ^C (coloured circle markers), or ^2 left free-floating in the fit (grey cross markers) are
shown. Loop-induced processes are assumed to have the SM structure, and Higgs boson decays to non-SM particles
are not allowed. The vertical bar on each point denotes the 68% confidence interval. The ?-values for compatibility
of the combined measurement and the SM prediction are 56% and 65% for the respective scenarios. The lower panel
shows the values of the coupling strength modifiers. The grey arrow points in the direction of the best-fit value and
the corresponding grey uncertainty bar extends beyond the lower panel range.

not substantially a�ect the kinematic properties of the Higgs boson decay products. The fit results for the
scenario in which invisible or undetected non-SM Higgs boson decays are assumed not to contribute to
the total Higgs decay width, i.e. ⌫inv. = ⌫u. = 0, are shown in Figure 6 together with the results for the
scenario allowing such decays. To avoid degenerate solutions, the latter constrains ⌫u. � 0 and imposes the
additional constraint ^+  1 that naturally arises in a variety of scenarios of physics beyond the SM [54,
55]. All measured coupling strength modifiers are compatible with their SM predictions. When allowing
invisible or undetected non-SM Higgs boson decays to contribute to the total Higgs boson decay width,
the previously measured coupling strength modifiers do not change significantly, while upper limits of
⌫u. < 0.12 (expected 0.21) and ⌫inv. < 0.13 (expected 0.08) are set at 95% CL on the corresponding
branching fraction. The latter improves on the current best limit of ⌫inv. < 0.145 (expected 0.103) from
direct ATLAS searches [42].

In all tested scenarios, the statistical and the systematic uncertainty contribute almost equally to the
total uncertainty in most of the ^ parameter measurements. The exceptions are the ^`, ^/W , ^2 and ⌫u.

measurements for which the statistical uncertainty still dominates.

Kinematic properties of Higgs boson production probing the internal structure of its couplings are studied in
the framework of simplified template cross sections [44, 56–58]. The framework partitions the phase space
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2018 ( ): First direct observation 
of top-quark Yukawa coupling 

2020 ( ): First direct 
evidence that Higgs field is 
responsible for mass of 2nd gen. 
leptons 

2022 ( ): First hints that 
Higgs field is responsible for mass 
of 2nd gen. quarks 

2024 (Sign ): Exclude 
 using WH via VBF

ttH

H → μμ

H → cc

HWW/HZZ
λWZ = κW /κZ < 0

CMS 1804.02610/ ATLAS 1806.00425 
CMS 2407.10896/ ATLAS 2407.10904

CMS 2009.04363 / ATLAS 2007.07830

CMS 2205.05550 / ATLAS 2201.11428 
ATLAS-CONF-2024-010

CERN-EP-2022-057

The Higgs sector continues to yield impressive fundamental discoveries

CMS 2405.16566
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Higgs Precision Era
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In Run 2 we have entered the era of precision Higgs physics…



1) Experimental projection is 
pessimistic considering current 
performance 

2) Plot shown assumes reduction by 
factor 2 of today’s uncertainties 

Theory uncertainty is expected to 
dominate HL-LHC Higgs physics

6
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CERN Yellow Report 
2019 HL/HE-LHC

HL-LHC construction underway 
~10x integrated luminosity of LHC 
(LHC 0.3 ab-1, HL-LHC: 3 ab-1)

Upcoming Experiments
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Improving Precision

+ Parton Shower 
+ Resummation 
+ Hadronisation 
+ Underlying Event

With , expect: NLO ~ 10% correction, NNLO ~ 1% correction 
Higgs channels are important exceptions, receive much larger corrections! 

αs ∼ 0.1

Parton Distribution 
Functions (PDFs)

Hard Scattering 
Matrix Element

d� =

Z
dxadxbf(xa)f(xb)d�̂ab(xa, xb)FJ +O ((⇤/Q)m)

<latexit sha1_base64="ABC189kDu7fZoYbXpXuPsmQC62s="></latexit><latexit sha1_base64="ABC189kDu7fZoYbXpXuPsmQC62s=">AAAC43icbVHLbtQwFHXCo2V4TWHJxmKENAPVkNBApwtQJSSEEBJTiWkLkzRyHCexaieR7VQdWfkCdogtf8NP8Dc4j8VMy5UsH59r33PudVQyKpXj/LXsGzdv3d7avjO4e+/+g4fDnUfHsqgEJgtcsEKcRkgSRnOyUFQxcloKgnjEyEl0/r7Jn1wQIWmRf1WrkgQcpTlNKEbKUOHwj8+RygTXcQ19SVOO4Fvo01zBtcRliDaPEUzGhpy0WzSB2m+dLEUaBdqZOt7BgefuOtO92ezN/usGeJ63N6vXxTKkdKdYhxpFdVNwF7blPoSfaviik8SI6S+1z0iixnDsfzatxejl0eSMQ+gLmmZqMgiHIyPaBrwO3B6MQB/zcMfa8uMCV5zkCjMk5dJ1ShVoJBTFjNQDv5KkRPgcpWRpYI44kYFum6zhM8PEMCmEWWZQLbv+QiMu5YpH5mbTgbyaa8j/5ZaVSmaBpnlZKZLjTiipGFQFbP4OxlQQrNjKAIQFNV4hzpBAWJkf3qgUX9BS9q4vO9sbLqRpOiNx3YzOvTqo6+D41dR1pu6RNzp81w9xGzwBT8EYuGAfHIKPYA4WAFvPrbn1zfpuE/uH/dP+1V21rf7NY7AR9u9/y7DjGQ==</latexit><latexit sha1_base64="ABC189kDu7fZoYbXpXuPsmQC62s="></latexit><latexit sha1_base64="ABC189kDu7fZoYbXpXuPsmQC62s="></latexit>

Non-perturbative 
effects ~ few %

a b
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Gluon Fusion 
Impact of quark mass effects  

aN3LO PDFs 

Quest towards N4LO 

Signal-background Interference 

Boosted Production 
Anomalous couplings 

Towards N3LO 

Vector Boson Fusion 
Non-factorisable contributions 

Parton Shower Uncertainties 

NNLO with Production and Decay

9

Outline

*All of these areas are very active, apologies for my very biased topic selection 

ttH Production 
Results at NNLO 

Massive 2-loop Amplitudes 

HH Production 
Overview  

EW Corrections
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Figure 18: Charged MSSM Higgs branching ratios as functions of the charged Higgs mass within the
mmod+

h scenario [137] for two values of tgβ obtained by a combination of FeynHiggs [121] and Hdecay

[54]. From Ref. [66].

Ht, b

g

g

Figure 19: Diagrams contributing to gg → H at lowest order.

masses. Gluon radiation leads to two-parton final states with invariant energy ŝ ≥ M2
H in the gg, gq

and qq channels at NLO. In general the hadronic cross section can be split into seven parts [68, 108,
70, 139, 140],

σ(pp → H +X) = σ0

[
1 + C

αs

π

]
τH

dLgg

dτH
+∆σgg +∆σgq +∆σqq̄ +∆σqq +∆σqq′ (162)

where the finite parts of virtual corrections C and the real corrections ∆σgg, ∆σgq and ∆σqq̄ (same-
flavour quark-antiquark initial states) start to contribute at NLO, while ∆σqq (same-flavour quark-quark
and antiquark-antiquark initial states) and ∆σqq′ (different-flavour quark and antiquark initial states)
appear for the first time at NNLO. The renormalization scale µR of αs and the factorization scale µF

of the parton densities are fixed properly, in general at µR = µF = MH/2. The quark-loop mass has
been identified with the pole mass MQ, while the QCD coupling αs and the parton density functions
are defined in the MS scheme with five active flavours.

We define the NLO K factor as the ratio

KNLO =
σNLO

σLO
(163)

45
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Heavy Top Limit (HTL): integrate out top quarks ( ) 
Introduces couplings  &  between gluons and Higgs 
Removes dependence on  and decreases the number of loops by 1

mT → ∞
ch chh

mT

HTL valid for
p
ŝ ⌧ 2mT

A Useful Approximation: Heavy Top Limit

NLO NNLO N3LO

Anastasiou, Melnikov 02; Harlander, Kilgore 
02; Ravindran, Smith, van Neerven 03;

Anastasiou, Duhr, Dulat, (Furlan), (Gehrmann), 
Herzog, Mistlberger 16; Mistlberger 18;

NLO/LO ≈ 2.3 NNLO/NLO ≈ 1.3 N3LO/NNLO ≈ 1.03
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Gluon Fusion: Error Budget
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Figure 2: Cummulative contributions to the total relative uncertainty as a function of the
collider energy. according to eqs. (26)-(28).

In combination we find

��PP!H+X = �(PDF+↵S) + �(theory) = +3.63pb
�4.72pb

�
+7.46%
�9.7%

�
. (39)

To derive the various sources of uncertainties we followed the prescriptions
outlined above. In fig. 2 we show how the relative size of the various sources
of uncertainty varies as a function of the hadron collider energy.

In comparison to the numerical cross section predictions derived in ref. [3]
we observe only minor changes. The di↵erence arise solely due to the exact
computation of the N3LO QCD corrections in the heavy top quark e↵ective
theory obtained in ref. [16]. The deviations are well within the uncertainty
that was associated with the truncation of the threshold expansion used for
the results of ref. [3]. This particular source of uncertainty is now removed.

Finally, we use iHixs to derive state of the art predictions for the gluon
fusion Higgs production cross section at di↵erent collider energies. We strictly
follow the recommendations of [3, 4]. Figure 3 shows the state-of-the art
predictions and uncertainty estimates for the inclusive cross section obtained

18

Dulat, Lazopoulos, Mistlberger 18

NNLO top-quark mass dep.

Mixed QCD-EW corrections
NNLO b,c mass dep. + interferences

More data, better  deter.αs

Missing  PDFsN3LO

Progress 
: Now known to NNLO 

: Now known to NNLO 

: gg known, reduced from ~1% to 0.6% 

: Progress but uncertainty persists 

: Some ingredients known

δ(1/mt)

δ(t, b, c)

δ(EW)

δ(PDF − TH)

δ(scale)

2018 Error Budget

Czakon, Niggetiedt 20; Czakon, Harlander, Klappert, Niggetiedt 21

Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer 20; + 
Bonetti, Panzer, Smirnov, Tancredi, Melnikov, …

McGowan, Cridge, Harland-Lang, Thorne 22; NNPDF 24

Missing N4LO

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, 
Steinhauser 22

Niggetiedt, Usovitsch 23 
Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 23
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: NNLO with Top Mass Dependenceδ(1/mt)

Czakon, Niggetiedt 20;  
Czakon, Harlander, Klappert, Niggetiedt 21

Decreases  by @ 13 TeV compared to heavy top limit (HTL) 

Intricate interplay between mass effects  
Complete NNLO results obtained using STRIPPER framework

σtot −0.32 %

gg (+0.62%), qg (−18%), qq (−15%)

Figure 1: Complete set of Feynman diagrams with two fermion loops contributing to the

Higgs-gluon form factor at three-loop order. The fermion loop connected to the Higgs-

boson line corresponds to a massive quark. The quark of the second fermion loop may be

either massive or massless.

2 Finite remainders

Consider the amplitude for the fusion of two gluons of momenta p1,2, helicities �1,2 and

adjoint-representation colors a1,2, followed by the production of one, possibly o↵-shell,

Higgs boson:

� iM
⇥
g(p1,�1, a1) + g(p2,�2, a2) ! H

⇤
⌘

i�
a1a2

⇥
(✏1 · p2) (✏2 · p1)� (✏1 · ✏2) (p2 · p1)

⇤ 1
v

↵s

⇡
C . (2.1)

Here, v is the Higgs-doublet Vacuum Expectation Value. The coupling of a single quark

field, Q, of mass M 6= 0 to the Higgs-boson field, H, is given by the tree-level Lagrangian

– 3 –

t
tH @ 3-loop & HJ @ 2-loop with  using numerical 

solution of differential equations
mt

&
t

2Re⟨M(1)
exact |M(2)

exact⟩ |regulated

gg → Hg

z = 1 − m2
h /s,

λ = t /(t + u)



H @ 3-loop with two different quark masses  and  
in the on-shell quark mass scheme 

3-loop integrals computed using asymptotic 
expansions & AMFlow

mt mb

14

: NNLO with Top/Bottom Mass Dependenceδ(t, b, c)

Niggetiedt, Usovitsch 23 
Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 23

Figure 1: Complete set of Feynman diagrams with two fermion loops contributing to the

Higgs-gluon form factor at three-loop order. The fermion loop connected to the Higgs-

boson line corresponds to a massive quark. The quark of the second fermion loop may be

either massive or massless.

