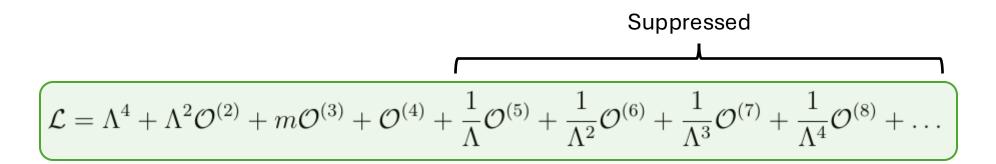
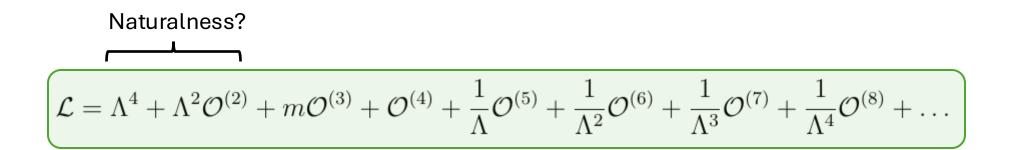


Theory review of the Standard Model Effective Field Theory


Tevong You

$$\mathcal{L} = \Lambda^{4} + \Lambda^{2}\mathcal{O}^{(2)} + m\mathcal{O}^{(3)} + \mathcal{O}^{(4)} + \frac{1}{\Lambda}\mathcal{O}^{(5)} + \frac{1}{\Lambda^{2}}\mathcal{O}^{(6)} + \frac{1}{\Lambda^{3}}\mathcal{O}^{(7)} + \frac{1}{\Lambda^{4}}\mathcal{O}^{(8)} + \dots$$

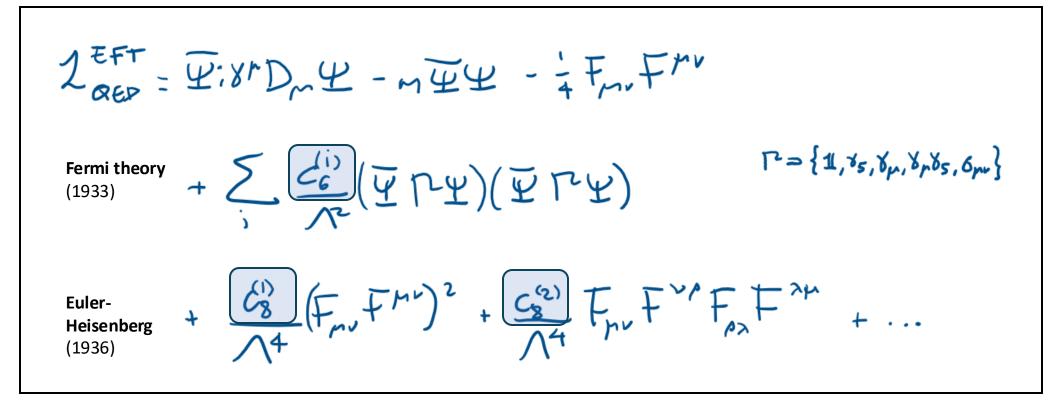

1960s point of view: renormalisability of a *finite* number of parameters is essential

$$\left(\mathcal{L} = \Lambda^{4} + \Lambda^{2}\mathcal{O}^{(2)} + m\mathcal{O}^{(3)} + \mathcal{O}^{(4)} + \frac{1}{\Lambda}\mathcal{O}^{(5)} + \frac{1}{\Lambda^{2}}\mathcal{O}^{(6)} + \frac{1}{\Lambda^{3}}\mathcal{O}^{(7)} + \frac{1}{\Lambda^{4}}\mathcal{O}^{(8)} + \dots\right)$$

1960s point of view: renormalisability of a *finite* number of parameters is essential

