

PYTHIA and the Higgs

Torbjörn Sjöstrand

Lund University, Lund, Sweden

Higgs Hunting, Orsay/Paris, 23 – 25 Sep 2024

In the beginning

- 1977 1982: development of Lund string fragmentation, assuming linear confinement $V(r) = \kappa r$, $\kappa \approx 1$ GeV/fm (Bo Andersson, Gösta Gustafson, students).
- 1978: first implementation in JETSET code, for fragmentation and (in 1979) $\rm e^+\rm e^-$ annihilation (TS, (Bo Söderberg)).
- 1980: breakthrough in 3-jet study by JADE at PETRA.
- 1980: LEPTO code for leptoproduction, using JETSET (Gunnar Ingelman, TS).
- \bullet 1982: PYTHIA code for $pp/p\overline{p}$ collisions, using JETSET (Hans-Uno Bengtsson).

The Lund Model for a $q\bar{q}$ system

String pulled out as q and \overline{q} move apart, shifting energy to it. String breakup by new $q\bar{q}$ production, giving mesons. Breakup vertices approximately along hyperbola of constant invariant time, with spacelike separation \Rightarrow can use recursive fragmentation from ends inwards.

The Lund Gluon Picture

A gluon carries one colour and one anticolour. Thus it can be viewed as a kink on the string, carrying energy and momentum:

The most characteristic feature of the Lund model

The JADE Effect

Colour topologies in pp

Colour flow nontrivial in pp collisions, e.g. $qg \rightarrow qg$:
s-channel t-channel u -chan u -channel r $b\overline{r}$ roofs b g $b\overline{g}$ $b\overline{r}$ ^{ov} $\overline{}$ ^{ov} $b\overline{g}$ $b\overline{g}$ r $r\overline{g}$ g r rb b $r\overline{g}$ $b\overline{g}$ r g b $r\overline{g}$ ${\rm d}\hat\sigma$ д $\frac{\mathrm{d}\hat{\sigma}_A}{\mathrm{d}\hat{t}} = \frac{\pi \alpha_\mathrm{s}^2}{\hat{s}^2}$ \hat{s}^2 4 9 $\left(2\frac{\hat{u}^2}{2}\right)$ $\overline{\hat{t}^2}$ – uˆ sˆ $\int d\hat{\sigma}_B$ $\frac{\mathrm{d}\hat{\sigma}_B}{\mathrm{d}\hat{t}} = \frac{\pi \alpha_\mathrm{s}^2}{\hat{s}^2}$ \hat{s}^2 4 9 $\left(2\frac{\hat{s}^2}{2}\right)$ $\overline{\hat{t}^2}$ – sˆ uˆ \setminus ${\rm d}\hat\sigma_{\scriptstyle\mathcal{A}+\mathcal{B}}$ $rac{\delta A+B}{\mathrm{d}\hat{t}}=\frac{\pi\alpha_\mathrm{s}^2}{\hat{s}^2}$ \hat{s}^2 $\sqrt{8}$ 9 $\hat{s}^2 + \hat{\mu}^2$ $\frac{\widehat{t}^2}{\widehat{t}^2}$ – 4 9 $\hat{s}^2 + \hat{\mu}^2$ sˆuˆ \setminus where $\mathcal{O}(1/N_C^2)$ colour interference term makes $8/9 \rightarrow 1$.

PYTHIA raison d'être: split full $d\hat{\sigma}/d\hat{t}$ by colour flow fractions!

A first Higgs encounter -1

DORIS II: e^+e^- ring with $\sqrt{s} \approx 10$ GeV. Crystal Ball: EM calorimeter, QED transitions in Υ system. ARGUS: multipurpose detector for B meson decay at $\Upsilon(4s)$.

EVIDENCE FOR A MASSIVE STATE IN THE RADIATIVE DECAYS OF THE UPSILON ing the same state in two different channels; then

Hans-Jochen Trost (representing CB Collaboration*) Deutsches Elektronen-Synchrotron The weighted averages for the parameters of this new

D-2000 Hamburg 52, Notkestr. 85, Fed. Rep. of Germany

line width Γ < 80 MeV (90% confidence level) obtained using the Crystal Ball Nal(Tl) detector at DORIS II. boding the crystal start hard in yestercor at bonis 11.
The branching ratio to this state from the T(15) is of order $0.5%$. ABSTRACT: Evidence is presented for a state, which we call ζ , with a mass M = (8322 \pm 8 \pm 24) MeV and a