2 Finite remainders

Consider the amplitude for the fusion of two gluons of momenta p1,2, helicities �1,2 and

adjoint-representation colors a1,2, followed by the production of one, possibly o↵-shell,

Higgs boson:

� iM
⇥
g(p1,�1, a1) + g(p2,�2, a2) ! H

⇤
⌘

i�
a1a2

⇥
(✏1 · p2) (✏2 · p1)� (✏1 · ✏2) (p2 · p1)

⇤ 1
v

↵s

⇡
C . (2.1)

Here, v is the Higgs-doublet Vacuum Expectation Value. The coupling of a single quark

field, Q, of mass M 6= 0 to the Higgs-boson field, H, is given by the tree-level Lagrangian

– 3 –

t
b

Very large decrease of  by @ 13 TeV compared to heavy top limit (HTL) 

Results sensitive to the choice of renormalization scheme for the Yukawa coupling 
(on-shell vs  ), with the on-shell scheme receiving large perturbative corrections

σtot −4.2 %

MS

4

TABLE I. Effects of interference of bottom- and top-quark amplitudes on Higgs production in the gluon-fusion channel at LHC
@ 7, 8, 13, 13.6, and 14 TeV. The results are obtained with the NNPDF31 nnlo as 0118 [43] PDF set with a Higgs mass of
mH = 125 GeV and quark masses of mt =

√

23/12mH ≈ 173.055 GeV and mb =
√

1/684mH ≈ 4.779 GeV. In the second-to-
last column, the bottom Yukawa coupling Yb =

√
2mb/v is renormalized in the MS scheme, where mb,MS(mb,MS) = 4.18 GeV.

The calculation was performed at a central scale of µF = µR = mH/2. The scale uncertainties were determined with seven-point
variation. The same scale setting was used in the numerator and denominator in the ratio presented in the last column. The
HEFT values have been obtained with SusHi [44, 45].

Order σHEFT [pb] (σt − σHEFT) [pb] σt×b [pb] σt×b (Yb,MS) [pb] σt×b/σHEFT [%]
√
s = 7 TeV

O(α2
s) +5.85 – −0.708 −0.439

LO 5.85+1.56
−1.11 – −0.708+0.13

−0.19 −0.439+0.10
−0.16 −12

O(α3
s) +7.14 −0.0604 −0.226 −0.264

NLO 12.99+2.89
−2.14 −0.0604+0.021

−0.037 −0.934+0.09
−0.07 −0.703+0.11

−0.12 −7.2+1.0
−0.8

O(α4
s) +3.28 +0.0386(2) +0.121(3) −0.026(2)

NNLO 16.27+1.45
−1.61 −0.0218(2)+0.035

−0.009 −0.813(3)+0.10
−0.04 −0.729(2)+0.04

−0.01 −5.0+1.0
−0.8√

s = 8 TeV
O(α2

s) +7.39 – −0.895 −0.554
LO 7.39+1.98

−1.40 – −0.895+0.17
−0.24 −0.554+0.13

−0.20 −12
O(α3

s) +9.14 −0.0873 −0.268 −0.323
NLO 16.53+3.63

−2.73 −0.0873+0.030
−0.052 −1.163+0.10

−0.08 −0.877+0.13
−0.14 −7.0+1.0

−0.8

O(α4
s) +4.19 +0.0523(2) +0.167(3) −0.022(2)

NNLO 20.72+1.84
−2.06 −0.0350(2)+0.048

−0.013 −0.996(3)+0.12
−0.05 −0.899(2)+0.04

−0.02 −4.8+0.9
−0.8√

s = 13 TeV
O(α2

s) +16.30 – −1.975 −1.223
LO 16.30+4.36

−3.10 – −1.98+0.38
−0.53 −1.22+0.29

−0.44 −12
O(α3

s) +21.14 −0.303 −0.446(1) −0.623(1)
NLO 37.44+8.42

−6.29 −0.303+0.10
−0.17 −2.42+0.19

−0.12 −1.85+0.26
−0.26 −6.5+0.9

−0.8

O(α4
s) +9.72 +0.147(1) +0.434(8) +0.019(5)

NNLO 47.16+4.21
−4.77 −0.156(1)+0.13

−0.03 −1.99(1)+0.30
−0.15 −1.83(1)+0.08

−0.03 −4.2+0.9
−0.8√

s = 13.6 TeV
O(α2

s) +17.47 – −2.117 −1.311
LO 17.47+4.67

−3.32 – −2.12+0.40
−0.57 −1.31+0.31

−0.47 −12
O(α3

s) +22.76 −0.338 −0.464(1) −0.659(1)
NLO 40.23+9.07

−6.77 −0.338+0.11
−0.18 −2.58+0.20

−0.12 −1.97+0.28
−0.28 −6.4+0.9

−0.8

O(α4
s) +10.47 +0.162(1) +0.464(9) +0.022(6)

NNLO 50.70+4.53
−5.14 −0.176(1)+0.14

−0.03 −2.12(1)+0.33
−0.16 −1.95(1)+0.09

−0.03 −4.2+0.9
−0.8√

s = 14 TeV
O(α2

s) +18.26 – −2.213 −1.370
LO 18.26+4.88

−3.47 – −2.21+0.42
−0.59 −1.37+0.32

−0.49 −12
O(α3

s) +23.86 −0.362 −0.475(1) −0.682(1)
NLO 42.12+9.51

−7.10 −0.362+0.12
−0.20 −2.69+0.21

−0.13 −2.05+0.29
−0.29 −6.4+0.9

−0.8

O(α4
s) +10.98 +0.171(1) +0.488(9) +0.027(6)

NNLO 53.10+4.75
−5.39 −0.191(1)+0.15

−0.04 −2.20(1)+0.34
−0.17 −2.03(1)+0.09

−0.03 −4.1+0.9
−0.8

appropriate as a conservative estimate for phenomeno-
logical applications.

In order to make sure that our calculation is correct
and the surprising features listed above are not due to
mistakes in the calculation, we have successfully repro-
duced the fixed-order differential distributions at the cen-
tral scale presented in Refs. [22, 49]. This serves as a
check of the real-virtual and real-real contributions. For
checks of the three-loop Higgs-gluon form factor by com-
parison to previous work [50, 51], we refer to Ref. [37].

CONCLUSIONS AND OUTLOOK

We have computed the top-bottom interference con-
tribution to the Higgs production cross section in gluon-
gluon fusion at NNLO. The result addresses one of the
most important remaining theory uncertainties for this
process. We find that the effect is sizable and, therefore,
crucial for precision predictions at the percent level. The
result is compatible with conservative estimates previ-
ously available in the literature. Interestingly, the scale
uncertainties grow slightly from NLO to NNLO. It has

4

TABLE I. Effects of interference of bottom- and top-quark amplitudes on Higgs production in the gluon-fusion channel at LHC
@ 7, 8, 13, 13.6, and 14 TeV. The results are obtained with the NNPDF31 nnlo as 0118 [43] PDF set with a Higgs mass of
mH = 125 GeV and quark masses of mt =

√

23/12mH ≈ 173.055 GeV and mb =
√

1/684mH ≈ 4.779 GeV. In the second-to-
last column, the bottom Yukawa coupling Yb =

√
2mb/v is renormalized in the MS scheme, where mb,MS(mb,MS) = 4.18 GeV.

The calculation was performed at a central scale of µF = µR = mH/2. The scale uncertainties were determined with seven-point
variation. The same scale setting was used in the numerator and denominator in the ratio presented in the last column. The
HEFT values have been obtained with SusHi [44, 45].

Order σHEFT [pb] (σt − σHEFT) [pb] σt×b [pb] σt×b (Yb,MS) [pb] σt×b/σHEFT [%]
√
s = 7 TeV

O(α2
s) +5.85 – −0.708 −0.439

LO 5.85+1.56
−1.11 – −0.708+0.13

−0.19 −0.439+0.10
−0.16 −12

O(α3
s) +7.14 −0.0604 −0.226 −0.264

NLO 12.99+2.89
−2.14 −0.0604+0.021

−0.037 −0.934+0.09
−0.07 −0.703+0.11

−0.12 −7.2+1.0
−0.8

O(α4
s) +3.28 +0.0386(2) +0.121(3) −0.026(2)

NNLO 16.27+1.45
−1.61 −0.0218(2)+0.035

−0.009 −0.813(3)+0.10
−0.04 −0.729(2)+0.04

−0.01 −5.0+1.0
−0.8√

s = 8 TeV
O(α2

s) +7.39 – −0.895 −0.554
LO 7.39+1.98

−1.40 – −0.895+0.17
−0.24 −0.554+0.13

−0.20 −12
O(α3

s) +9.14 −0.0873 −0.268 −0.323
NLO 16.53+3.63

−2.73 −0.0873+0.030
−0.052 −1.163+0.10

−0.08 −0.877+0.13
−0.14 −7.0+1.0

−0.8

O(α4
s) +4.19 +0.0523(2) +0.167(3) −0.022(2)

NNLO 20.72+1.84
−2.06 −0.0350(2)+0.048

−0.013 −0.996(3)+0.12
−0.05 −0.899(2)+0.04

−0.02 −4.8+0.9
−0.8√

s = 13 TeV
O(α2

s) +16.30 – −1.975 −1.223
LO 16.30+4.36

−3.10 – −1.98+0.38
−0.53 −1.22+0.29

−0.44 −12
O(α3

s) +21.14 −0.303 −0.446(1) −0.623(1)
NLO 37.44+8.42

−6.29 −0.303+0.10
−0.17 −2.42+0.19

−0.12 −1.85+0.26
−0.26 −6.5+0.9

−0.8

O(α4
s) +9.72 +0.147(1) +0.434(8) +0.019(5)

NNLO 47.16+4.21
−4.77 −0.156(1)+0.13

−0.03 −1.99(1)+0.30
−0.15 −1.83(1)+0.08

−0.03 −4.2+0.9
−0.8√

s = 13.6 TeV
O(α2

s) +17.47 – −2.117 −1.311
LO 17.47+4.67

−3.32 – −2.12+0.40
−0.57 −1.31+0.31

−0.47 −12
O(α3

s) +22.76 −0.338 −0.464(1) −0.659(1)
NLO 40.23+9.07

−6.77 −0.338+0.11
−0.18 −2.58+0.20

−0.12 −1.97+0.28
−0.28 −6.4+0.9

−0.8

O(α4
s) +10.47 +0.162(1) +0.464(9) +0.022(6)

NNLO 50.70+4.53
−5.14 −0.176(1)+0.14

−0.03 −2.12(1)+0.33
−0.16 −1.95(1)+0.09

−0.03 −4.2+0.9
−0.8√

s = 14 TeV
O(α2

s) +18.26 – −2.213 −1.370
LO 18.26+4.88

−3.47 – −2.21+0.42
−0.59 −1.37+0.32

−0.49 −12
O(α3

s) +23.86 −0.362 −0.475(1) −0.682(1)
NLO 42.12+9.51

−7.10 −0.362+0.12
−0.20 −2.69+0.21

−0.13 −2.05+0.29
−0.29 −6.4+0.9

−0.8

O(α4
s) +10.98 +0.171(1) +0.488(9) +0.027(6)

NNLO 53.10+4.75
−5.39 −0.191(1)+0.15

−0.04 −2.20(1)+0.34
−0.17 −2.03(1)+0.09

−0.03 −4.1+0.9
−0.8

appropriate as a conservative estimate for phenomeno-
logical applications.

In order to make sure that our calculation is correct
and the surprising features listed above are not due to
mistakes in the calculation, we have successfully repro-
duced the fixed-order differential distributions at the cen-
tral scale presented in Refs. [22, 49]. This serves as a
check of the real-virtual and real-real contributions. For
checks of the three-loop Higgs-gluon form factor by com-
parison to previous work [50, 51], we refer to Ref. [37].

CONCLUSIONS AND OUTLOOK

We have computed the top-bottom interference con-
tribution to the Higgs production cross section in gluon-
gluon fusion at NNLO. The result addresses one of the
most important remaining theory uncertainties for this
process. We find that the effect is sizable and, therefore,
crucial for precision predictions at the percent level. The
result is compatible with conservative estimates previ-
ously available in the literature. Interestingly, the scale
uncertainties grow slightly from NLO to NNLO. It has

Liu, Ma, Wang 17; Liu, Ma 22, 22;



H @ 3-loop with two different quark masses  and  in the  mass schememt mb MS
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: NNLO with Top/Bottom Mass Dependenceδ(t, b, c)

Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 23

For , mass scheme uncertainty for  is very small 
Perturbative corrections to top-bottom interference much more stable in 

mh = 125 GeV mt
MS

Table 5. Top-bottom interference contribution to the gluon-gluon fusion cross section for various computational
setups. The results are computed for LHC @ 13 TeV using the NNPDF31 nnlo as 0118 PDF set. The central
scale is chosen at µR “ µF “ mH{2. The scale uncertainties are determined with seven-point variation.