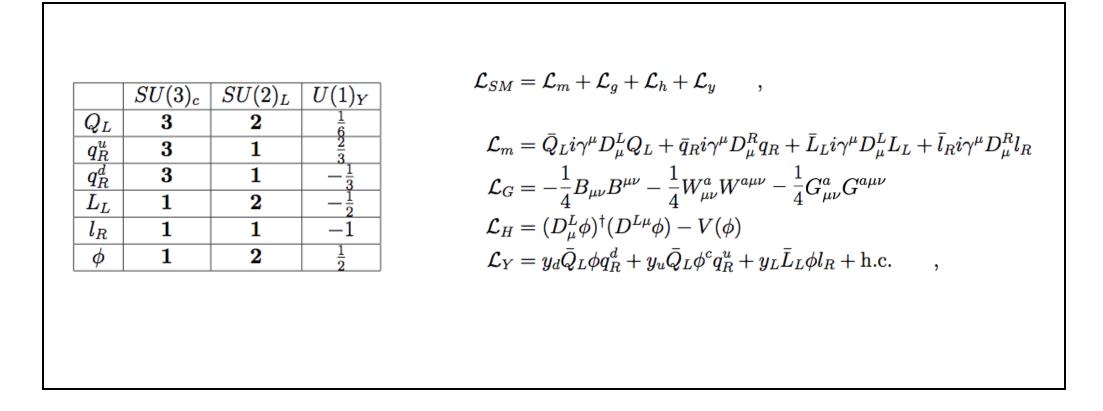
1960s point of view: renormalisability of a *finite* number of parameters is essential

1960s point of view: renormalisability of a *finite* number of parameters is essential

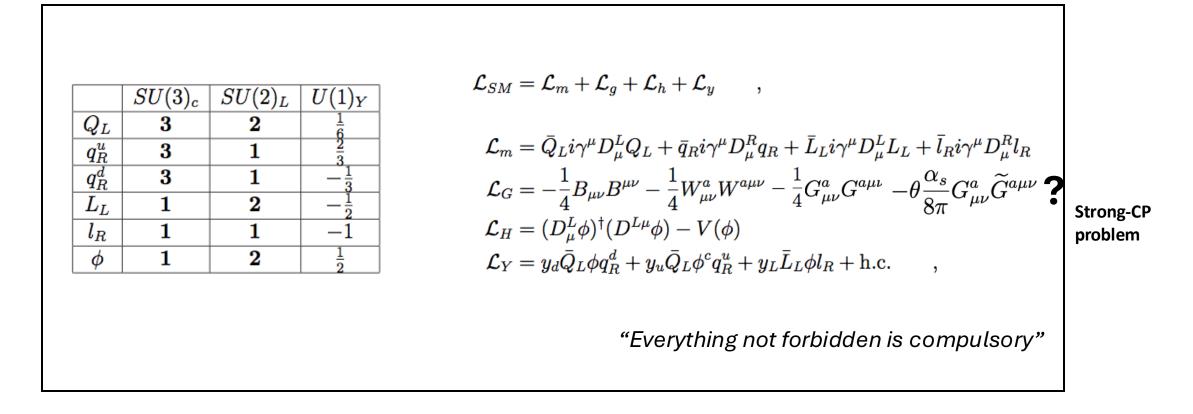

e.g. QED as an EFT includes Fermi theory (at operator mass dimension 6) and Euler-Heisenberg (at dimension 8)

Г

$$\begin{aligned} \mathcal{L}_{\mathcal{R}\mathcal{GP}}^{\mathcal{E}\mathcal{FT}} &= \widehat{\Psi}_{i}^{i} \mathcal{S}^{\mu} D_{\mu} \Psi - m \widehat{\Psi} \Psi - \frac{i}{4} F_{\mu\nu} F^{\mu\nu} \end{aligned}$$


$$\begin{aligned} Fermi \text{ theory} \\ (1933) &= + \sum_{i} \frac{c_{i}^{(i)}}{\Lambda^{2}} (\widehat{\Psi} \Gamma \Psi) (\widehat{\Psi} \Gamma \Psi) \qquad \Gamma = \{\mathbf{1}, \mathbf{1}_{s}, \mathbf{1}_{\mu}, \mathbf{1}_$$

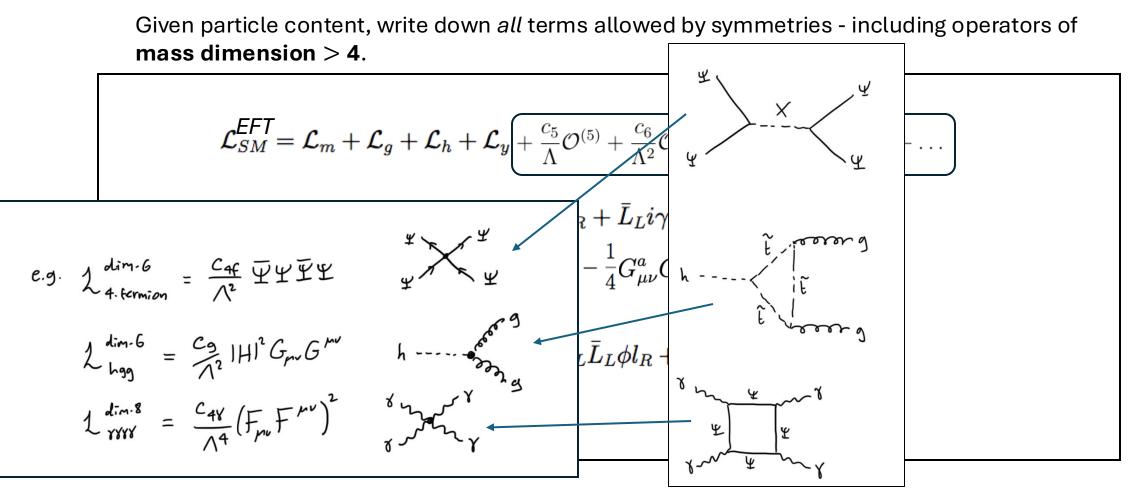
e.g. QED as an EFT includes Fermi theory (at operator mass dimension 6) and Euler-Heisenberg (at dimension 8)


