

PYTHIA and the Higgs

Torbjörn Sjöstrand

Lund University, Lund, Sweden

Higgs Hunting, Orsay/Paris, 23 – 25 Sep 2024

In the beginning

- 1977 1982: development of Lund string fragmentation, assuming linear confinement $V(r) = \kappa r$, $\kappa \approx 1 \text{ GeV/fm}$ (Bo Andersson, Gösta Gustafson, students).
- 1978: first implementation in JETSET code, for fragmentation and (in 1979) e^+e^- annihilation (TS, (Bo Söderberg)).
- 1980: breakthrough in 3-jet study by JADE at PETRA.
- 1980: LEPTO code for leptoproduction, using JETSET (Gunnar Ingelman, TS).
- 1982: PYTHIA code for $pp/p\overline{p}$ collisions, using JETSET (Hans-Uno Bengtsson).

The Lund Model for a $q\overline{q}$ system

String pulled out as q and \overline{q} move apart, shifting energy to it. String breakup by new $q\overline{q}$ production, giving mesons. Breakup vertices approximately along hyperbola of constant invariant time, with spacelike separation \Rightarrow can use recursive fragmentation from ends inwards.

The Lund Gluon Picture

A gluon carries one colour and one anticolour. Thus it can be viewed as a kink on the string, carrying energy and momentum:

The most characteristic feature of the Lund model.

The JADE Effect

Torbjörn Sjöstrand

Colour topologies in pp

PYTHIA raison d'être: split full ${
m d}\hat{\sigma}/{
m d}\hat{t}$ by colour flow fractions!

A first Higgs encounter - 1

DORIS II: e^+e^- ring with $\sqrt{s} \approx 10$ GeV. Crystal Ball: EM calorimeter, QED transitions in Υ system. ARGUS: multipurpose detector for B meson decay at $\Upsilon(4s)$.

EVIDENCE FOR A MASSIVE STATE IN THE RADIATIVE DECAYS OF THE UPSILON

Hans-Jochen Trost (representing CB Collaboration*) Deutsches Elektronen-Synchrotron

D-2000 Hamburg 52, Notkestr. 85, Fed. Rep. of Germany

ABSTRACT: Evidence is presented for a state, which we call ζ , with a mass M = (8322 ± 8 ± 24) MeV and a line width $\Gamma < 80$ MeV (90% confidence level) obtained using the Crystal Ball NaI(11) detector at DORIS II. The branching ratio to this state from the T(1S) is of order 0.5%.

The interpretation of this new state as the neutral Higgs boson expected in the standard model gives a disagreement of approximately two orders of magnitude between this observed branching ratio and that predicted. This branching ratio can be accomodated in some extensions of the standard model, e.g. two-Higgs doublet models. A less model-dependent quantity is

mass 8.32 GeV branching ratio 0.5% significance 4.0 σ presented at ICHEP 1984

A first Higgs encounter – 2

New data taken autumn 1984, presented at Moriond 1985:

ABSTRACT

Results are presented from 22.1 pb^{-1} of $\Upsilon(1S)$ data, taken with the Crystal Ball detector at DORIS. These data were taken to further explore the $\varsigma(8.3)$ signal originally seen in 10.4 pb^{-1} of $\Upsilon(1S)$ data^[2] No evidence for the ς is observed in this new sample. Data quality checks and possible explanations are discussed.

1984 "signal" = -29 ± 29 events $\Rightarrow BR(\Upsilon \rightarrow \gamma \zeta) < 0.08\%$. Combined 1983 + 1984 significance 1.9 σ . Not heard of since.

Snowmass 1982 and aftermath

Birth of the SSC project (?). Aimed at physics at the TeV scale.

spring 1984: "Supercollider physics" by E. Eichten, I. Hinchliffe, K. Lane, C. Quigg

- 18 pp PDFs
- 21 pp QCD jets
- 15 pp EW gauge bosons
- 9 pp Higgs, singly and associated
- 17 pp Technicolor
- \bullet 8 pp new Q, $\ell,~{\rm Z}^{\prime0},~{\rm W}^{\prime\pm}$
- 16 pp Supersymmetry
- 14 pp compositeness

FIG. 146. Integrated cross sections for Higgs-boson production by gluon fusion in $p^{\pm}p$ collisions, for $m_t=30$ GeV/ c^2 at $\sqrt{s}=2$, 10, 20, 40, 70, and 100 TeV, according to Set 2 of the distributions.

Boundless optimism! Reagan Star Wars atmosphere! Reestablish US leadership after CERN Z^0 and W^\pm discoveries. SSC design parameters $\sqrt{s} = 40$ TeV, $\mathcal{L} = 10^{33}$ cm $^{-2}$ s $^{-2}$.

The no-lose theorem

Either there are light (≤ 1 TeV) particles from EW symmetry breaking that can be produced and studied directly and/or

excess WW, WZ, ZZ production is observable, signalling strongly coupled symmetry-breaking sector with masses ≥ 1 TeV.