Order �tˆb [pb]
?

s “ 13 TeV

5FS 5FS 5FS 4FS

mt “ 173.06 GeV mt “ 173.06 GeV mtpmtq “ 162.7 GeV mt “ 173.06 GeV

mbpmbq “ 4.18 GeV mb “ 4.78 GeV mbpmbq “ 4.18 GeV mbpmbq “ 4.18 GeV

Op↵2
sq ´1.11 ´1.98 ´1.12 ´1.15

LO ´1.11`0.28
´0.43 ´1.98`0.38

´0.53 ´1.12`0.28
´0.42 ´1.15`0.29

´0.45

Op↵3
sq ´0.65 ´0.44 ´0.64 ´0.66

NLO ´1.76`0.27
´0.28 ´2.42`0.19

´0.12 ´1.76`0.27
´0.28 ´1.81`0.28

´0.30

Op↵4
sq `0.02 `0.43 ´0.02 ´0.02

NNLO ´1.74p2q`0.13
´0.03 ´1.99p2q`0.29

´0.15 ´1.78p1q`0.15
´0.03 ´1.83p2q`0.14

´0.03

the masses of the gauge bosons are defined in the on-shell scheme by default, the mixed approach is

inconsistent. Ignoring this issue, we note that the main improvements to the perturbation series of

our problem are already captured by the mixed scheme. For the top-quark mass, the renormalisation

scheme seems to have very little impact on the final result. Lastly, the NNLO result in the 4FS is

5.2% lower than in the 5FS and agrees well within scale uncertainties. The magnitude of this decrease

is of a similar size as observed in HEFT (see tab. 2).

Similar to the total cross section, the Higgs-rapidity distribution due to the top-bottom inter-

ference (right panel of fig. 6) also shows that the MS renormalisation generally yields smaller scale

uncertainties. The di↵erent schemes are compatible within the estimated error bands. The Higgs-pT
distribution (left panel of fig. 6) reveals that the main improvement of the uncertainties comes from

the low-pT region, specifically the first bin below 10 GeV. For higher pT , the scale uncertainties are of

very similar size, and even slightly smaller for the OS scheme. At low pT , the e↵ect of finite bottom-

quark masses is highly relevant, reaching almost 8% of the total cross section, whereas the e↵ect is

almost negligible (below 1%) above 50 GeV. The rapidity distribution shows less-pronounced features,

closely resembling a constant shift of about ´4% across all rapidity bins. The pT distributions were

compared to ref. [23] for the OS-renormalised cross section (see fig. 8). We find good agreement except

for very low pT , where the central value is identical but our scale uncertainties are slightly smaller.

The MS-renormalised pT distribution was also successfully checked against ref. [24] (see fig. 9).

In figs. 7, we compare distributions in HEFT against the cross sections in full QCD3. As is well-

known, the pT distribution is very sensitive to the inclusion of finite-quark-mass e↵ects, as the large-pT
tail has a di↵erent scaling behaviour in HEFT. This can be understood from a simple dimensional

analysis. At very high pT , the only relevant mass scale is pT itself. d�{dp
2
T

has mass dimension ´4,

ergo in full QCD the tail must scale as
d�

dp
2
T

„ p
´4
T

. (3.2)

But in HEFT the cross section must always be proportional to 1{v2, where v is the vacuum expectation

value, because the Higgs-gluon coupling in HEFT always gives a factor of 1{v. Therefore the large-pT
tail in HEFT scales as

d�

dp
2
T

„ p
´2
T

v
´2 (3.3)

3Contributions without top quark couplings are excluded, since they are negligible. We also neglect couplings to

quarks lighter than the bottom quark.
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Table 3. E↵ect of the finite top-quark mass on the gluon-gluon fusion cross section for two di↵erent compu-
tational setups. The results are computed for LHC @ 13 TeV using the NNPDF31 nnlo as 0118 PDF set. The
central scale is chosen at µR “ µF “ mH{2. The scale uncertainties are determined with seven-point variation.

Order p�t ´ �HEFTq [pb]
?

s “ 13 TeV

5FS 4FS

mt “ 173.06 GeV mt “ 173.06 GeV

mbpmbq “ 4.18 GeV

LO - -

Op↵3
sq ´0.30 ´0.27

NLO ´0.30`0.10
´0.17 ´0.27`0.09

´0.16

Op↵4
sq `0.14 `0.12

NNLO ´0.16`0.13
´0.03 ´0.15`0.10

´0.02

�t, and in HEFT. The di↵erence between the 5FS and 4FS (second and third column of tab. 3) only

amounts to ´0.01 pb at NNLO. We remind, however, that there is a significant ´2.5% shift between

the 5FS and 4FS results in HEFT itself (see tab. 2). The influence of the flavour scheme beyond

HEFT is tiny, because the e↵ects of a finite top-quark mass are power-suppressed and at NNLO only

amount to roughly 3‰ of the total cross section.

In tab. 4 the di↵erence of the cross section �t in the two renormalisation schemes considered for

the top-quark mass is presented. We find that it only amounts to ´0.01 pb at NNLO.

Table 4. Di↵erence of cross sections for Higgs production through a closed top-quark loop with the top-quark
mass defined either in the MS or the OS scheme. The results are computed for LHC @ 13 TeV using the
NNPDF31 nnlo as 0118 PDF set. The central scale is chosen at µR “ µF “ mH{2. The scale uncertainties are
determined with seven-point variation.

Order p�MS
t ´ �

OS
t q [pb]

?
s “ 13 TeV

Op↵2
sq ´0.04

LO ´0.04`0.12
´0.17

Op↵3
sq `0.02

NLO ´0.02`0.14
´0.30

Op↵4
sq `0.01

NNLO ´0.01`0.12
´0.24

Tab. 5 presents the results for the top-bottom interference contribution to the cross section �tˆb.

As already noticed in ref. [13], the interference converges quite badly if the bottom-quark mass is

OS-renormalised, as indicated by the alternating perturbative corrections of a similar order of mag-

nitude (see third column of tab. 5). Furthermore, scale uncertainties fail to correctly estimate the

e↵ects of higher orders and actually increase from NLO to NNLO, reaching 15%. However, results

for MS-renormalised bottom-quark masses (second column) show a much better perturbative conver-

gence and additionally, we observe a decrease in scale uncertainties to below 8%. Adapting a mixed

renormalisation scheme, in which only the Yukawa coupling is renormalised in the MS scheme, while

the mass in the propagators is kept in the OS scheme, also results in a better convergence and reduced

scale uncertainties as noted in ref. [13]. Without the inclusion of electroweak corrections this mixed ap-

proach is valid, but if these e↵ects are taken into account as well, the Higgs vacuum expectation value

acquires an additional finite renormalisation that propagates to the masses of gauge bosons. Since

– 9 –
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Figure 8. Top-bottom interference contribution to the Higgs production cross section. Displayed are our results
for the Higgs-pT spectrum and the results presented in ref. [23], obtained from private communication. Our
data was computed with mt “ 173.05 GeV, mb “ 4.78 GeV and mH “ 125 GeV, whereas the authors of ref. [23]
used mt “ 173.2 GeV, mb “ 4.75 GeV and the same Higgs mass. For the sake of this comparison we used
the same PDF and scale choice as the authors of ref. [23], namely PDF4LHC15 nlo 30 and µ “ 1

2

a
m

2
H

` p
2
T
.

Transparent bands indicate scale uncertainties, whereas the error bars in the lower plot indicate the Monte
Carlo uncertainties dominated by the uncertainties of ref. [23].

shows that these approximations perform well for pT † 40 GeV, but result in an error of approximately

20% above this threshold. The nearly massless bottom quark approximation is expected to be valid

if mb ! mH , pT , suggesting that most of the error arises from the HTL approximation. Additionally,

we observe that the upwards scale variations in ref. [23] are significantly larger in the first two bins

(pT † 14 GeV). After reaching out to the authors, we identified that this discrepancy is due to one

specific scale variation (µR{µ “ 1, µF {µ “ 2), but we have not found any errors on our end that would

account for this di↵erence.

We also compared our MS-renormalised results, i.e. with both the top- and bottom-quark mass in

the MS scheme, for the Higgs-pT distribution with those in ref. [24]. For the real-virtual corrections,

we only computed the amplitudes with a closed top-quark loop for scales up to µR “ 125 GeV. Above

this scale, we have to extrapolate outside of our numerical grids. As we can see from fig. 9, we find

excellent agreement between the predictions up to transverse momenta of 400 GeV. Above this scale,

we find that the predictions diverge, which is caused by the poor precision of the extrapolation.

– 13 –

Can study also t/b interference effects 
on Higgs  spectrum 

Previous approximation with HTL  
and  works well for 

pT

mt
mb ∼ 0 pT ≲ 40 GeV

Caola, Lindert, Melnikov, Monni, Tancredi, Wever 18
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aN3LO PDFs

Two global fit groups have now produced approximate N3LO PDFs

Ingredients 
Splitting Functions 

Transition Matrix Elements 

DIS Coefficient Functions 

Hadronic Cross-Sections

@ 4-loop: moments  now known 

@ 3-loop: now known except 2-mass  

@ 3-loop: light flavour, high- , low-   

@ N3LO: relatively little known

N ≤ 20

A(3)
Qg

Q2 Q2

McGowan, Cridge, Harland-Lang, Thorne 22; NNPDF 24

Falcioni, Herzog, Moch, Pelloni, Vogt 23, 24, TA; Gehrmann, von Manteuffel, Sotnikov, Yang 23

Ablinger, Behring, Blümlein, De Freitas, von Manteuffel, Schneider, Schönwald et al, 14-24;

Catani, Ciafaloni, Hautmann 91; Laenen, Moch 98; Vermaseren, Vogt, Moch 05

3. E�ect of N3LO on PDFs

Comparison of aN3LO impacts on PDFs:
Largest e�ect on the gluon PDF.

NNLO - gluon PDFs di�er by up to 2-3 % in Higgs region.
aN3LO - gluon PDFs di�er by up to 4-5 % in Higgs region.
NNLO vs aN3LO - MSHT and NNPDF both see dip (2 and 5%
respectively) in gluon at x ≥ 10≠2 from aN3LO e�ects.
Uncertainty observed to grow, particularly at small x by both groups.

Thomas Cridge PDFs @ aN3LO in MSHT 26th June 2024 10 / 23

Significant impact for gluon PDF & Higgs production (MSHT -5%, NNPDF -2%)
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PDF4LHC21 40

MSHT20an3lo as118

NNPDF40 an3lo as 01180

17

Estimate for PDF-TH & aN3LO PDFs

PDF4LHC21 — no NLO set available  
  switch to PDF4LHC15 just for 

 estimate  
  PDF4LHC15   

Robust w.r.t. PDF var. 
  MSHT20         
  CT18              
  NNPDF3.1     
  NNPDF4       

⇒
δ(PDF-TH)
↪ ±1.18 %

↪ ±1.43 %
↪ ±1.03 %
↪ ±0.92 %
↪ ±0.18 %

NLO PDFs. The di↵erence of these two predictions serves as our estimator
of this particular uncertainty.

�(PDF-TH) = ±
1

2

����(2), EFT, NNLO

PP!H+X � �
(2), EFT, NLO

PP!H+X

��� . (31)

The factor of 1

2
serves as a suppression factor as we expect this e↵ect to

be reduced at N3LO relative to NNLO. Since N3LO predictions are only
available in the EFT we estimate this e↵ect based on predictions using EFT
partonic cross sections only.

3.3. �(EWK) - Missing Higher Order Electro-Weak E↵ects

In ref. [3] several options to asses the uncertainty due to missing higher
order electro-weak e↵ects were discussed. As a result an uncertainty of one
percent on the total cross section was assigned.

�(EWK) = ±1%⇥ �PP!H+X . (32)

3.4. �(t,b,c) - Light Quark Masses and Renormalisation Schemes

In iHixs the e↵ects of light quark masses are included exactly through
NLO in QCD. In order to derive an estimate for the size of contributions due
to finite light quark masses at NNLO we study how big the relative impact
of light quarks on the NLO correction is. We then assume that the relative
impact of the light quark masses on NNLO corrections would be equally large
and use this as an estimate of uncertainty.

�(t, b, c)MS = ±

����
��

t, NLO
� ��

t,b,c, NLO

��t, NLO

����⇥
⇣
RLO��

EFT, NNLO + ��
1/m2

t , NNLO

⌘
.

(33)
Here, ��t, NLO and ��

t,b,c, NLO are the NLO QCD corrections to the hadronic
cross section with finite top quark mass and with finite top, bottom and
charm quark mass respectively. The corrections ��EFT, NNLO refer to contri-
butions to the hadronic cross section due to the EFT QCD corrections at
NNLO. Similarly, ��1/m2

t , NNLO describes QCD corrections at NNLO to the
hadronic cross section due to the approximation of the exact NNLO cross
section that are suppressed in powers of 1/m2

t . To derive this estimate we
work in the MS scheme.