Wilson coefficients generated by UV physics

Given particle content, write down *all* terms allowed by symmetries.

Up to mass dimension 4, this is what we typically call "The Standard Model".

Given particle content, write down *all* terms allowed by symmetries.


Up to mass dimension 4, this is what we typically call "The Standard Model".

Given particle content, write down *all* terms allowed by symmetries - including operators of **mass dimension** > **4**.

$$\begin{split} \mathcal{L}_{SM}^{\text{EFT}} &= \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y \Biggl[+ \frac{c_5}{\Lambda} \mathcal{O}^{(5)} + \frac{c_6}{\Lambda^2} \mathcal{O}^{(6)} + \frac{c_7}{\Lambda^3} \mathcal{O}^{(7)} + \frac{c_8}{\Lambda^4} \mathcal{O}^{(8)} + \dots \Biggr] \\ \mathcal{L}_m &= \bar{Q}_L i \gamma^{\mu} D_{\mu}^L Q_L + \bar{q}_R i \gamma^{\mu} D_{\mu}^R q_R + \bar{L}_L i \gamma^{\mu} D_{\mu}^L L_L + \bar{l}_R i \gamma^{\mu} D_{\mu}^R l_R \\ \mathcal{L}_G &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{\mu\nu}^a W^{a\mu\nu} - \frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} - \theta \frac{\alpha_s}{8\pi} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} \\ \mathcal{L}_H &= (D_{\mu}^L \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi) \\ \mathcal{L}_Y &= y_d \bar{Q}_L \phi q_R^d + y_u \bar{Q}_L \phi^c q_R^u + y_L \bar{L}_L \phi l_R + \text{h.c.} \end{aligned}$$
 "Everything not forbidden is compulsory"

Given particle content, write down *all* terms allowed by symmetries - including operators of **mass dimension** > **4**.

This is the "Standard Model Effective Field Theory" (SMEFT). See e.g. 1706.08945, 2303.16922 for reviews

This is the "Standard Model Effective Field Theory" (SMEFT). See e.g. 1706.08945, 2303.16922 for reviews

The SMEFT is the Fermi theory of the 21st century.

$$\mathcal{L}_{SM}^{EFT} = \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y \left[+ \frac{c_5}{\Lambda} \mathcal{O}^{(5)} + \frac{c_6}{\Lambda^2} \mathcal{O}^{(6)} + \frac{c_7}{\Lambda^3} \mathcal{O}^{(7)} + \frac{c_8}{\Lambda^4} \mathcal{O}^{(8)} + \dots \right]$$

$$\mathcal{L}_m = \bar{Q}_L i \gamma^{\mu} D^L_{\mu} Q_L + \bar{q}_R i \gamma^{\mu} D^R_{\mu} q_R + \bar{L}_L i \gamma^{\mu} D^L_{\mu} L_L + \bar{l}_R i \gamma^{\mu} D^R_{\mu} l_R$$