(this formulation: M. Chanowitz 1987; divergence issue noted by Dicus and Mathur, and Veltman)

Taming the divergence

W γ/Z $|\mathcal{M}| \propto s^2$ w ~ ιw W nar $|\mathcal{M}| \propto s^2$ $|\mathcal{M}| \propto s$ $\sim \sim \sim$ v wW 1 зW $|\mathcal{M}| \propto s^2$ MAG $\sim \sim$ νw W 1 Н $|\mathcal{M}| \propto s$ ιw W r W1 JW $|\mathcal{M}| \propto s$ н ww

Asymptotic behaviour of WW \rightarrow WW dominated by $W_LW_L \rightarrow W_LW_L$

 $|\mathcal{M}|$ constant

Recall $\sigma \propto |\mathcal{M}|^2/s$ so $|\mathcal{M}|$ constant required for unitarity

Event generators summer 1984

generator	ISAJET	FIELDAJET	COJETS	PYTHIA
			WIZJET	JETSET
processes	2jet	2jet	2jet	2jet
	W/Z (?)		W/Z	$\gamma+jet$
	soft			
Higgs	no	no	no	no
initial-state rad	no	forward,	forward,	no
		hit-and-miss	pretabulation	
final-state rad	incoherent	incoherent	incoherent	no
colour flow	no	no	no	yes
fragmentation	independent	independent	independent	string
gluon jet	like quark	like quark	like quark	$\approx q\overline{q}$
beam remnants	leading baryon	remnant	leading baryon	remnant
	+ cut Pomerons	jets	+ longitudinal	jets
			phase space	
time per event	0.05 s	120 s	0.1 s	0.1 s
code	public	private	public	public

Others: Webber, Capella et al., Ranft et al., Preparata, ...

PYTHIA development 1984 – 1986

- Hans-Uno Bengtsson now at UCLA; collaborate via BITNET. Gunnar Ingelman at CERN; no connection ⇒ dropped out.
- Several workshops: Eugene, Oregon spring/summer 1985; UCLA January 1986; Madison May 1986.
- Final-state radiation (FSR): Marchesini-Webber.
- Initial-state radiation (ISR): backwards evolution.
- Multiparton interactions (MPI): underlying event.
- Minimum bias, elastic, diffractive events.
- Gauge bosons: $W^{\pm}, \gamma^*/Z^0, \gamma\gamma, W^{\pm}/Z^0 + jet, W^{\pm}/Z^0 + \gamma, W^+W^-, Z^0Z^0, W^{\pm}Z^0$ (+ angular correlated decays).
- Higgs: gg → H⁰, qq̄ → H⁰ (including top, m_t = 40 GeV), W⁺_LW⁻_L → H⁰, Z⁰_LZ⁰_L → H⁰, qq̄ → H⁰ + W[±]/Z⁰ (+ always H⁰ decays).
 Exotica: qq̄ → γ^{*}/Z⁰/Z'⁰, qq̄ → H[±], qq̄ → R⁰.

Recall: longitudinal W_L/Z_L are "eaten" Higgs fields of SSB $\Rightarrow W_L^+ W_L^-/Z_L^0 Z_L^0 \rightarrow H^0$ dominates for large m_H (≥ 600 GeV). Can define effective flux like EPA or DGLAP splitting kernels

$$f_{\gamma/q}(x) = \frac{\alpha_{\rm em}e_{\rm q}^2}{2\pi} \frac{1 + (1 - x)^2}{x}$$

$$f_{Z_L/q}(x) = \frac{\alpha_{\rm em}(g_{\nu,q}^2 + g_{a,q}^2)}{4\pi\sin^2\theta_W\cos^2\theta_W} \frac{1 - x + m_Z^2/\hat{s}}{x - m_Z^2/\hat{s}}$$

$$f_{W_L/q}(x) = \frac{\alpha_{\rm em}}{4\pi\sin^2\theta_W} \frac{1 - x + m_W^2/\hat{s}}{x - m_W^2/\hat{s}} (\times \text{CKM})$$

(Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard) Full calculation $q_1q_2 \rightarrow q_3q_4H^0$ at border of feasibility \Rightarrow integrate out Q_1^2, Q_2^2 for simplified cross sections, but in Monte Carlo full care with scattered-quark kinematics.

Snowmass 1986

- Active subgroup "W/Z Pairs and the Higgs at the SSC". Theory coordinator: John F. Gunion (Davis).
 Experimental coordinator: Aurore Savoy-Navarro (Saclay).
- ISAJET and PYTHIA used for studies, including cross-checks; tutorials by Frank Paige and TS+HUB.
- Three large reports: one theory, one experiment over broad Higgs mass range, one ditto on "high-mass" Higgs with $m_{\rm H} = 300$ or 800 GeV.