Due to the truncation of the perturbative series a finite dependence on the
chosen mass renormalisation scheme is introduced. To investigate the size of

14

Higgs WG baseline:

numbers for   &  s = 13.6 TeV MH = 125.09 GeV

Alternative 1:

δ(PDF − TH) = |σ(3),EFT,aN3LO
PP→H+X − σ(3),EFT,NNLO

PP→H+X |

Alternative 2:
Use aN3LO PDF uncertainties  
(include MHOUs)

To the extent we can trust the new aN3LO PDFs, they seem to indicate that the 
 uncertainty was underestimated in previous Higgs WG updatesδ(PDF − TH)

Error bars: δ(PDF)
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Anticipated Theory Results

Towards N4LO Higgs Production 
Gluon Form Factor known @  (Virtual Contribution) + 4-loop Master Integrals N4LO
Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22, 23;

2

Fq :

C4
F C3

FCA C2
FC

2
A CFC

3
A dabcdF dabcdA

Fg :

C4
A dabcdA dabcdA

FIG. 1. Sample Feynman diagrams and color factors for the non-fermionic contributions to Fg and Fq at four-loop order.
Straight and curly lines denote quarks and gluons, respectively. Both planar and non-planar diagrams contribute.

been computed in [39, 40]. For Fq and Fg, all corrections
with three or two closed fermion loops have been calcu-
lated in [41, 42], respectively, including also the singlet
contributions. The complete set of poles of Fq and Fg

in the dimensional regulator has been obtained through
direct diagrammatic evaluation in [43]. Finally, the com-
plete fermionic corrections to Fq and Fg have been com-
puted in Ref. [35].

Calculation. The calculation of the four-loop form
factors presents two major challenges. The first one
is connected to a minimal representation of the form
factors. After generating the Feynman diagrams with
Qgraf [44], we apply the projectors and perform the
numerator and color algebra with Form 4 [45] and
Color.h [46]. In this way, we can write the form fac-
tors as a linear combination of a large number of scalar
Feynman integrals, each belonging to one of 100 twelve-
line top-level topologies or a subtopology thereof. Fixing
the twelve propagators and six irreducible numerators of
its top-level topology, a scalar integral can be described
by eighteen integers indicating the exponents of the prop-
agators and numerators. By choosing the irreducible nu-
merators as suitably defined inverse propagators, all top-
level topologies can be described in terms of the ten com-
plete sets of denominators described in [47]. Integration-
by-parts (IBP) reductions [48–50] systematically estab-
lish linear relations between the integrals, allowing us to

express the form factors as a linear combination of a min-
imal set of so-called master integrals. For our calculation
we use the setup described in [40] based on the program
Reduze 2 [51] and the in-house code Finred, employing
techniques from [52–58].

The second challenge is the computation of the mas-
ter integrals. Here we follow two complementary ap-
proaches. The first one is based on the construction of
finite master integrals [33, 59, 60], in d0 − 2ϵ dimensions
where d0 = 4, 6, . . .. Provided a linearly reducible [61, 62]
Feynman parametric representation can be found, the ϵ
expansions of such master integrals may be computed
analytically using the program HyperInt [63]. The di-
mensionally shifted integrals can be related to master
integrals in 4 − 2ϵ dimensions using IBP relations de-
rived with first- and second-order annihilators in the Lee-
Pomeransky representation [64]. We wish to point out
that in this approach, the integration can be performed
at the level of individual integrals. In practice, evaluating
higher orders of the ϵ expansion gets ever more demand-
ing due to the rise in algebraic complexity. To determine
the form factors Fq and Fg, we computed a number of
integrals to transcendental weight eight in this approach,
including computationally demanding non-planar inte-
grals with twelve different propagators. For one such
irreducible topology with a single twelve-line master in-
tegral we find

(6−2ϵ)

=
(

−
119

48
ζ7 −

5

6
ζ5ζ2 −

53

10
ζ3ζ

2
2 + 3 ζ23 +

79

42
ζ32 +

25

6
ζ5 −

5

3
ζ3ζ2 +

1

15
ζ22 + 2 ζ3

)

+ ϵ
(

−
991

30
ζ5,3 −

323

2
ζ5ζ3

−
81

2
ζ23 ζ2 +

127223

31500
ζ42 −

2827

24
ζ7 +

73

6
ζ5ζ2 − 14 ζ3ζ

2
2 +

41

3
ζ23 +

1696

315
ζ32 +

401

3
ζ5 +

206

3
ζ3ζ2 +

23

15
ζ22 + 14 ζ3

)

+O(ϵ2)

(3)

in the conventions of Ref. [65]. In particular, the integral
is defined in 6 − 2ϵ and each dot indicates a squared
propagator. We would like to mention that no integral in
this topology was needed for the calculation of the N = 4
Sudakov form factor [47]. Our result above is expressed

in terms of regular zeta values, ζn (n = 2, . . . , 7), and

ζ5,3 =
∞
∑

m=1

m−1
∑

n=1

1

m5n3
≈ 0.0377076729848 (4)

is the only multiple zeta value involved.

Obtaining real-virtual contribution will be very considerable work 

Soft-Virtual Approx: @ 14 TeV vs @ +0.2 − 2.7 % δ(scale) ∼+2.5
−0.3 % N3LO

Das, Moch, Vogt 20; 

Figure 1. Reducible and irreducible top-level topologies for four-loop form factor integrals with
one o↵-shell leg.

and gluon form factors in four-loop QCD were evaluated in [18]. The four-loop N = 4 SYM

Sudakov form factor was analyzed in [19] and analytically evaluated in [20]. The complete

analytical evaluation of the quark and gluon form factors in four-loop QCD was presented

in [21]. The four-loop corrections to the Higgs-bottom vertex within massless QCD were

evaluated in [22].

In these calculations, two methods of evaluating master integrals were applied by

our two competing groups: the method of di↵erential equations and the evaluation by

integrating over Feynman parameters: the first one was applied in [10, 11, 13, 14] and the

second one in [12, 15–17]. Then our two groups combined their forces and applied these

two methods when collaborating [18, 20–22]. A crucial building block for these form factor

calculations were the solutions for the four-loop master integrals, which is the topic of this

paper.

In general, four-loop form factors with one o↵-shell and two massless legs can involve

integrals belonging to 100 reducible and irreducible top-level topologies with 12 lines, as

shown in figure 1, or sub-topologies thereof. In this work, we present analytical solutions

for the ✏ expansion of all master integrals in these topologies. The results are given in

terms of zeta values and multiple zeta values (MZV), and are complete at least up to and

including weight 8, as required for N4LO calculations.

The remainder of this paper is organized as follows. In section 2, we describe how we

applied the method of di↵erential equations. In a subsection, we describe peculiarities of

using integration by parts (IBP) to perform reduction to master integrals. In section 3, we

describe how we applied the method of analytical integration over Feynman parameters.

– 2 –



Signal-background interference can be used in  to place model-dependent 
bounds on  by lifting degeneracy on couplings and width 

Calculation of  @ NNLO allows computation of interference @ NNLO 

NNLO corrections sizeable 

 Mass shift less pronounced 
 Destructive interference enhanced  
 -1.7% decrease of total cross section  

Interference effects for  @ NLO also recently calculated

H → γγ
ΓH

gg → γγ

↪
↪
↪

gg → Zγ

19

Signal-background Interference

Martin 12; Dixon, Li 13; Campbell, Carena, Harnik, Liu 17

Bargiela, Caola, von Manteuffel, Tancredi 21 + Buccioni, Devoto 22

Signal-background interference beyond NLO

Federico Buccioni Workshop of the LHC HWG 15/11/2023 12

This talk
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Fig. 3 Left pane: comparison of the exact NLO calculation and the soft-virtual approximation in the gg channel. Right pane:
complete NLO prediction, inclusive of all channels, compared to the corresponding soft-virtual approximation
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Fig. 4 Signal-background interference contribution to the
diphoton invariant mass distribution after Gaussian smearing.
Bands represent the envelope given by the scale variation.

The smallness of the LO imaginary part is indeed seen
in Fig. 5. In our setup, we find

‡LO

S
= 24.21+15%

≠14%
fb, ‡LO

I
= ≠0.11+20%

≠17%
fb. (21)

Here and in the following the quoted uncertainties are
obtained by coherently varying the renormalisation and
factorisation scales by a factor of two around the cen-
tral value µ = m““/2. At LO, we find that more than
80% of the destructive interference quoted above comes
from the imaginary part of the signal interfering with
the real part of the background. This gives us confi-
dence that neglecting mass e�ects in the background
prediction does not significantly impact our result. Fur-
thermore, as far as the signal goes, we note that the
bulk (about 95%) of the imaginary part is generated by
bottom-mass e�ects in the production amplitude. This

is easy to understand just by looking at the relative
importance of the top, bottom and W contributions to
the production and decay amplitudes.

At higher orders however, a larger interference is gen-
erated by the imaginary part of the background, which
no longer requires the presence of bottom quarks (see
the discussion in Sec. 3). Because of this, beyond LO
we only compute radiative corrections in the infinite-
top approximation and drop any mass dependence in
the background amplitudes. At NLO, we obtain

‡NLO

S
= 58.12+20%

≠14%
fb, ‡NLO

I
= ≠0.72+27%

≠21%
fb. (22)

These results are consistent with the analysis in
Ref. [26]. Our best prediction beyond NLO is ob-
tained within the soft-virtual approximation described
in Sec. 3. We find

‡NNLOsv
Õ

S
= 72.21+8%

≠8%
fb, ‡NNLOsv

I
= ≠1.21+7%

≠10%
fb,

(23)

hence the destructive interference reduces the total
rate by 1.7%.5 Given the theoretical [62] (see also
Refs. [63, 64]) and experimental [35, 36] uncertainty on
the Higgs total cross section, this e�ect is actually not
negligible and it can be used to further constrain the
Higgs width [26]. We do not pursue this line of investi-
gation here, but we estimate that, with current uncer-
tainties, one could already constrain the Higgs width to
about 20-30 times the Standard Model.

We can finally present the main result of our study, i.e.
the prediction for the mass-shift at NNLO. As discussed
5We point out that the theory uncertainties for the signal cross
section in Eq. (23) have been computed employing the exact
NNLO QCD scale variations.

→Talk of FedericoBuccioni, Devoto, Djouadi, Ellis, Quevillon, Tancredi 23
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ZZ Production via Gluon Fusion

Class   
Z bosons couple 
to same massless 
fermion line

Al

Class B  
Z bosons couple 
to different 
fermion lines

Campbell, Ellis, Czakon, Kirchner 16

von Manteuffel, Tancredi 15

Class C  
Z bosons couple 
to Higgs boson

Djouadi, Spira, Zerwas 91

Class   
Z bosons couple 
to same massive 
fermion line

Ah

Process  gives indirect constraints on Higgs width via off-shell production 
and constrains Anomalous Couplings (  & triple gauge), BSM Searches 

Loop-induced at LO, NLO calculation challenging (2-loops)

gg → ZZ
ttZ
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ZZ Production NLO QCD Corrections

Putting all classes together: complete NLO corrections are large, K-factor  ∼ 1.7

NLO corrections reduce the 
scale uncertainties 
significantly 

  

Approximation obtained by 
applying the massless K-
factor to the massive born 
agrees well within the scale 
uncertainty, also for the 
invariant mass distribution

σLO = 1316+23.0%
−18.0% fb

σNLO = 2275(12)+14.0%
−12.0% fb

Agarwal, SPJ, Kerner, von Manteuffel 24
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ZZ Production Channel Breakdown
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Can examine the interference patterns of Class A+B+C

Born Born-Virtual

Observe the unitarizing behaviour of the massive & Higgs-mediated amplitudes 
Above  significant destructive interference between  and  @ LO and NLO∼ 2mt Ah C



Boosted Higgs
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Figure 20: Typical diagrams contributing to the virtual and real QCD corrections to gg → H at NLO.

The NLO corrections are positive and large, increasing the gluon-fusion cross section at the LHC
by about 60–90%. The QCD corrections to the bottom-quark contributions are significantly smaller if
the bottom mass is used in terms of the pole mass or the MS mass at the scale of the bottom mass.
This choice is motivated by the numerical cancellation of squared and single logarithms of the relative
QCD corrections at NLO [68]. This feature modifies the destructive bottom-quark contribution to
a reduction of the cross section by about 6% at NLO. Comparing the exact mass-dependent results
with the expressions in the heavy-quark limit, it turns out that this asymptotic K factor provides an
excellent approximation even for Higgs masses above the top-decay threshold8. We explicitly define the
approximation by

σapp = Kt
NLO(∞)× σLO(τt, τb, τc) (164)

Kt
NLO(∞) = lim

Mt→∞
KNLO

where we neglect the b quark contribution in Kt
NLO(∞), while the leading order cross section σLO

includes the full t, b, c quark mass dependence. The comparison with the full massive NLO result is
presented in Fig. 21. The solid line corresponds to the exact cross section and the broken line to the
approximate one. For Higgs masses below ∼ 1 TeV, the deviations of the asymptotic approximation
from the full NLO result are less than 15%, whereas for MH = 125 GeV they amount to ∼ 5%, if the
full LO cross section is multiplied by the approximate K-factor. This property of the NLO corrections
suggests this to be true also at higher orders, since it is a consequence of the dominating soft and
collinear gluon effects in the QCD corrections.