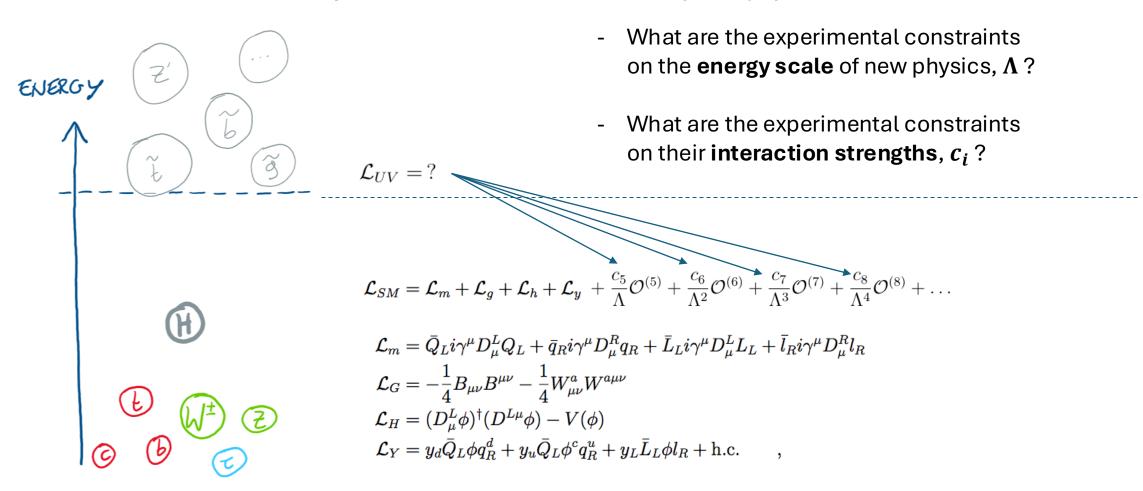
$$\mathcal{L}_G = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - \theta \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

$$\mathcal{L}_H = (D^L_{\mu} \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi)$$

$$\mathcal{L}_Y = y_d \bar{Q}_L \phi q^d_R + y_u \bar{Q}_L \phi^c q^u_R + y_L \bar{L}_L \phi l_R + \text{h.c.} ,$$

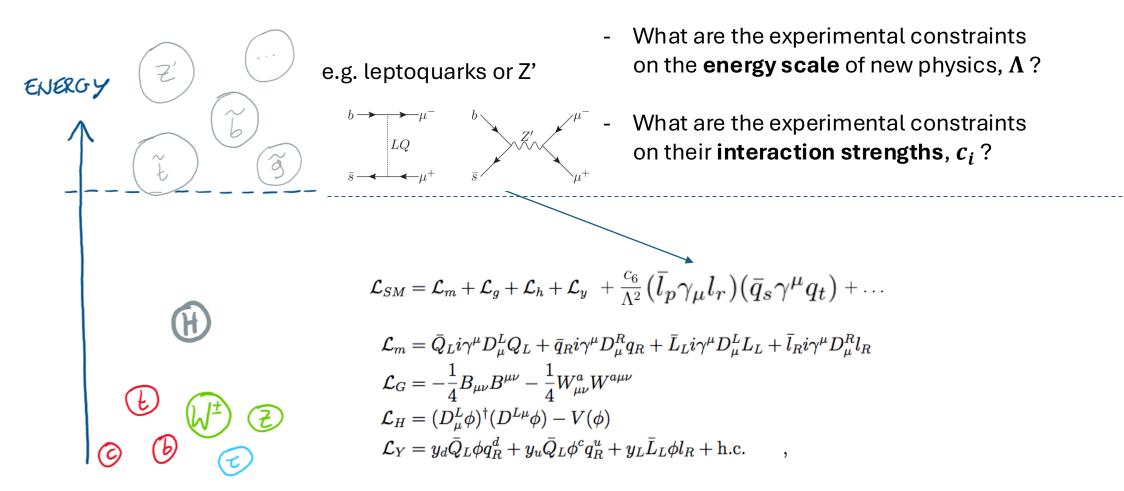
Explore heavy BSM physics in this framework.

This does not exclude the possibility of light new physics; just add those fields in as part of the EFT if desired or discovered.


Non-linear chiral electroweak lagrangian + singlet scalar is a more general EFT framework (known as HEFT).

EFT is the framework for a **separation of scales** between heavy new physics and the SM:

NEW PHYSICS


SMEXIT

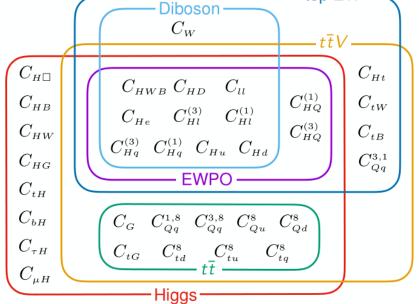
EFT is the framework for a separation of scales between heavy new physics and the SM.

Structure of UV determined through IR precision measurements.

EFT is the framework for a separation of scales between heavy new physics and the SM.