The interpretation of this new state as the neutral Higgs boson expected in the standard model gives a disagreement of approximately two orders of magnitude **EXEC MOSS 0.32 GCV** between this observed branching ratio and that predicted. This branching ratio can be accomodated in mesons , Higgs bosons , Higgs bosons , or supersymmetric parasome extensions of the standard model, e.g. two-Higgs doublet models. A less model-dependent quantity is

RIS II storage ring at DESY. The data samples consist

the ratio $\mathcal{L}^{\mathcal{M}}$ is a set of $\mathcal{L}^{\mathcal{M}}$ yields $\mathcal{L}^{\mathcal{M}}$

^{ves a} mass 8.32 GeV t _{pre-} branching ratio 0.5% pected resolution. No other line in fig. 1 con be fit- $_{\text{ed in}}$ significance 4 0 σ ^{wo-Higgs} presented at ICHEP 1984 significance 4.0 σ

lo simulations of the process T(.1S) > -yr, , *c +* 2 ha-

which the strength of the strength of

A first Higgs encounter – 2 pb-' of this sample were taken with a malfunctioning tracking tracking chamber \sim

New data taken autumn 1984, presented at Moriond 1985:

ABSTRACT

Results are presented from 22.1 pb^{-1} of $\Upsilon(1S)$ data, taken with the Crystal Ball detector at DORIS. These data were taken to further explore the $\zeta(8.3)$ signal originally seen in 10.4 pb^{-1} of $\Upsilon(1S)$ data^[2] No evidence for the ζ is observed in this new sample. Data quality checks and possible explanations are discussed.

Not heard of since. 1984 "signal" = -29 \pm 29 events $\Rightarrow BR(\Upsilon \rightarrow \gamma \zeta) < 0.08\%$. Combined 1983 + 1984 significance 1.9 σ . "low multiplicity" analysis has not yet been completed and will not be presented here. 1984 "signal" = −29 ± 29 events ⇒ $BR(\Upsilon \to \gamma \zeta)$ < 0.08%.
Combined 1983 + 1984 significance 1.9 σ .
Not heard of since.

Snowmass 1982 and aftermath

Birth of the SSC project (?). Aimed at physics at the TeV scale.

spring 1984: "Supercollider physics" by E. Eichten, I. Hinchliffe, K. Lane, C. Quigg

- 18 pp PDFs
- 21 pp QCD jets
- 15 pp EW gauge bosons
- 9 pp Higgs, singly and associated
- o 17 pp Technicolor
- 8 pp new Q, ℓ , $\rm Z'^{0},~\rm W'^{\pm}$
- 16 pp Supersymmetry
- 14 pp compositeness

FIG. 146. Integrated cross sections for Higgs-boson production by gluon fusion in $p^{\pm}p$ collisions, for $m_t = 30 \text{ GeV}/c^2$ at $\sqrt{s} = 2$, 10, 20, 40, 70, and 100 TeV, according to Set 2 of the distributions.

decay mode. The signal is less by a factor of 2 [see Eqs.

Boundless optimism! Reagan Star Wars atmosphere! Reestablish US leadership after CERN $\rm Z^0$ and $\rm W^\pm$ discoveries. SSC design parameters $\sqrt{s} = 40$ TeV, $\mathcal{L} = 10^{33}$ cm⁻²s⁻².

The no-lose theorem

Either there are light (≤ 1 TeV) particles from EW symmetry breaking that can be produced and studied directly and/or

excess WW, WZ, ZZ production is observable, signalling strongly coupled symmetry-breaking sector with masses > 1 TeV.

(this formulation: M. Chanowitz 1987; divergence issue noted by Dicus and Mathur, and Veltman)

Taming the divergence

W $W^{\gamma / Z}_{\gamma}$ $|\mathcal{M}| \propto s^2$ $W \sim$ W W W nov $|\mathcal{M}| \propto s^2$ $|\mathcal{M}| \propto s$ γ/Z w www W W W $|\mathcal{M}| \propto s^2$ har W N r w $W \cdot$ $H₁$ $|\mathcal{M}| \propto s$ W_o W W W $|\mathcal{M}| \propto s$ H W ww m w

Asymptotic behaviour of $M/M \rightarrow M/M$ dominated by $W_1 W_1 \rightarrow W_1 W_1$

|M| constant

Recall $\sigma \propto |\mathcal{M}|^2/s$ so |M| constant required for unitarity

Event generators summer 1984

Others: Webber, Capella et al., Ranft et al., Preparata, ...