Within the heavy top-quark limit the NNLO [142] and N3LO [143, 144] QCD corrections have
been calculated. The NNLO contributions increase the production cross section by about 20% beyond
NLO, while the N3LO corrections range at the level of a few per-cent. These results indicate that the
gluon-fusion cross section is under theoretical control despite the large size of the NLO corrections.
This is further corroborated by the results obtained by a soft and collinear gluon resummation on
top of the N3LO result. This approach resums the dominant factorizing contributions from soft and
collinear gluon effects up to all perturbative orders. The soft corrections provide the leading ones close
to the production threshold, while collinear gluon effects are of subleading order. Both can be treated
systematically. The soft and collinear contributions provide a reasonable approximation of the full
fixed-order results and thus a reliable estimate of missing higher-order effects beyond the fixed-order
corrections. This resummation has been performed at the NNLL level [145] and the N3LL level [146]
in the heavy top-quark limit. The sizes of the different logarithmic orders follow roughly the pattern of
the corresponding fixed-order corrections. Quite recently also finite top-mass effects have been included
in the resummation framework [147] at the NLL order, where they are known exactly. Resummation
effects beyond N3LO yield only a per-cent increase of the cross section for the central scale choice.
However, they provide an approximation of effects beyond N3LO and contribute to a sophisticated

8Large Higgs masses are still relevant for off-shell Higgs bosons.
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Anomalous Couplings with Top Mass Dependence

HJ production known to NLO including mt
Kudashkin, (Lindert),  Melnikov, Wever 17, (18); SPJ, Kerner, Luisoni 18, 21; Neumann 18; 
Bonciani, Del Duca, Frellesvig, Hidding, Hirschi, Moriello, Salvatori, Somogyi, Tramontano 22; 

Recent study of impact of anomalous top-Yukawa ( ) 
and Higgs-gluon contact interactions ( ) in HEFT

ct
cg

ℒ ⊃ ctmt
H
v

tt +
αs

8π
cg

H
v

Ga
μνGa,μν

the pT,H distribution with the top quark mass renormalised in the MS scheme falls o↵

faster than in the on-shell (OS) scheme as pT,H increases. However, the ratio OS/MS

in the pT,H spectrum stays rather constant for pT,H values between 600GeVand 1TeV,

while the BSM e↵ects grow much more rapidly with pT,H .

Similar considerations hold for the QCD corrections beyond NLO. In Ref. [20] the NLO

K-factors have been shown to be rather uniform over the whole pT,H spectrum, both in

the full SM as well as for the HTL. For the case of the HTL, the ratio between NNLO

and NLO also turned out to be rather flat, NNLO increasing the NLO corrections by

about 25% for 400GeV  pT,H  1TeV. Thus, a distinctive feature of the anomalous

couplings consists in the rapid growth of the shape distortion compared to the SM as

pT,H increases.
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Figure 6: Higgs boson transverse momentum distribution for two HEFT benchmark

points, (ct, cg) = (0.9, 1/15) and (ct, cg) = (1.1, �1/15), compared to the SM case and

to the heavy top limit. The bands denote 3-point scale variations around the central

scale µ0 = HT /2.
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Campillo Aveleira, Heinrich, Kerner, Kunz 24

Found scenarios where BSM 
effects only exceed scale 
uncertainty for boosted Higgs 

 

NLO K-factor ~1.7 in SM, varies 
by  as  changed 

Use of HTL can hide new physics

pT > 600 GeV

𝒪(30%) (ct, cg)

t
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Towards N3LO in the HTL

PoS(LL2024)046

Three loop amplitudes for V/H+jet production Cesare Carlo Mella
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Figure 2: Irreducible non planar top sectors contributing to the leading color of � ! 666 and the tr(q2
)

Form Factor.

where = is the total number of propagators in the auxiliary topology, ! is the number of loops, ⇢
is the number of independent external momenta and % = %({B8 9}, {I8}) is the Baikov polynomial.
The Baikov polynomial is defined as the Gram determinant of all the external and loop momenta.
A candidate ⇠ is built by multiplying the integrand with a polynomial ansatz # ,

⇠ /

π
C

3I1 · · · 3I=
IC1 · · · IC<

%

⇡�!�⇢�1
2 # ({2 9}). (17)

Numerators are of the general form,

# ({2 9}) =
’
9

2 9

÷
:2( 9

I: , (18)

where the set ( 9 is a set of propagator indices and we leave the sum over 9 unspecified, to stress that
the dimensions of the ansatz cannot be determined in advance. One should fix the coefficients {2 9}

in such a way that the aforementioned 3 log form is obtained. The analysis is usually performed
on various propagator cuts, rather than on the full integrand. Baikov representation turns out to be
particularly suited for the job, given that the cut operation is obtained by taking the corresponding
residues in the integration variables. Summarizing our strategy, we built all canonical basis
employing the following techniques:

7

Impressive work ongoing to push Higgs plus Jet 
production to N3LO in the HTL 

Describes Higgs-  spectrum below top thresholdpT

 @ 2-loop to  canonical basisH → ggg, H → qqg 𝒪(ϵ2)
Gehrmann, Jakubčík, Carlo Mella, Syrrakos, Tancredi 23

Planar master integrals known

Di Vita, Mastrolia, Schubert, Yundin 14; Canko, Syrrakos 20, 21;
Henn, Lim, Torres Bobadilla 23; Syrrakos, Canko 23; Aliaj, 
Papathanasiou 24; Carlo Mella 24

Progress with challenging non-planarsThree-loop master integrals for H+jet production at N3LO: Towards the non-planar topologies Nikolaos
Syrrakos
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Figure 1: Irreducible planar top sectors.

This analysis has been performed usingKira [14, 15], a program that implements and automates
Laporta’s algorithm for integration-by-part identities for dimensionaly regulated Feynman integrals
[16, 17]. Since the latest version of KIRA does not support an analysis on the available crossings of
an integral family which would be needed for a full amplitude calculation, we show only numbers
for the uncrossed families.

Our goal will be to consider each individual family of master integrals or individual top sectors
and their subsectors, and construct canonical differential equations [18–22] for them,

dÆg = n �Æg = n

’
8

⌫8 d log(U8)Æg, (7)

where we denote with Æg the canonical basis of master integrals. The matrices ⌫8 consist of rational
numbers and the arguments U8 of the d log forms are known as letters. In general they can be
rational or algebraic functions of the kinematic invariants. We will start from the Euclidean region
defined through the kinematic invariants as

0 < I < 1, 0 <H < 1 � I, G = 1 � H � I, (8)
or

0 < I < 1, 0 < G < 1 � I, (9)

where all master integrals are real, and solve the differential equations analytically in terms of

4

Three-loop master integrals for H+jet production at N3LO: Towards the non-planar topologies Nikolaos
Syrrakos

p1

p3 p4

p2

(a) NPL2_8121

p2 p1

p3p4

(b) NPL2_16297

Figure 4: Additional non-planar top sectors.

differential equations, one for each of the variables (B12, B23, @
2
), for each top sector respectively,

on a machine using 50 CPU cores.
Having the canonical differential equations for topologies (a) and (b) of figure 3, we can see

that the former satisfies the same 6-letter alphabet (12) as the planar master integrals, while for the
latter we see that two new letters appear as second-order polynomials in G (= B12/@

2
),

{G, I, 1 � G, 1 � I, 1 � G � I, G + I, 1 � 2G + G
2
� I, G � G

2
� I}. (14)

We may nonetheless obtain a solution for topology (b) in terms of MPLs by integrating first over
I and then over G. Of course one needs to fix somehow the boundaries in order to obtain a final
solution for the master integrals. In contrast with the planar case, here the master integrals have
a more involved analytic structure, with branch points at {I = 0, I = 1 � G, G = 0}. Regularity
constraints therefore are not enough to fix all necessary boundary constants. We followed a more
universal approach, where we studied the solution of the differential equations to all physical and
unphysical limits [27, 29]. The d log form of (7) allows us to write its solution at the limit U8 = 0
formally as

exp{n⌫8 log(U8)}Æg|U8=0 = ⇠8Æg|U8=0 (15)

The matrices ⇠8 contain terms of U
=8 n
8 , with =8 being eigenvalues of ⌫8 . We proceed then by

imposing that unphysical singularities {I = �G, I = 1, G = 1}, i.e. terms involving U
=8 n
8 with =8 < 0,

must vanish at Æg|U8=0. This is another way of imposing the usual regularity conditions. For physical
singularities {I = 0, I = 1�G, G = 0}, we impose that terms involving U

=8 n
8 with =8 > 0 must vanish

at Æg|U8=0. This choice is justified by the fact that the canonical basis are free of UV divergencies,
as well as by checking using expansion-by-regions [30] that for the specific limits the scaling in
powers of n never comes with a positive sign. Another way of arguing about this specific choice of
sign is by observing that the two-point master integrals that appear in subsectors of topologies (a)

7



Vector Boson Fusion (VBF)
3.2 Vector-boson fusion: qq → qqV ∗V ∗ → qqH

3.2.1 Standard Model

H

q

q

W,Z

W,Z

Figure 24: Diagram contributing to qq → qqV ∗V ∗ → qqH at lowest order.

At the LHC the second important Higgs production channel is the vector-boson-fusion (VBF) mech-
anism (see Fig. 24) [17, 170]. For intermediate Higgs masses the vector-boson-fusion cross section is
about one order of magnitude smaller than the gluon-fusion one. The cross section can be approx-
imated by the t-channel diagrams of the type shown in Fig. 24 within ∼ 1% accuracy, i.e. without
any colour-cross talk between the quark lines, while interference effects for identical quark flavours and
s-channel contributions are at the per-cent level after subtracting the corresponding Higgs-strahlung
component from the s-channel contributions [171]. Within the structure-function approach the leading
order partonic vector-boson-fusion cross section [17] can be cast into the form (V = W,Z):

dσLO =
1

4

√
2G3

FM
8
V q

2
1q

2
2

[q21 −M2
V ]

2[q22 −M2
V ]

2

{

F1(x1, µ
2
F )F1(x2, µ

2
F )

[

2 +
(q1q2)2

q21q
2
2

]

+
F1(x1, µ2

F )F2(x2, µ2
F )

P2q2

⎡

⎣(P2q2)2

q22
−M2

P +
1

q21

(

P2q1 −
P2q2
q22

q1q2

)2
⎤

⎦

+
F2(x1, µ2

F )F1(x2, µ2
F )

P1q1

⎡

⎣(P1q1)2

q21
−M2

P +
1

q22

(

P1q2 −
P1q1
q21

q1q2

)2
⎤

⎦

+
F2(x1, µ2

F )F2(x2, µ2
F )

(P1q1)(P2q2)

[

P1P2 −
(P1q1)(P2q1)

q21
−

(P2q2)(P1q2)

q22

+
(P1q1)(P2q2)(q1q2)

q21q
2
2

]2

+
F3(x1, µ2

F )F3(x2, µ2
F )

2(P1q1)(P2q2)
[(P1P2)(q1q2)− (P1q2)(P2q1)]

}

dx1dx2
dPS3

ŝ
(175)

where dPS3 denotes the three-particle phase space of the final-state particles, MP the proton mass, P1,2

the proton momenta and q1,2 the momenta of the virtual vector bosons V ∗. The functions Fi(x, µ2
F ) (i =

1, 2, 3) are the usual structure functions from deep-inelastic scattering processes at the factorization scale
µF :

F1(x, µ
2
F ) =

∑

q

(v2q + a2q)[q(x, µ
2
F ) + q̄(x, µ2

F )]

F2(x, µ
2
F ) = 2x

∑

q

(v2q + a2q)[q(x, µ
2
F ) + q̄(x, µ2

F )]
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Factorisable contributions are known to N3LO inclusive/ NNLO differential 
Dreyer, Karlberg 16; Bolzoni, Maltoni, Moch, Zaro 10, 12; Cacciari, Dreyer, Karlberg, Salam, Zanderighi 15; Cruz-Martinez, Gehrmann, 
Glover, Huss 18; Asteriadis, Caola, Melnikov, Röntsch 22, 23 

Non-factorisable contributions are colour suppressed 

However, (soft/eikonal approximation) it was found they are  enhanced π2

27

Non-Factorisable Corrections

Factorizable corrections are at O(%) [Dreyer, Karlberg 2016]
Non-factorizable corrections are color-suppressed
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⇡2 enhancement in non-factorizable contributions [Liu, Melnikov, Penin 2019]
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Non-Factorisable Corrections (II)

NNLO non-factorisable contribution computed beyond the eikonal approximation 
Brønnum-Hansen, Long, Melnikov, Juvin-Quarroz 23, 23; 

Used expansion-by-regions in forward limit,  

Sub-eikonal correction about 20% of eikonal correction 

Result: NNLO non-factorisable contribution similar in size to N3LO correction 
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One-loop amplitudes

Only Glauber/
Mixed @ next-to-
leading power

Factorizable corrections are at O(%) [Dreyer, Karlberg 2016]

�(13 TeV) [pb] �(14 TeV) [pb] �(100 TeV) [pb]

LO 4.099 +0.051
�0.067 4.647 +0.037

�0.058 77.17 +6.45
�7.29

NLO 3.970 +0.025
�0.023 4.497 +0.032

�0.027 73.90 +1.73
�1.94

NNLO 3.932 +0.015
�0.010 4.452 +0.018

�0.012 72.44 +0.53
�0.40

N3LO 3.928 +0.005
�0.001 4.448 +0.006

�0.001 72.34 +0.11
�0.02

Non-factorizable corrections are color-suppressed
⇡2 enhancement in non-factorizable contributions [Liu, Melnikov, Penin 2019]
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σnon−fac
LO = − 2.97+0.52

−0.69 fb

σnon−fac
NLO = − 3.20+0.14

−0.01 fb
+

Figures/Tables: Ming-Ming Long (20th LHCHWG Meeting)
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VBF Parton Shower Uncertainties

Parton shower uncertainties dominate the theory uncertainty for VBF 
 Currently 15% on inclusive measurement, will limit interpretation in Run 3 
 Not clear if Pythia dipole vs Herwig 7 captures true uncertainty 

↪ ±
↪

Several studies completed: 

NNLO QCD vs NLO+PS  
Good agreement theoretically 
Less so for experimental PS studies  
(underlying event? hadronisation? 
tuning vs recoil scheme?) 