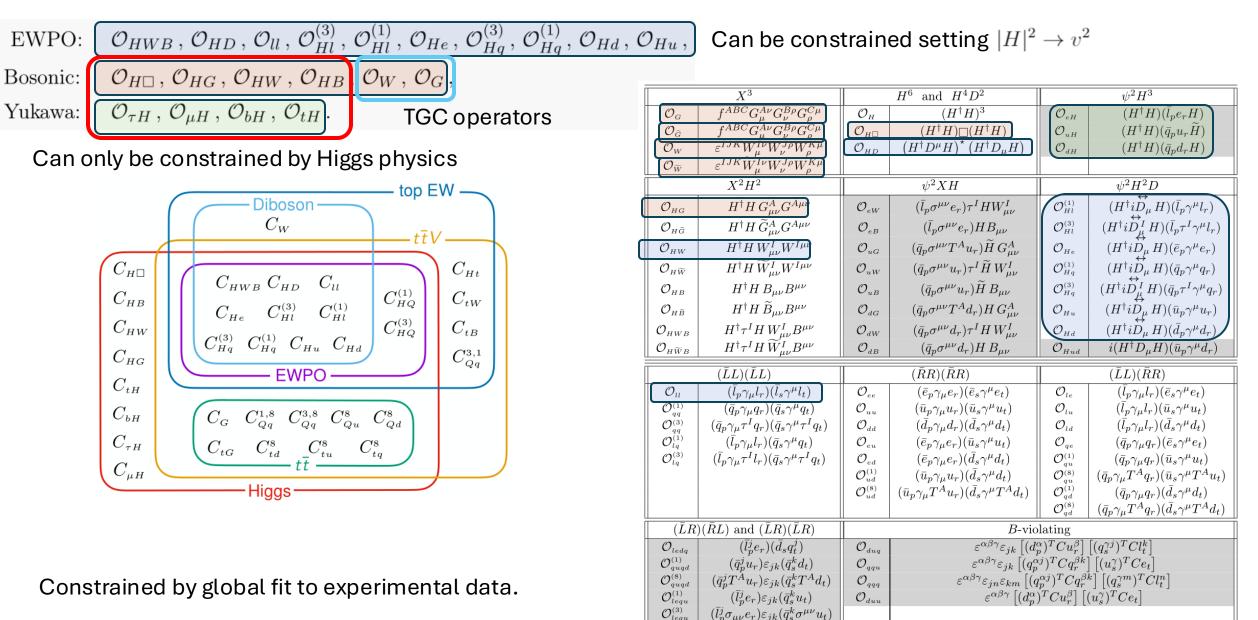
Structure of UV determined through IR precision measurements.

59 operators of mass dimension 6 (conserving baryon number):

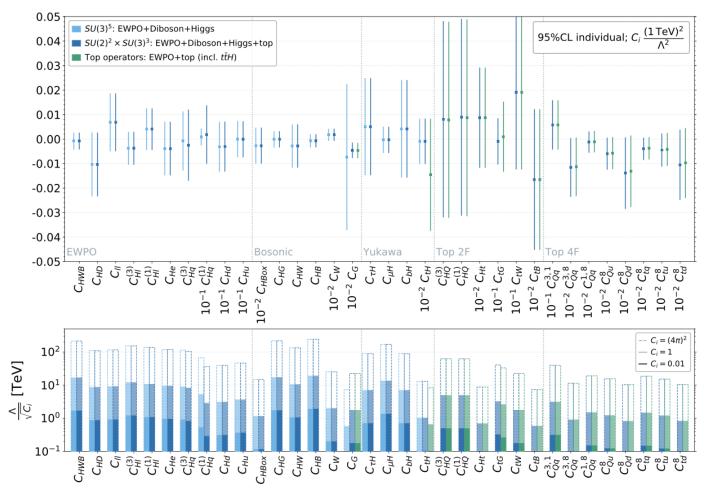

$$\begin{split} \mathcal{L}_{SM} &= \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y + \frac{c_5}{\Lambda} \mathcal{O}^{(5)} + \frac{c_6}{\Lambda^2} \mathcal{O}^{(6)} + \frac{c_7}{\Lambda^3} \mathcal{O}^{(7)} + \frac{c_8}{\Lambda^4} \mathcal{O}^{(8)} + \dots \\ \mathcal{L}_m &= \bar{Q}_L i \gamma^{\mu} D^L_{\mu} Q_L + \bar{q}_R i \gamma^{\mu} D^R_{\mu} q_R + \bar{L}_L i \gamma^{\mu} D^L_{\mu} L_L + \bar{l}_R i \gamma^{\mu} D^R_{\mu} l_R \\ \mathcal{L}_G &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} \\ \mathcal{L}_H &= (D^L_{\mu} \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi) \\ \mathcal{L}_Y &= y_d \bar{Q}_L \phi q^d_R + y_u \bar{Q}_L \phi^c q^u_R + y_L \bar{L}_L \phi l_R + \text{h.c.} \end{split}$$

2499 including flavour structure.