PYTHIA development 1984 – 1986

- Hans-Uno Bengtsson now at UCLA; collaborate via BITNET. Gunnar Ingelman at CERN; no connection \Rightarrow dropped out.
- Several workshops: Eugene, Oregon spring/summer 1985; UCLA January 1986; Madison May 1986.
- Final-state radiation (FSR): Marchesini–Webber.
- \bullet Initial-state radiation (ISR): backwards evolution.
- Multiparton interactions (MPI): underlying event.
- Minimum bias, elastic, diffractive events.
- Gauge bosons: W^{\pm} , γ^*/Z^0 , $\gamma\gamma$, W^{\pm}/Z^0 + jet, W^{\pm}/Z^0 + γ , $\rm W^+W^-, Z^0Z^0, W^\pm Z^0$ $(+$ angular correlated decays).
- Higgs: $gg \to H^0, q\overline{q} \to H^0$ (including top, $m_t = 40$ GeV), $W_L^+W_L^- \to H^0, Z_L^0Z_L^0 \to H^0,$ $\mathrm{q}\mathrm{\overline{q}} \rightarrow \mathrm{H}^0 + \mathrm{W}^\pm/\mathrm{Z}^0$ $(+$ always H^0 decays).
- Exotica: $q\overline{q} \rightarrow \gamma^*/Z^0/Z^0, q\overline{q} \rightarrow H^{\pm}, q\overline{q} \rightarrow R^0$.

Recall: longitudinal W_L/Z_L are "eaten" Higgs fields of SSB \Rightarrow $W_L^+W_L^-/Z_L^0Z_L^0 \rightarrow H^0$ dominates for large m_H (\geq 600 GeV). Can define effective flux like EPA or DGLAP splitting kernels

$$
f_{\gamma/q}(x) = \frac{\alpha_{em}e_q^2}{2\pi} \frac{1 + (1 - x)^2}{x}
$$

\n
$$
f_{Z_L/q}(x) = \frac{\alpha_{em}(g_{v,q}^2 + g_{a,q}^2)}{4\pi \sin^2 \theta_W \cos^2 \theta_W} \frac{1 - x + m_Z^2/\hat{s}}{x - m_Z^2/\hat{s}}
$$

\n
$$
f_{W_L/q}(x) = \frac{\alpha_{em}}{4\pi \sin^2 \theta_W} \frac{1 - x + m_W^2/\hat{s}}{x - m_W^2/\hat{s}} (\times \text{CKM})
$$

(Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard) Full calculation $\rm{q_{1}q_{2}} \rightarrow \rm{q_{3}q_{4}}H^{0}$ at border of feasibility \Rightarrow integrate out Q_1^2 , Q_2^2 for simplified cross sections, but in Monte Carlo full care with scattered-quark kinematics.

Snowmass 1986

- Active subgroup "W/Z Pairs and the Higgs at the SSC". Theory coordinator: John F. Gunion (Davis). Experimental coordinator: Aurore Savoy-Navarro (Saclay).
- **ISAJET** and PYTHIA used for studies, including cross-checks; tutorials by Frank Paige and TS+HUB.
- Three large reports: one theory, one experiment over broad Higgs mass range, one ditto on "high-mass" Higgs with $m_H = 300$ or 800 GeV.

PYTHIA event D0-like detector GEANT 3 tracking

Generator comparisons (1988)

Significant differences between generators in many respects:

Aachen 1990

- LEP tunnel intended to allow pp collider.
- LHC workshops: Lausanne 1984, La Thuile 1987.
- 1989: LEP workshop and LEP startup.
- SSC to be ready 1999, so Rubbia promises LHC by 1998; push/pull with LEP experiments.
- 1989 autumn: first contact with LHC studies (Daniel Froidevaux, Louis Fayard, . . .).
- 1990 intense series of CERN meeting leading up to Aachen: the peak of theory and Monte Carlo preparations (?).
- Evian 1992: collaboration formation, technology choices.

Gauge boson scattering

Gauge boson pair scattering $V_L V_L \rightarrow V_L V_L$, $V = Z^0$ or W^{\pm} , complements/supersedes $V_L V_L \rightarrow H^0$.