   Buckley et al. 21 

NLL PanScales showers  
LL vs NLL differ by ~15% for 3rd jet  
(within scale var.) 

   van Beekveld, Ferrario Ravasio 23 

NLO EW+PS recently available 
   Jäger, Scheller 22 

Figure 12: As Fig. 11 but for ⌘j3 (top), and pT,j3 (bottom). For the latter we only show

the result after applying the VBF cuts, and the right bottom panel shows a magnification

of the (relatively) small transverse-momentum region.

showers for future work.

7 Conclusions

In this work, we have introduced new NLL-accurate dipole showers for processes involving

the exchange of a colour-singlet in the t-channel, such as DIS, VBF and VBS. The latter

two processes are handled following a factorised approach, i.e. neglecting non-factorisable

corrections between the two hadronic sectors. The main novelty of these showers, with

respect to the PanScales showers for hadron collisions introduced in Refs. [43, 44], is that

the transverse-momentum recoil due to initial-state radiation is smoothly redistributed

primarily to partons in the current hemisphere (i.e. anti-parallel to the direction of the

incoming proton in the Breit frame). This feature ensures that partons in the remnant

hemisphere remain mostly una↵ected, which is required from colour coherence. Further-

– 32 –

NLL
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VBF with  DecayH → bb

9

Figure 4. Distributions of the transverse momentum (left) and the invariant mass of the reconstructed Higgs boson (right).
See caption of Fig. 3 and text for details.

As follows from the right pane in Fig. 4, there is a tail to
the left of mbb = mH , caused by the QCD radiation in
the decay, and a tail to the right, caused by the fact that
occasionally the QCD radiation in production and one of
the b quarks from H ! bb̄ decay are combined. Note that
the “left” tail exhibits large positive NNLO contributions
as more and more events populate this region.

This plot allows us to indirectly address the issue of
whether it is justifiable to disregard b jets from the pro-
duction. We can estimate the significance of clustering
partons from production and partons from decays into
the b jets by counting the number of events with an in-
variant mass mbb above mH and comparing it to the total
number of Higgs bosons produced. We find that the num-
ber of such events is about 1% of the total and that it is
not drastically affected by the NNLO QCD corrections.
We may interpret this result as a measure of how often
one of the b quarks from Higgs decay and any of the
partons from the production find themselves sufficiently
close to each other to be clustered into a jet. Since in
this article we did not consider production of b jets in
the weak boson fusion process proper, this result gives
us an estimate of how often partons from the production
process end up in the “decay” fiducial region.

Furthermore, by considering simple LO processes, we
have estimated that additional b jets are present in
roughly 1% of events that contribute to the fiducial WBF
cross sections in Eq. (8). This is negligible compared to
the magnitude of QCD corrections that are discussed in

this paper. It would also be easy to mitigate the effect of
b jets from the production subprocess with even a loose
cut on the invariant mass of two b jets, requiring it to
select events which are sufficiently close to mH . In this
case, the impact of b quarks from the WBF production
subprocess on the cross section with H ! bb̄ decay would
be further reduced. We take these observations as an in-
dication that the impact of treating b quarks from the
production process as effectively unflavored should not
qualitatively alter our findings.

IV. CONCLUSIONS

Fiducial cross sections for Higgs boson production in
weak boson fusion show bad perturbative convergence if
scale uncertainties are used as a criterion for estimating
higher-order QCD corrections [12, 13]. Considering the
H ! bb̄ decay at leading order, it was observed that ad-
ditional b jet selection criteria restrict the fiducial WBF
region and improve the perturbative convergence [24].
However, an important effect, QCD radiation in the de-
cay, was not included in that paper.

In the current paper, we extend that study by consid-
ering Higgs boson production in WBF followed by the
decay of the Higgs boson into a pair of b quarks, treating
both production and decay at NNLO QCD. We found
that WBF cross sections measured in the fiducial region

Asteriadis, Behring, Melnikov, Novikov, Röntsch 24

NNLO accurate predictions of VBF:  
Including corrections to both production and decay

pp → H( → bb)jj

QCD corrections very sensitive to the -jet cuts 
especially transverse momentum 

Recent ATLAS/CMS cuts give large pert. corr. 
Anti-  , ,  
+ WBF (2 jets , )

b

kt R = 0.4 |yb | < 2.5 pT,b > 65 GeV
pT, j > 25 GeV mjj > 600 GeV

5

expansion. We find5

�
LO = 75.6�5.6

+6.5
fb ,

�
NLO = 52.4+1.5

�2.6
fb ,

�
NNLO = 44.6+0.9

�0.6
fb ,

(8)

where the superscripts and subscripts indicate values
with µR = µF = 2µ0 and µR = µF = µ0/2, respec-
tively. Monte Carlo integration uncertainties are about
a few permille and thus much smaller than the residual
scale uncertainties; consequently, we do not show them.
The results in Eq. (8) show that, compared to the LO
cross section, the NLO cross section is reduced by about
30% and the NNLO cross section by an additional 10%.
These significant corrections should be contrasted with
the scale uncertainties, which are about 9%, 5%, and
2% on the LO, NLO and NNLO predictions, respectively.
Hence, in this case, the strategy of estimating uncertain-
ties of theoretical predictions by studying their sensitiv-
ity to renormalization and factorization scales does not
capture the contributions from missing higher orders.

The large negative QCD corrections seen in Eq. (8) arise
because corrections to the decay in the fiducial region
are different from those to the inclusive width and, while
they are moderate in both cases, they conspire to reduce
the fiducial cross section. We will now illustrate this
statement by considering the different contributions that
lead to the results shown in Eq. (8).

It follows from Eqs. (4) and (5) that higher-order QCD
corrections to the differential WBF cross section with
H ! bb̄ decay originate from the interplay of three differ-
ent contributions: the radiative corrections to the WBF
production process d�WBF, the radiative corrections to
the differential decay process d�b, and the expansion of
the total H ! bb̄ width �b in ↵s. We will refer to these
corrections �prod, �dec and �exp, respectively. Beyond
LO we write the cross section Eq. (4) as

d�N
n
LO = d�LO +

nX

k=1

d�N
k
LO

. (9)

We write

d�NLO = d�(1,0)

prod
+ d�(0,1)

dec
+ d�(0,1)

exp
,

d�NNLO = d�(2,0)

prod
+ d�(1,1)

dec
+ d�(0,2)

dec

+ d�(1,1)

exp
+ d�(0,2)

exp
.

(10)

5
The small difference in the LO cross section compared to the

result reported in Ref. [24] is due to the inclusion of the nonzero

b-quark mass in H ! bb̄ decays in this computation.

The individual contributions are defined as
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◆
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(11)

and

d�(2,0)
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✓
d�(2)

WBF
⇥

d�(0)
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�NLO
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d�(1,1)

exp
= �Br

H!bb̄

�(1)

b

�NLO

b

✓
d�(1)
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⇥ d�LO

◆
,
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◆
.

We choose µR = µF = µ0, integrate over the fiducial
phase space, and find

�(1,0)

prod
= �4.9 fb , �(0,1)

dec
= �5.3 fb ,

�(0,1)

exp
= �13.0 fb ,

�(2,0)

prod
= �1.5 fb , �(1,1)

dec
= +0.4 fb ,

�(0,2)

dec
= �5.0 fb , �(1,1)

exp
= +0.8 fb ,

�(0,2)

exp
= �2.5 fb .

(13)

It follows from Eqs. (8) and (13) that the corrections
arising from the production process (�(1,0)

prod
and �(2,0)

prod
)

are small and negative; they amount to approximately
�6% at NLO and �2% at NNLO, and hence are cov-
ered by scale uncertainty estimates. These corrections
were extensively discussed in Ref. [24]. The corrections
associated with the differential decay process (�(0,1)

dec
and

�(0,2)

dec
) are both about �7% of the LO cross section, in-

dicating that the perturbative expansion does not seem
to converge. Moreover, since they are also negative, they
amplify corrections to the production. We study these
rather large corrections in more detail below.
Before doing so, we note that the corrections arising from
the expansion of the width �b, which appears in the defi-
nition of the cross section through Eq. (5), are significant
and also negative. At NLO they lead to a large decrease
in the fiducial cross section shown in Eq. (8). At NNLO,
however, the corrections from expanding �b are negative
but moderate, giving an overall decrease of the cross sec-

Corrections of -40% relative to LO, outside 
LO ~9% and NLO ~5% uncertainty estimates 

3.2 Vector-boson fusion: qq → qqV ∗V ∗ → qqH

3.2.1 Standard Model

H

q

q

W,Z

W,Z

Figure 24: Diagram contributing to qq → qqV ∗V ∗ → qqH at lowest order.

At the LHC the second important Higgs production channel is the vector-boson-fusion (VBF) mech-
anism (see Fig. 24) [17, 170]. For intermediate Higgs masses the vector-boson-fusion cross section is
about one order of magnitude smaller than the gluon-fusion one. The cross section can be approx-
imated by the t-channel diagrams of the type shown in Fig. 24 within ∼ 1% accuracy, i.e. without
any colour-cross talk between the quark lines, while interference effects for identical quark flavours and
s-channel contributions are at the per-cent level after subtracting the corresponding Higgs-strahlung
component from the s-channel contributions [171]. Within the structure-function approach the leading
order partonic vector-boson-fusion cross section [17] can be cast into the form (V = W,Z):
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4
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(175)

where dPS3 denotes the three-particle phase space of the final-state particles, MP the proton mass, P1,2

the proton momenta and q1,2 the momenta of the virtual vector bosons V ∗. The functions Fi(x, µ2
F ) (i =

1, 2, 3) are the usual structure functions from deep-inelastic scattering processes at the factorization scale
µF :

F1(x, µ
2
F ) =

∑

q

(v2q + a2q)[q(x, µ
2
F ) + q̄(x, µ2

F )]

F2(x, µ
2
F ) = 2x

∑

q

(v2q + a2q)[q(x, µ
2
F ) + q̄(x, µ2

F )]

52

∆elw,2
τ = −

α2

4π
M2 µ tgβ

{

I(m2
ν̃τ ,M

2
2 , µ

2) +
c2τ
2
I(m2

τ̃1 ,M
2
2 , µ

2)

+
s2τ
2
I(m2

τ̃2 ,M
2
2 , µ

2)

}

, (13)

where s/cτ = sin / cos θτ is related to the τ̃ mixing angle θτ and mτ̃1,2 , mν̃τ denote the stau and tau
sneutrino masses, respectively.

2 Higgs-Boson Decays

Higgs-boson couplings to SM particles grow with their corresponding masses so that for the SM Higgs
boson its couplings to the intermediate gauge bosons W,Z and to the top and bottom quarks as well
as τ -leptons are the most relevant ones for decay and production processes.

2.1 Fermionic Higgs boson decays

2.1.1 Standard Model

H

f

f̄

Figure 2: Feynman diagram describing H → f f̄ at lowest order.

The decay widths of the SM Higgs boson into fermion pairs mediated by the fermion Yukawa
couplings (see Fig. 2) is given, for M2

H ≫ m2
f , by [40, 41]

Γ[H → f f̄ ] =
NcGFMH

4
√
2π

m2
f [1 + δQCD + δt + δmixed] (1 + δelw) (14)

with Nc = 1(3) for leptons (quarks), the Higgs-boson mass MH and the fermion mass mf . In the
leptonic case we use the lepton pole mass, while for quarks we use the MS quark mass mQ(MH)1. The
QCD corrections for the decays into quark pairs can be expressed as [42, 43, 44]

δQCD = 5.67
αs(MH)

π
+ (35.94− 1.36NF )

(
αs(MH)

π

)2

+ (164.14− 25.77NF + 0.259N2
F )

(
αs(MH)

π

)3

+(39.34− 220.9NF + 9.685N2
F − 0.0205N3

F )

(
αs(MH)

π

)4

δt =

(
αs(MH)

π

)2 [

1.57−
2

3
log

M2
H

M2
t
+

1

9
log2

m2
Q(MH)

M2
H

]

(15)

with the number NF of contributing quark flavours. The running quark mass and the QCD coupling
are defined at the scale of the Higgs mass, absorbing in this way large mass logarithms. The quark

1Running-mass effects with respect to QED corrections are not taken into account.
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 ProductionttH
h,Hq̄

q

W,Z

W,Z

Figure 30: Diagram contributing to qq̄ → V ∗ → h/H + V at lowest order.