Reduced through flavour symmetry assumptions.


X^3 H^6 and H^4D^2 ψ^2H^3										
				(0)	1					
\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^{3}$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$					
$\mathcal{O}_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$					
\mathcal{O}_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}_{_{HD}}$	$\left(H^{\dagger}D^{\mu}H ight)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	${\cal O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$					
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$					
$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$					
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i \overset{\rightarrow}{D_{\mu}} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$					
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{He}$	$(H^{\dagger}i \stackrel{\rightarrow}{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$					
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uW}$	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{H} W^I_{\mu u}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\smile}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$					
\mathcal{O}_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i \overset{\overleftarrow{D}_{I}^{I}}{\underset{\leftrightarrow}{\mapsto}} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$					
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}iD_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$					
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H \underset{\smile}{W_{\mu u}^{I}} B^{\mu u}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$					
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{dB}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$					
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$					
\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$					
$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$					
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$					
$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	${\cal O}_{eu}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$					
$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$					
		$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $					
		$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$					
				$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$					
	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			lating						
\mathcal{O}_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_{\mu}^{lpha})^{lpha} ight]$	$\sum_{r=1}^{\infty} Cu_r^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k \right]$					
$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$					
$\mathcal{O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q$	$(p^{\alpha j}_{p})^{T}Cq_{r}^{\beta j}$	$^{k}\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight] $					
$\mathcal{O}_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	${\cal O}_{duu}$	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha) ight]$	$^{T}Cu_{r}^{\beta}$][$(u_s^{\gamma})^T Ce_t]$					
$\mathcal{O}_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$									

$ \text{EWPO:} \mathcal{O}_{HWB} , \mathcal{O}_{HD} , \mathcal{O}_{ll} , \mathcal{O}_{Hl}^{(3)} , \mathcal{O}_{Hl}^{(1)} , \mathcal{O}_{He} , \mathcal{O}_{Hq}^{(3)} , \mathcal{O}_{Hq}^{(1)} , \mathcal{O}_{Hd} , \mathcal{O}_$	\mathcal{O}_{Hu} ,
Bosonic: $\mathcal{O}_{H\Box}, \mathcal{O}_{HG}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{G}$,	1
Yukawa: $\mathcal{O}_{\tau H}, \mathcal{O}_{\mu H}, \mathcal{O}_{bH}, \mathcal{O}_{tH}$.	\mathcal{O}_{G}
	$O_{\tilde{G}}$ O_{W}
top EW	
$ \begin{array}{c} Diboson \\ C_W \\ T $	\mathcal{O}_{HG} $\mathcal{O}_{H\widetilde{G}}$
	\mathcal{O}_{HW}

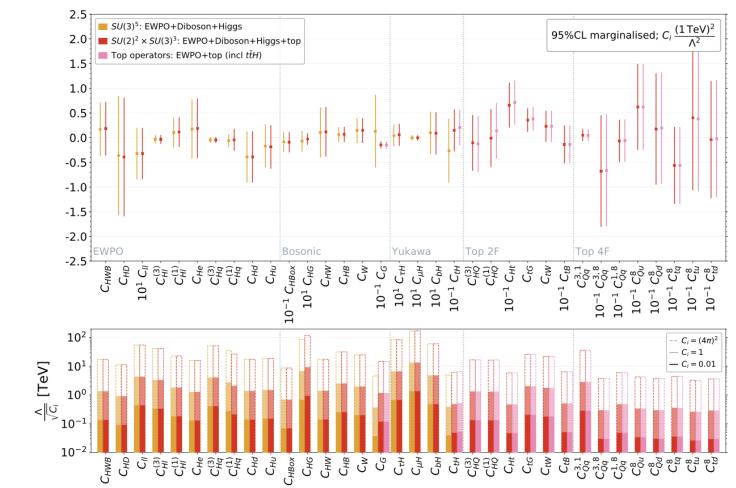

Constrained by global fit to experimental data.

