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Anomalies in Higgs-related final states

Model-independent search for the presence of new

physics in events including H — ~~ with
Vs = 13 TeV pp data recorded by the ATLAS
detector at the LHC
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ABSTRACT: A model-independent search for new physies leading to final states containing
a Higegs boson, with a mass of 125.00 GeV, decaying to a pair of photons is performed with
139t~ of /s = 13 TeV pp collision data recorded by the ATLAS detector at the Large
Hadron Collider at CERN. This search examines 22 final states categorized by the objects
that are produced in association with the Higgs boson. These objects include isolated
electrons or muons, hadronically decaying 7-leptons, additional photons, missing transverse
momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron.
No significant excesses above Standard Model expectations are observed and limits on the
production cross section at 95% confidence level are set. Detector efficiencies are reported
for all 22 signal regions, which can be used to convert detector-level cross-section limits
reported in this paper to particle-level cross-section constraints.
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Target Region Detector level Particle level
=3b My e = 3, 85% WP Mo = 3
Heavy flavour
>4b My e = 4, 85% WP My e = 4
>4j Njee = 4, |Mjee| < 2.5 Ny = 4, [Mec| < 2.5
=6j Njee = 6, |mjec] < 2.5 Njer = 6, |Mjec| < 2.5
High jet >8j Mjer = 8, |?]'j‘.1t| < 2.5 My = 8, |7:I'je1,| < 25
activity Hy =500 GeV H~ = 500 GeV H+ = 500 GeV
Hy = 1000 GeV  Hp = 1000 GeV H = 1000 GeV
Hy = 1500 GeV  Hp > 1500 GeV H = 1500 GeV
FiEE 100 GV BT % 100 GeV BT 100 GeV
s EX= =200 GeV  ET™ > 200 GeV E.'I’.“%‘"” =200 GeV
EieE =300 CeVo B > 300 GeV E.'F”**‘“" =300 GeV
47 Moy > 1, Ny e > 1, T0% WP M = 1, Moy = 1
e blep ;S‘TAP:%PZ b = Tege = 1, Ni—ep =1, Mjer = Npjer = 1
fhad 0% W, ED;J; o T nean =0, mie =3, =1
>1f Ne—ep = 1 Né=ep = 1
20 €6, [ijl, O &ji ee, fijl, OT e
. ee, pp,ep; [meg—myg| > 10 GeV for ee, pp,ep; |mege—mz| > 10 GeV for
Lepton 2wz same-flavour leptons same-flavour leptons
55-2¢ ee, pu, or e with same charge ee, p, or e with same charge
>3¢ Pe—en>3 Mo >3
=27 Tr had = 2 nr =2
Photon 1 m.lrfr ny = 3, Mo, defined with y,72 My 2 3, My, defined with vy 9

1y -m33

ny = 3, M, defined with va,7vs

My = 3, My, defined with yo.v4
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Hadron Collider at CERN. This search examines 22 final states categorized by the objects
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Search for non-resonant Higgs boson pair production in

final states with leptons, taus, and photons in pp
collisions at /s = 13 TeV with the ATLAS detector

JHEP 08 (2024) 164 [arXiv:2405.20040]

EXPERIMENT
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FE-mail: atlas.publications@cern.ch

ABSTRACT: A search is presented for non-resonant Higgs boson pair production, targeting the
bbZZ, 4V (V=W or Z), VVrr, 47, vV V and ~yr7 decay channels. Events are categorised
based on the multiplicity of light charged leptons (electrons or muons), hadronically decaying
tau leptons, and photons. The search is based on a data sample of proton-proton collisions at
Vs = 13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider,
corresponding to an integrated luminosity of 140 fb~!. No evidence of the signal is found and
the observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair
production is determined to be 17 (11) times the Standard Model predicted cross-section
at 95% confidence level under the background-only hypothesis. The observed (expected)
constraints on the HH H coupling modifier, «y, are determined to be —6.2 < ky < 11.6
(—4.5 < k) < 9.6) at 95% confidence level, assuming the Standard Model for the expected
limits and that new physics would only affect k.
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Diphotons in association with an hadronic tau
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Crivellin, Ashanujjaman, Banik, Coloretti, Maharathy, Mellado, arXiv:2404.14492
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Diphotons in association with MET
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Diphotons in association with more MET
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Diphotons in association with a lepton+b
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Diphotons in association with 4 jets
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Diphotons in association with a light lepton
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Diphotons in association with two light leptons
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Diphotons in association with a leptonic top
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Intriguing excesses near 152 GeV
in several channels in ATLAS |

EXPERIMENT

CMS /|, what do you see?

No answer at the moment...




Hints of Higgs-like BSM physics?

One possible explanation:
Zero-hypercharge SU(2), triplet scalar

Ashanujjaman, Banik, Coloretti, Crivellin, Maharathy, Mellado
arXiv:2402.00101, arXiv:2404.14492

P,
Fig. 1: Feynman diagrams showing the Drell-Yan production and decays of the triplet

Higgses: pp — W* = (AT — tb, WZ)(A" — ~47v), which we search for using the side-
bands of the SM Higgs analyses of ATLAS,

Can lead to strong 1%t-order phase transition for weak-scale baryogenesis.
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Hints of Higgs-like BSM physics?

One possible explanation:
Zero-hypercharge SU(2), triplet scalar

Ashanujjaman, Banik, Coloretti, Crivellin, Maharathy, Mellado
arXiv:2402.00101, arXiv:2404.14492
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Hints of Higgs-like BSM physics?

One possible explanation:
Zero-hypercharge SU(2), triplet scalar

Ashanujjaman, Banik, Coloretti, Crivellin, Maharathy, Mellado
arXiv:2402.00101, arXiv:2404.14492
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Significance: 4.3, although y?/dof ~ 3
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Hints of Higgs-like BSM physics?

One possible explanation:
Zero-hypercharge SU(2), triplet scalar

Ashanujjaman, Banik, Coloretti, Crivellin, Maharathy, Mellado
arXiv:2402.00101, arXiv:2404.14492
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One possible explanation:
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Ashanujjaman, Banik, Coloretti, Crivellin, Maharathy, Mellado
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Hints of Higgs-like BSM physics?
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Hints of Higgs-like BSM physics?

One possible explanation:
Zero-hypercharge SU(2), triplet scalar

Can be part of a dark matter model, including also
an SU(2), triplet and singlet of Dirac fermions near
330 GeV. This may explain also CMS monojet excess.

Fuks, Goodsell, Murphy, arXiv:2409.03014
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Hints of Higgs-like BSM physics?

Another possible explanation:
2HDM

Banik, Crivellin, arXiv:2407.06267
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Absence of tree-level HX — W*Z decays is good for the fit.



Hints of Higgs-like BSM physics?

Another possible explanation:
2HDM

Banik, Crivellin, arXiv:2407.06267
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However, difficult to achieve diphoton BR of 2%. Can be done by adding higher-dimension operators

(e.g., in composite Higgs) or the Z,-violating term —A6HIH1H;LH1 (for charged Higgs loop).



Hints of Higgs-like BSM physics?

Another possible explanation:
2HDM

Banik, Crivellin, arXiv:2407.06267
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Significance: 4.40
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Outlook
» Intriguing hints of Higgs-like BSM physics in
ATLAS data.

» Might be statistical fluctuations. However, most
BSM signals will look like that at the beginning.

» Viable theoretical interpretations exist.

» The situation can be refined with CMS and
Run 3 data. Worth looking there!

» Definitive conclusions likely with the HL-LHC.

» Worth pursuing dedicated searches for such
final states, in the full diphoton mass range.
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