PYTHIA event D0-like detector GEANT 3 tracking

Generator comparisons (1988)

Significant differences between generators in many respects:

Aachen 1990

- LEP tunnel intended to allow pp collider.
- LHC workshops: Lausanne 1984, La Thuile 1987.
- 1989: LEP workshop and LEP startup.
- SSC to be ready 1999, so Rubbia promises LHC by 1998; push/pull with LEP experiments.
- 1989 autumn: first contact with LHC studies (Daniel Froidevaux, Louis Fayard, ...).
- 1990 intense series of CERN meeting leading up to Aachen: the peak of theory and Monte Carlo preparations (?).
- Evian 1992: collaboration formation, technology choices.

Gauge boson pair scattering $V_L V_L \to V_L V_L$, $V=Z^0$ or W^\pm , complements/supersedes $V_L V_L \to H^0.$

What if heavy/no Higgs?

Exemplified by Dobado, Herrero, Terron: Higgs-like or QCD-like symmetry breaking with Padé approximants or *K*-matrix unitarization ($a \rightarrow a/(1 - ia)$).

So broad range of possible high-energy behaviours available.

Other \sim 1990 Higgs issues

- Running quark masses affects production and decays, notably $m_{\rm b}(m_{\rm b}) \approx 4.5 \text{ GeV} \Rightarrow m_{\rm b}(m_{\rm H}) \approx 3 \text{ GeV}.$
- Relaxed MSSM constraint $m_{\rm H} < m_{\rm Z}$. (Bad news for LEP2.)
- Off-shell decays $\mathrm{H}^{0} \to \mathrm{W}^{(*)+}\mathrm{W}^{(*)-}, \mathrm{Z}^{(*)0}\mathrm{Z}^{(*)0}.$
- Running H width: $\Gamma_{\rm H} \propto m_{\rm H}^3 \rightarrow \hat{s}^{3/2}$ or $\rightarrow m_{\rm H}^2 \sqrt{\hat{s}}$ (Seymour 1995; former usually but latter for WW/ZZ).
- Full $q_1q_2 \rightarrow q_3q_4H^0$ (WW/ZZ fusion).
- $gg/q\overline{q} \rightarrow Q\overline{Q}H^0$ (but background $gg/q\overline{q} \rightarrow Q\overline{Q}Z^0$ tough).
- $gg \to gH^0, qg \to qH^0, q\overline{q} \to gH^0.$
- Generalize almost all H^0 processes to H'^0 and A^0 , with flexible couplings or MSSM-based ones.
- \bullet Some more H^\pm processes, including couplings as above.
- $\bullet~{\rm Z}'^0 \to {\rm Z}^0 {\rm H}^0$ and ${\rm W}'^\pm \to {\rm W}^\pm {\rm H}^0$ in left–right symmetry.
- $q \rightarrow f = q$ or ℓ where relevant (LEP2, other e^+e^- or $\mu^+\mu^-$).

1986, Dokshitzer, Khoze, Troyan: rapidity gap in $W^+W^- \rightarrow H^0$ 1986, we: already included, but masked by MPI, showers, ... 1991, Dokshitzer, Khoze, TS: more detailed study 1991, Bjorken: rapidity gap survival probability,

 $\langle |S|^2 \rangle \approx 0.1 \approx P(n_{\rm MPI} = 0)$

2017: ISR dipole recoil option, gives less radiation into gap region

Rapidity gap closeup

Vector Boson Fusion, neglect Higgs, require two well-separated "tagging" jets, study third jet (if any):

Default: momentum exchange possible between two event sides. Dipole: separate event sides, each like a DIS event.

(S. Höche et al., arXiv:2106.10987)

The last 30+ years

Evolution from "qualitative understanding" to "precision theory".

- Automated calculation and sampling of matrix elements.
- Higher orders: NLO, NNLO, N³LO, multijets
- Matching and merging of matrix elements and parton showers.
- $m_{
 m t} = 40~{
 m GeV}
 ightarrow 172~{
 m GeV}.$

Many PYTHIA physics/utility extensions in different directions.

- Few with direct bearing on Higgs physics.
- Exception 1: Technicolor Straw Man Model (Lane).
- Exception 2: alternative dipole recoil in VBF.
- Not only LHC, but also TESLA, CLIC, ILC, FCC-ee, ...

Code and author size

Summary and Outlook

- PYTHIA rapidly expanded 1984 1990, in many directions, but notably to support Higgs searches.
- Since then extensively used standalone for LHC detector design and early search/analysis strategies.
- Gradually integrated with other tools, like Madgraph.
- The Higgs was discovered 2012, at an "optimal" mass; all high-mass scenarios and much Monte Carlo code "useless".
- No signs of BSM. Notably no SUSY to explain H mass.
- Higgs as portal to BSM, like Hidden Valley in PYTHIA.
- No current Higgs physics development in PYTHIA, but ready to reactivate if needed.