		X^3		H^6 and H^4D^2		$\psi^2 H^3$	
\square	\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
	$\mathcal{O}_{ ilde{G}}$	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
	\mathcal{O}_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	${\cal O}_{{}_{HD}}$	$\left(H^{\dagger}D^{\mu}H ight)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
Ш	$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
		X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	
	$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_p \gamma^{\mu} l_r)$	
	$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{(3)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D^{I}_{\mu}} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i D_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$	
	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	${\cal O}_{{\scriptscriptstyle H} q}^{(1)}$	$(H^{\dagger}i \overset{\smile}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
	$\mathcal{O}_{_{HB}}$	$H^\dagger H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{H} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i D_{\underline{\mu}}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\smile}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$	
	\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
C	$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}_{\mu\nu}^{I} B^{\mu\nu}$	${\cal O}_{_{dB}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{_{Hud}}$	$i(H^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Г	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
	$\mathcal{O}_{_{qq}}^{_{(3)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
	$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
	$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
			$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
			$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating		
	\mathcal{O}_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{j}^{lpha} ight)^{lpha} ight]$	$(a_p)^T C u_r^\beta$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
	$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$	
	${\cal O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_{km})^{2} ight]$	$(p^{\alpha j})^T C q_r^{\beta}$	$^{k}\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$	
	$\mathcal{O}_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t)$	${\cal O}_{duu}$	$arepsilon^{lphaeta\gamma}\left[(d_p^{lpha}) ight]$	$^{T}Cu_{r}^{\beta}$]	$(u_s^{\gamma})^T Ce_t \Big]$	
	$\mathcal{O}_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

SMEFT global fit

Experimental constraints on SMEFT from LEP electroweak observables and LHC measurements:

2012.02779 Ellis, Madigan, Mimasu, Sanz, TY


See also other recent global fits, e.g. 2311.00020 Allwicher, Cornella, Isidori, Stefanek

2311.04963 Bartocci, Biekotter, Hurth 2404.12809 SMEFiT collaboration

Individual (one operator at a time) 95% CL bounds.

SMEFT global fit

Experimental constraints on SMEFT from LEP electroweak observables and LHC measurements:

2012.02779 Ellis, Madigan, Mimasu, Sanz, TY

See also other recent global fits, e.g. 2311.00020 Allwicher, Cornella, Isidori, Stefanek

2311.04963 Bartocci, Biekotter, Hurth 2404.12809 SMEFiT collaboration

Marginalised (all operators allowed to vary simultaneously) 95% CL bounds.

Individual and marginalised constraints are unrealistic but give the optimistic and conservative range of allowed parameter space.

Simplified models are another way of mapping the parameter space of SMEFT phenomenology.

e.g. BSM that couple *linearly* to the SM form a finite set:

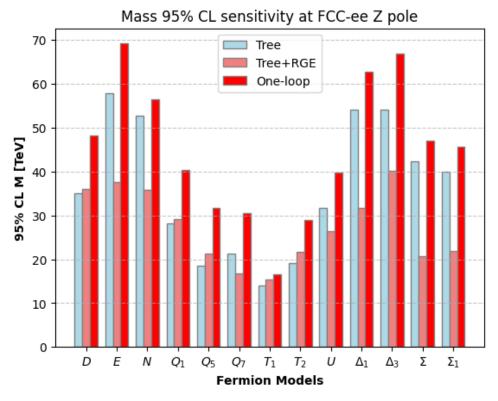
1711.10391 de Blas, Criado, Perez-Vic	toria, Santiago
---------------------------------------	-----------------

Name	S	\mathcal{S}_1	\mathcal{S}_2	arphi	[1]	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1,1)_2$	$(1,2)_{rac{1}{2}}$	$(1,3)_{0}$	$(1,3)_{1}$	$(1,4)_{rac{1}{2}}$	$(1,4)_{rac{3}{2}}$
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
Irrep	$(3,1)_{-rac{1}{3}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{4}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$		
Name	Ω_1	Ω_2	Ω_4	Υ	Φ			
Irrep	$(6,1)_{\frac{1}{2}}$	$(6,1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{2}}$	$(6,3)_{rac{1}{2}}$	$(8,2)_{\frac{1}{2}}$			

Name	N	E	Δ	Δ_1	Δ_3	Σ	Σ_1	
Irrep	$(1,1)_0$	$(1,1)_{-1}$	$_{-1}$ $(1,2)_{-\frac{1}{2}}$		$(1,2)_{-rac{3}{2}}$	$(1,3)_0$	$(1,3)_{-1}$	
Name	U	D	G	Q_1	Q_5	Q_7	T_1	T_2
Irrep	$(3,1)_{rac{2}{3}}$	$(3,1)_{-}$	$\frac{1}{3}$ (3,	$2)_{\frac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$	$(3,3)_{rac{2}{3}}$
Name	${\mathcal B}$	\mathcal{B}_1	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1,3)_0$	$(1,3)_1$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_0$	$(1,2)_{\frac{1}{2}}$
Name Irrep	\mathcal{L}_3 (1.2)	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	Q_5	\mathcal{X}	\mathcal{Y}_1 $(\bar{6}, 2)_1$	\mathcal{Y}_5 $(\bar{6},2)$
mep	$(1,2)_{-rac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,3)_{rac{2}{3}}$	$(ar{6},2)_{rac{1}{6}}$	$(\bar{6},2)_{-rac{5}{6}}$