H

q

q̄

g

t

t̄

H

g

g

t

t̄

Figure 31: Typical diagrams contributing to qq̄/gg → tt̄H at lowest order.

threshold effects are strongly diminished. The main parts of the QCD corrections originate from regions
significantly above the production threshold and can be approximated by a fragmentation approach
involving first producing a tt̄ pair supplemented by the t → tH fragmentation in the high-energy
limit [191, 194]. Although this provides a bad approximation for the magnitude of the cross section
itself it leads to a reasonable estimate of the relative QCD corrections [191]. The full NLO results have
recently been implemented in the Powheg box [195], matched to Sherpa [196] and generated within the
Mg5 amc@nlo framework [193] thus offering NLO event generators matched to parton showers. The
NLO result has recently been improved by a soft and collinear gluon resummation based on the SCET
approach starting from the boosted final-state particle triplet11 [198] leading to a further increase of the
cross section by 5-10%. The residual scale dependence is reduced to the level of 5− 10%. Recently the
electroweak corrections have been calculated for tt̄H production [199]. They range a the per-cent level
and are thus small. Moreover, off-shell top-quark effects have been determined at NLO in QCD [200]
with leptonic top-quark decays and turn out to be small for the inclusive tt̄H cross section. However,
they play a role in certain regions of phase space and are thus of relevance for distributions.

bb̄H production. Higgs bremsstrahlung off bottom quarks does not play a significant role for the
SM Higgs boson, but yields an important constraint on the bottom Yukawa coupling. Its total cross
section is of similar size as the tt̄H production cross section. The results of tt̄H production can be
taken over for bb̄H production. However, they have to be transformed to the four-flavour-scheme (4FS)
in order to avoid artificial large logarithms initiated by the bottom mass in the combination of the
virtual and real corrections at NLO. In this way finite bottom-mass effects can be taken into account
consistently. The NLO QCD corrections are positive and large. There is a decrease by about 10% due

11The recent alternative approach using conventional threshold resummation techniques does not yield a sizeable con-
tribution beyond NLO [197] due to the strong threshold suppression.

58
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Soft-Higgs Approximation

The 2-loop virtual matrix elements for  are extremely challenging to compute: 
  process involving two additional scales (  ) 

Idea  
Soft-Higgs boson emission from on-shell top quarks gives soft singularity 

  

Can derive factorisation formula from eikonal approx/low energy theorem 
(emission from highly off-shell propagators not captured)  
Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini 22

ttH
↪ 2 → 3 mt, mh

lim
k→0

[(p + k)2 − m2
t ]−1 → [(p2 − m2

t )]−1, p2 = m2
t

QCD@LHC 2023, 08/09/2023 - Simone Devoto

CHOICE OF THE APPROXIMATION

15

[S. Catani, SD, M. Grazzini, S. Kallweit,  
J. Mazzitelli, C. Savoini: 2210.07846]

➤ The perturbative function  is an effective coupling which also 
takes into account the renormalisation of the mass and of the wave function; 

➤ To map the  kinematics into a  kinematics ( ), we use the qT recoil 
prescription: 
• We reabsorb the Higgs momentum equally in the initial-state parton momenta; 
• We leave unchanged the top and anti-top momenta.

F(αS(μR); mt /μR)

tt̄H tt̄ Qtt̄H → Qtt̄

= ×

➤ Amplitudes for the process  available [Czakon (2008); Barnreuther et al.(2013)]: we 
can use the soft approximation.

cc̄ → tt̄

ℳqq̄′ →tt̄H({pi}, k) ≃ F(αS(μR); mt /μR) mt
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 @ Approximate NNLOttH

Use  amplitudes +  generalisation of  subtractioncc → tt (c = q, g) QQF qT
4

� [pb]
p
s = 13TeV

p
s = 100TeV

�LO 0.3910+31.3%
�22.2% 25.38+21.1%

�16.0%

�NLO 0.4875+5.6%
�9.1% 36.43+9.4%

�8.7%

�NNLO 0.5070 (31)+0.9%
�3.0% 37.20(25)+0.1%

�2.2%

TABLE II: LO, NLO and NNLO cross sections at
p
s = 13TeV andp

s = 100TeV. The errors stated in brackets at NNLO combine
numerical errors with the uncertainty due to the soft Higgs boson

approximation.

expected to be smaller than these values. We multiply
this uncertainty by a tolerance factor that is chosen to
be 3 for both the gg and the qq̄ channels, taking into
account the overall quality of the approximation and the
e↵ect of the µIR variations discussed above. To obtain
the final uncertainty on the full NNLO cross section, we
linearly combine the ensuing uncertainties from the gg

and qq̄ channels. As we will see, the overall uncertainty
on the NNLO cross section estimated in this way is still
significantly smaller than the residual perturbative un-
certainties.

Results. We are now ready to present our results for
the inclusive tt̄H cross section. In Table II we report
LO, NLO and NNLO cross sections. The scale uncer-
tainties are obtained through the customary procedure of
independently varying the renormalisation (µR) and fac-
torisation (µF) scales by a factor of 2 around their cen-
tral value with the constraint 0.5  µR/µF  2. Since,
as can be seen from Table II, such scale uncertainties
are highly asymmetric, especially at NNLO, in the fol-
lowing we will conservatively consider their symmetrised
version as our estimate of perturbative uncertainty. More
precisely, we take the maximum among the upward and
downward variations, assign it symmetrically and leave
the nominal prediction unchanged.

The errors stated in brackets at NNLO are obtained
by combining the uncertainty from the soft Higgs bo-
son approximation, estimated as discussed above, with
the (much smaller) systematic uncertainty from the sub-
traction procedure. Comparing NLO and LO results
we see that NLO corrections increase the LO result by
25% at

p
s = 13TeV and by 44% at

p
s = 100TeV. The

impact of NNLO corrections is much smaller: they in-
crease the NLO result by 4% at

p
s = 13TeV and by

2% at
p
s = 100TeV. The NNLO contribution of the

o↵-diagonal channels [43] is below the permille level atp
s = 13TeV, while it amounts to about half of the com-

puted correction at
p
s = 100TeV. Perturbative uncer-

tainties are reduced down to the few-percent level. The
uncertainty from the soft Higgs boson approximation
amounts to about ±0.6% at both values of

p
s. We point

out that this uncertainty, although not negligible, is still
significantly smaller than the remaining perturbative un-
certainties.

FIG. 1: LO, NLO and NNLO cross sections with their perturbative
uncertainties as functions of the centre-of-mass energy. The

experimental results from ATLAS [3] and CMS [4] at
p
s = 13TeV are

also shown. The lower panel illustrates the impact of NNLO
corrections with respect to the NLO result. The inner NNLO band
denotes the uncertainty from the soft approximation combined with

the systematic uncertainty from the subtraction procedure.

In Fig. 1 we show the LO, NLO and NNLO cross sec-
tions and their perturbative uncertainties as functions
of the centre-of-mass energy

p
s. The lower panel illus-

trates the relative impact of the NNLO corrections with
respect to the NLO result. The inner NNLO band de-
notes the combination of the uncertainty from the soft
approximation with the systematic uncertainty from the
subtraction procedure. We see that NNLO corrections
range from about +4% at low

p
s to about +2% atp

s = 100TeV. The perturbative uncertainty is reduced
from ±9% at NLO in the entire range of

p
s to ±3%

(±2%) at
p
s = 8TeV (

p
s = 100TeV). We observe that

the NNLO band is fully contained within the NLO band.
The experimental results by ATLAS (Fig. 04a in the aux-
iliary material of Ref. [3]) and CMS [4] at

p
s = 13TeV

are also shown for reference in Fig. 1. We point out
that for a sensible comparison with experimental data
NLO EW corrections should be considered as well. Atp
s = 13TeV, NLO EW corrections increase the cross

section by 1.7% with respect to the NLO result [28].

Summary. The associated production of a Higgs bo-
son with a top–antitop quark pair is a crucial process
at hadron colliders since it allows for a direct measure-
ment of the top-quark Yukawa coupling. In this Letter
we have presented first NNLO QCD results for the tt̄H

cross section in proton collisions. The calculation is com-
plete except for the finite part of the two-loop virtual
amplitude that is computed by using a soft Higgs bo-
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uncertainties as functions of the centre-of-mass energy. The

experimental results from ATLAS [3] and CMS [4] at
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s = 13TeV are

also shown. The lower panel illustrates the impact of NNLO
corrections with respect to the NLO result. The inner NNLO band
denotes the uncertainty from the soft approximation combined with

the systematic uncertainty from the subtraction procedure.

In Fig. 1 we show the LO, NLO and NNLO cross sec-
tions and their perturbative uncertainties as functions
of the centre-of-mass energy

p
s. The lower panel illus-

trates the relative impact of the NNLO corrections with
respect to the NLO result. The inner NNLO band de-
notes the combination of the uncertainty from the soft
approximation with the systematic uncertainty from the
subtraction procedure. We see that NNLO corrections
range from about +4% at low

p
s to about +2% atp

s = 100TeV. The perturbative uncertainty is reduced
from ±9% at NLO in the entire range of

p
s to ±3%

(±2%) at
p
s = 8TeV (
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s = 100TeV). We observe that

the NNLO band is fully contained within the NLO band.
The experimental results by ATLAS (Fig. 04a in the aux-
iliary material of Ref. [3]) and CMS [4] at

p
s = 13TeV

are also shown for reference in Fig. 1. We point out
that for a sensible comparison with experimental data
NLO EW corrections should be considered as well. Atp
s = 13TeV, NLO EW corrections increase the cross

section by 1.7% with respect to the NLO result [28].

Summary. The associated production of a Higgs bo-
son with a top–antitop quark pair is a crucial process
at hadron colliders since it allows for a direct measure-
ment of the top-quark Yukawa coupling. In this Letter
we have presented first NNLO QCD results for the tt̄H

cross section in proton collisions. The calculation is com-
plete except for the finite part of the two-loop virtual
amplitude that is computed by using a soft Higgs bo-

NNLO +4% @ 13 TeV 

Significant reduction of scale 
uncertainties 

Soft approximation uncertainty 
estimated to be significantly 
smaller than scale uncertainty 
(using NLO) 

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini 22



Massification Obtain massive amplitudes from massless amplitudes up to power 
corrections  𝒪(m2/Q2)
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Massification

Penin 06; Moch, Mitov 07; Becher, Melnikov 07; Engel et al 19; Wang, Xia, Yang, Ye 23;

|ℳ(m)⟩ = ∏
i (Z(m|0)

[i] (
m2

μ2
, αs, ϵ)

1/2

S ( m2

μ2
,

m2

sij
, αs, ϵ) |ℳ⟩

External quark contribution 
Dress external quarks with mass 

Mass screens collinear singularities 

Ratio of FFs  

Universal & perturbatively computable

ℱQQ→F /ℱqq→F

Soft contribution 
Account for heavy quark loops 

Starts at 2-loops 

Process dependent

idea: reconstruct the massive amplitudes, in the ultra-relativistic quark limit , up to power corrections  

If contributions from heavy-quark loops are neglected, the master formula is

m ≪ Q "(m2/Q2)

13

Mass factorisation or massificationoriginal formulation

all-order UV renormalised amplitudes 
in  scheme with  running quarksMS nl
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|M(m)
P i =

⇣
Z(m|0)
[Q]

⇣
m2

µ2 ,↵s(µ2), ✏
⌘⌘nQ/2

|MPi
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Z(m|0)
[Q]

⇣
m2

µ2 ,↵s(µ2), ✏
⌘
= F [QQ!F ]

⇣
Q2

µ2 ,
m2

µ2 ,↵s(µ2), ✏
⌘ ✓

F [qq̄!F ]
0

⇣
Q2

µ2 ,↵s(µ2), ✏
⌘◆�1

universal, perturbatively computable, ratio between massive and massless FFs

[Moch, Mitov (2007)]
[Penin (2006)]

we are “dressing”  external 
quarks with a mass  

nQ
m

1. all  poles, -independent 
logarithms of the mass and finite 
terms of the massive amplitude are 

predicted  
2. it can be viewed as a change in 

regularisation scheme 

ϵ nh

the mass “screens” 
collinear singularities

If contributions from heavy-quark loops are included, a non-trivial soft function emerges starting from  

the master formula gets modified as

α2
s

14

Mass factorisation or massification [Wang et al. (2023)]

[Engel et al. (2019)]
[Becher, Melnikov (2007)]
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⇣
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⇣
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(nf )
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⌘⌘1/2
S
⇣

m2

µ2 ,
m2

sij
,↵

(nf )
s (µ2), ✏

⌘
|MPi

process-dependent SOFT function, 
operator in colour space, it starts 

contributing at two-loop order

k1

k2 i

j

Ti ⋅ Tj

all-order UV renormalised amplitudes 
in  scheme with  running quarksMS n f = n l + n h
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⌘

generalised formulation

see Guoxing’s talk

Also require mapping from massless  massive momenta↔
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 @ Approximate NNLO DifferentialttH

Slide: Chiara Savoini (HP2 2024)

Wang, Xia, Yang, Ye 24; Devoto, Grazzini, Kallweit, Mazzitelli, Savoini (WIP); Badger, Hartanto, Kryś, Zoia 21

Differential predictions possible by combining soft-Higgs approximation with 
massification of  amplitudes (with )pp → Hqq mq = 0

21

NNLO QCD + EW corrections

S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and CS, in preparation

setup:    NNLO NNPDF40_nnlo_as_0118_qed,   ,    mH = 125.09GeV mt = 172.5GeV

total XS at fixed scale μR = μF = mt + mH /2

NNLO QCD predictions based on the soft-approximated 
and “best” double virtual are fully compatible: 
difference of  

the systematic uncertainty based on the refined 
prescription is slightly larger:  instead of 

 of the NNLO cross section
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2-loop Amplitudes for  ttH
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Figure 4: Example diagrams for qq̄ ! tt̄H at two-loop level proportional to nl or nh.