What if heavy/no \rm{Higgs} ?

Exemplified by Dobado, Herrero, Terron: Higgs-like or QCD-like symmetry breaking with Vinat in neavy/no ringgs:
Exemplified by Dobado, Herrero, Terron:
Higgs-like or QCD-like symmetry breaking with
Padé approximants or *K*-matrix unitarization (*a → a/*(1 *− ia*)). 9 " /

So broad range of possible high-energy behaviours available.

Other ∼1990 Higgs issues

- Running quark masses affects production and decays, notably $m_{\rm b}(m_{\rm b}) \approx 4.5$ GeV $\Rightarrow m_{\rm b}(m_{\rm H}) \approx 3$ GeV.
- Relaxed MSSM constraint $m_H < m_Z$. (Bad news for LEP2.)
- Off-shell decays $H^0 \to W^{(*)+}W^{(*)-}$, $Z^{(*)0}Z^{(*)0}$.
- Running H width: $\Gamma_H \propto m_H^3 \rightarrow \hat{s}^{3/2}$ or $\rightarrow m_H^2$ √ sˆ (Seymour 1995; former usually but latter for WW/ZZ).
- Full $q_1q_2 \rightarrow q_3q_4H^0$ (WW/ZZ fusion).
- $\mathrm{gg}/\mathrm{q}\mathrm{\overline{q}} \rightarrow \mathrm{Q} \mathrm{\overline{Q}H^0}$ (but background $\mathrm{gg}/\mathrm{q}\mathrm{\overline{q}} \rightarrow \mathrm{Q} \mathrm{\overline{Q}Z^0}$ tough).
- $gg \to gH^0, qg \to qH^0, q\overline{q} \to gH^0.$
- Generalize almost all H^0 processes to H'^0 and A^0 , with flexible couplings or MSSM-based ones.
- Some more H^{\pm} processes, including couplings as above.
- $\mathrm{Z}'^0 \rightarrow \mathrm{Z}^0 \mathrm{H}^0$ and $\mathrm{W}'^\pm \rightarrow \mathrm{W}^\pm \mathrm{H}^0$ in left–right symmetry.
- $q \rightarrow f = q$ or ℓ where relevant (LEP2, other e^+e^- or $\mu^+\mu^-$).

1986, Dokshitzer, Khoze, Troyan: rapidity gap in $\rm W^+W^-\rightarrow H^0$ 1986, we: already included, but masked by MPI, showers, . . . 1991, Dokshitzer, Khoze, TS: more detailed study 1991, Bjorken: rapidity gap survival probability,

 $\langle |S|^2 \rangle \approx 0.1 \approx P(n_{\rm MPI} = 0)$

2017: ISR dipole recoil option, gives less radiation into gap region

Rapidity gap closeup 1.6

Vector Boson Fusion, neglect Higgs, require two well-separated "tagging" jets, study third jet (if any): *p*T,*j*² [GeV]

Default: momentum exchange possible between two event sides. Dipole: separate event sides, each like a DIS event. Derauit: momentum excnange possible between two
Dipole: separate event sides, each like a DIS event.

 \overline{C} (S. H¨oche et al., arXiv:2106.10987)

The last $30+$ years

Evolution from "qualitative understanding" to "precision theory".

- Automated calculation and sampling of matrix elements.
- \bullet Higher orders: NLO, NNLO, N³LO, multijets
- Matching and merging of matrix elements and parton showers.
- $m_t = 40$ GeV \rightarrow 172 GeV.

Many PYTHIA physics/utility extensions in different directions.

- Few with direct bearing on Higgs physics.
- Exception 1: Technicolor Straw Man Model (Lane).
- Exception 2: alternative dipole recoil in VBF.
- Not only LHC, but also TESLA, CLIC, ILC, FCC-ee, . . .

Code and author size

Summary and Outlook

- PYTHIA rapidly expanded 1984 1990, in many directions, but notably to support Higgs searches.
- Since then extensively used standalone for LHC detector design and early search/analysis strategies.
- Gradually integrated with other tools, like Madgraph.
- The Higgs was discovered 2012, at an "optimal" mass; all high-mass scenarios and much Monte Carlo code "useless".
- No signs of BSM. Notably no SUSY to explain H mass.
- Higgs as portal to BSM, like Hidden Valley in PYTHIA.
- No current Higgs physics development in PYTHIA, but ready to reactivate if needed.