Massive quarks are depicted using solid (blue) bold lines, while massless quarks are repre-

sented by lighter (grey/red) solid lines. The colour factors correspond to applying the first

colour projector from eq. (2.24).

solved by Ratracer through replaying the trace in a parallelized manner and using finite

field methods. Our setup allows us to compute reductions in around two CPU minutes for

the two-loop amplitude, and under a second for the one-loop amplitude on a desktop CPU

for most points. Overall this reduction method is fast enough, in the sense that we are

more constrained by the evaluation of the master integrals.

– 13 –

Significant progress in directly computing the 2-loop virtual amplitudes 
 5-point amplitude, 5 variables + 2 masses↪

Agarwal, Heinrich, SPJ, Kerner, Klein, Lang, Magerya, Olsson 24

Next challenges: non-  amplitude, integrating over phase-space (non-trivial)Nf

Figure 11: Contributions from the individual colour factors to the one- and two-loop

amplitudes for phase space slices around the center point of eq. (3.1) in �2 and fracstt̄ . The

center point is marked with a star.

4 Conclusions

We have presented numerical results entering tt̄H production at NNLO QCD, for the quark

initiated Nf–parts of the two-loop amplitude including loops of both massless and massive

quarks. This calculation serves as a proof of concept that our setup is capable of calcu-

lating two-loop pentagon amplitudes with internal massive propagators and three massive

particles in the final state. We have performed the UV renormalisation and subtraction

of IR poles, presenting the finite part of the two-loop amplitude, split into nine di↵erent

colour structures for a general colour group.

For the reduction to master integrals, we do not attempt to obtain a fully symbolic

reduction and instead perform a numerical reduction for each phase-space point leaving the

dimensional regulator symbolic. The master integrals are evaluated with a recent version

of pySecDec, which has been further extended to support integration over double-double

precision integrands, this allows us to obtain stable results also in the high-energy and

collinear limits where many digits of the master integrals cancel. The evaluation times

vary substantially over the phase space, being of the order of five minutes in the bulk of

– 20 –

Leading  contribution to  part of  obtained analytically/series exp. 
 -factorised form 
 127 master integrals, up to 7 per sector

Nc nl pp → ttH
↪ ϵ
↪
Cordero, Figueiredo, Kraus, Page, Reina 23

The  and  parts of  obtained numerically  
 831 master integrals, up to 8 per sector

nl nh qq → ttH
↪



HH Production

σ(pp → HH) ∼
σ(pp → H)
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(a) (b) (c) (d) (e) (f)

Figure 1: Sample Feynman diagrams contributing to the real radiation. Contributions
such as those shown in (c) lead to n

3

h
contributions which have already been computed in

Ref. [25]. The n
3

h
contributions of (d) contain a top quark loop without a Higgs coupling

and have not been computed in Ref. [25]; they are considered here.

(a) (b) (c) (d)

Figure 2: Sample Feynman diagrams in the forward-scattering kinematics. Three- and
four-particle cuts are shown by blue and green dashed lines, respectively. The n

3

h
contri-

butions as shown in (b) have already been considered in [25] but those in (c) have not;
they are considered here.

butions which have a closed loop with only gluon couplings (as shown in Fig. 1(c)). Such
terms are not included in Ref. [25], but are computed in this paper.

The remainder of the paper is organized as follows: in the next section we discuss the
individual parts of our calculation. This concerns in particular the setup used for the
computation of the real-radiation corrections including the asymptotic expansion and the
reduction to phase-space master integrals. Furthermore, we discuss the ultraviolet and
collinear counterterms to subtract the divergences from initial-state radiation. Section 3
is dedicated to the phase-space master integrals. We provide details on the transformation
of the system of di↵erential equations to ✏ form and on the computation of the boundary
conditions in the soft limit. We discuss our analytic and numerical results in Section 4 and
summarize our findings in Section 5. In the appendix we provide useful additional mate-
rial such as explicit formulae used for the computation of the collinear counterterms, the
integrands of the phase-space master integrals, NNLO virtual corrections to the channel
qq̄ ! HH and NNLO virtual corrections involving four closed top quark loops. Further-
more, we describe in detail our approach to obtain the leading 1/mt term for double Higgs
production from the analytic expressions of the single-Higgs production cross section.

4

[25,27] NNLO 1/m2
T

2324



Interesting to explore the impact of EW corrections  ( for off-shell Higgs) 

EW corrections modify distributions and bounds in the SM & EFT frameworks

±5 %

40

EW Corrections

Actis, Passarino, Sturm, Uccirati 08

4

Di↵erential cross sections. — Di↵erential cross
sections o↵er a wealth of information about physics, both
within the SM and in scenarios beyond it. The impact
of NLO EW corrections can vary across specific regions
of the phase space compared to the full phase space.

As indicated in Table I, the statistical uncertainty for
the K factor is smaller than that of the NLO cross sec-
tion. This discrepancy arises because the di↵erential K
factor exhibits a much flatter behavior compared to the
di↵erential cross section, enabling the former to get a
controllable error with far fewer events for numerical in-
tegration. Given that the computation at LO is signif-
icantly more economical, we proceed to compute NLO
di↵erential cross sections using the following relation:

��
NLO = �K��

LO
, (13)

where �K is the K factor calculated in a specific phase
space region using the same events at LO and NLO, and
��

LO is the LO result computed in the same region but
using a significantly larger number of events.

With the 1.8⇥ 104 reweighted events, we can compute
the K factor quite accurately for most bins, except for
those with very large MHH or pT . For each of these bins,
we compute an additional 400 reweighted events and use
them to determine the corresponding K factor.

400 600 800 1000 1200 1400 1600 1800
0.85
0.90
0.95
1.00
1.05
1.10
1.15

MHH [GeV]

N
L
O
/L
O

LO

NLO

10-5

10-4

0.001

0.010

0.100

d
�
/d
M

H
H
[f
b
/G
e
v
]

FIG. 2. Invariant mass distribution of the Higgs pair with
p
s = 14 TeV. The upper plot shows absolute predictions, and

the lower panel displays the di↵erential K factor with error
bars representing statistical errors.

In Fig. 2, we present the MHH distribution. A signif-
icant positive correction of approximately +15% is ob-
served in the first bin. In fact, we find that the EW
correction for phase space points near the HH produc-
tion threshold can exceed +70%. A similar result has also
been obtained in Ref. [32] where top-Yukawa corrections
have been considered, partially in the heavy top-quark
mass limit. This can be understood by examining the
EW corrections using heavy top-quark mass expansion.
As shown in Ref. [34], the leading term in the expan-
sion at NLO is larger than that at LO by m

4
t
, which ex-

plains the substantial increase near threshold. However,

FIG. 3. Same as Fig. 2, but for transverse momentum
distribution of one of the two Higgs bosons.

above the threshold, the expansion becomes unreliable,
and consequently, the enhancement should no longer ex-
ist. Indeed, as MHH increases, the K factor decreases
dramatically initially and then slows down as it moves
away from the threshold. The pattern is similar for the
pT distribution in Fig. 3, where the correction is posi-
tive initially and subsequently becomes negative. In re-
gions of either large MHH or large pT , we find the NLO
EW correction to be approximately �10%. We explic-
itly checked phase space points with

p
ŝ close to 14 TeV

and found the corrections to be as substantial as �30%
at the matrix element squared level. However, the gluon
luminosity is highly suppressed in this region, and thus,
it does not contribute significantly to (di↵erential) cross
sections.

FIG. 4. Same as Fig. 2, but for rapidity distribution distri-
bution of one of the two Higgs bosons.

In Fig. 4, we display the rapidity distribution of one of
the two Higgs bosons. A nearly flat K factor is observed,
approximately 0.96, similar to the total cross section.
Summary. — Double Higgs production is considered

Full EW Corrections  
Recently computed using AMFlow

 -4% on total cross section 
 +15% near production threshold 
 -10% at high energy (Sudakov-like)

↪
↪
↪

Partial EW Corrections ( ) 
Obtained using pySecDec

yt, λ3, λ4

p
s 13 TeV 13.6 TeV 14 TeV

LO [fb] 16.45 18.26 19.52

NLO
EW [fb] 16.69 18.52 19.79

NLO
EW/LO 1.01 1.01 1.01

Table 4: Inclusive cross section for Higgs boson pair production for different centre-of-mass
energies at LO and NLO

EW including only the Yukawa and self-coupling type corrections.
The QCD renormalisation and factorisation scales are set to µr = µf = mHH/2.
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Figure 5: Invariant mass and transverse momentum distributions for Higgs boson pair
production at LO and NLO

EW including only the Yukawa and self-coupling type corrections.
The QCD renormalisation and factorisation scales are set to µr = µf = mHH/2.

For the presentation of our final results, we use the PDF4LHC21_40 [77] distribution
functions interfaced via LHAPDF [78] and set the factorisation and renormalisation scale to
µr = µf = mHH/2. The masses of the Higgs boson and top quark are set to mH = 125 GeV,
mt =

p
23/12 mH = 173.055 GeV, respectively, and we set GF = 1.1663787 · 10

�5
GeV

�2,
corresponding to v = 246.22 GeV.

Results for the total and differential cross section at the LHC with a centre-of-mass
energy of

p
s = 13 TeV, 13.6 TeV and 14 TeV are given in Table 4 and shown differentially

in mHH and pT,H in Fig. 5, respectively. These results are obtained by reweighting ⇠ 7000

unweighted LO events with the NLOEW contribution. We observe that the partial NLOEW

corrections computed here increase the total cross section by ⇠ 1%. This is comparable to
the size of the QCD scale uncertainty of ⇠ 3% obtained at N3LO in the heavy top-quark
limit [27, 28].

For the invariant mass distribution, shown in Fig. 5, the corrections introduce very large
shape distortions, ⇠ 30% with the binning we select, close to the Higgs pair production
threshold, compatible with the observations of Ref. [35]. In Ref. [40], it was found that
the full EW corrections lead to an enhancement of the mHH spectrum close to the Higgs
boson pair production threshold of up to 15%. Reproducing the binning used in Ref. [40]
we find an enhancement of ⇠ 25%, suggesting that the gauge boson contributions included

– 19 –

 +1% on total cross section 
 +30% near production threshold 

Can be adapted for EFT analyses

↪
↪

Heinrich, SPJ, Kerner, Stone, Vestner 24Bi, Huang, Huang, Ma, Yu 23



Conclusion
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Higgs Sector

The Higgs boson allows us to explore the heart of the Standard Model

ℒ = …+ |Dμϕ |2 + ψiyijψjϕ − V(ϕ)

Image: Symmetry Magazine

Gauge Interactions

Yukawa Interactions 

fermion masses  flavour↔

Higgs Potential 

self-coupling  
vacuum stability 

↔
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Outlook

Be determined … 

Persevere … 

 

The precision program promises critically 
important fundamental discoveries 

 Couplings to 2nd generation 
 Boosted/high-energy behaviour 
 Higgs self-coupling  Higgs potential 
 BSM constraints … 

Has significant potential to uncover 
something completely new and unexpected

↪
↪
↪ ⟹
↪
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Outlook

Be determined … 

Persevere … 

Be prepared

The precision program promises critically 
important fundamental discoveries 

 Couplings to 2nd generation 
 Boosted/high-energy behaviour 
 Higgs self-coupling  Higgs potential 
 BSM constraints … 

Has significant potential to uncover 
something completely new and unexpected

↪
↪
↪ ⟹
↪

Thank you for listening