Mass limits (in TeV) C_{Hl}^3 Model C_{HD} C_{ll} C_{Hl}^1 $C_{H\Box}$ $C_{\tau H}$ C_{tH} C_{bH} C_{He} S $-\frac{1}{2}$ Ν $|\lambda_N|^2 < 3.8 \times 10^{-2}$ 1.6σ S_1 1 W_1 $|\hat{g}_{W_1}^{\phi}|^2 < 8.6 \times 10^{-2}$ 1.6σ Σ $\frac{1}{16}$ $\frac{3}{16}$ $\frac{y_{\tau}}{4}$ $\kappa_{\Xi}^2 < 1.1 \times 10^{-2} (\text{TeV}^2)$ 1.6σ $-\frac{1}{16}$ $-\frac{3}{16}$ Σ_1 $\frac{y_{\tau}}{8}$ S_1 $|y_{S_1}|^2 < 1.6 \times 10^{-2}$ 1.2σ N $-\frac{1}{4}$ $(s_L^t)^2 < 0.04$ E $-\frac{1}{2}$ $-\frac{1}{4}$ $\frac{y_{\tau}}{2}$ S $\kappa_S^2 < 1.7 \,({\rm TeV}^2)$ $\frac{y_{\tau}}{2}$ Δ_1 5 $|\lambda_{\Delta_3}|^2 < 2.9 \times 10^{-2}$ Δ3 $\frac{y_{\tau}}{2}$ Δ_3 $-\frac{1}{2}$ Q_5 $|\lambda_{Q_5}|^2 < 0.24$ B_1 $-\frac{y_{\tau}}{2}$ $-\frac{y_t}{2}$ $-\frac{y_b}{2}$ 1 $-\frac{1}{2}$ Σ $|\lambda_{\Sigma}|^2 < 4.5 \times 10^{-2}$ Ξ -2 $y_{ au}$ y_t y_b 5 T_2 $|\lambda_{T_2}|^2 < 0.099$ $\frac{1}{-\frac{y_{\tau}}{8}}$ W_1 $-\frac{1}{4}$ $-\frac{y_t}{8}$ $-\frac{y_b}{8}$ $-\frac{1}{2}$ Ε $|\lambda_E|^2 < 2.2 \times 10^{-2}$ φ $-y_{\tau}$ $-y_t$ $-y_b$ U $|\lambda_U|^2 < 7.2 \times 10^{-2}$ $-\frac{3}{2}$ $\{B, B_1\}$ $-y_{\tau}$ $-y_t$ $-y_b$ $Z_6 \cos \beta < 0.995$ Ø $\{Q_1, Q_7\}$ y_t $Q_1 Q_7$ $|\lambda_{Q_1Q_7}|^2 < 0.88$ $(C_{Hq}^3)_{33}$ C_{Hq}^3 C^1_{Hq} $(C^{1}_{Hq})_{33}$ C_{Hu} C_{Hd} Model C_{tH} C_{bH} Q7 $|\lambda_{Q_7}|^2 < 0.14$ $|\lambda_D|^2 < 3.8 \times 10^{-2}$ D $\frac{y_t}{2}$ U BB_1 $g_{BB_1}^2 < 0.92$ $-\frac{1}{4}$ D $-\frac{1}{4}$ $\frac{y_b}{2}$ $-\frac{1}{4}$ $|\hat{g}_{B_1}^{\phi}|^2 < 6.9 \times 10^{-3}$ B_1 $\frac{y_b}{2}$ Q_5 $-\frac{1}{2}$ $|\lambda_{T_1}|^2 < 0.22$ T_1 $\frac{y_t}{2}$ Q_7 Σ_1 $|\lambda_{\Sigma_1}|^2 < 2.7 \times 10^{-2}$ $\begin{array}{r} -\frac{3}{16} \\ \frac{3}{16} \\ \frac{1}{2} \frac{M_T^2}{v^2} \end{array}$ $-\frac{\overline{1}}{16}$ T_1 $\frac{-\frac{3}{16}}{\frac{3}{16}}$ $-\frac{1}{16}$ $\frac{y_t}{4}$ $\frac{y_b}{8}$ $|\lambda_{\Delta_1}|^2 < 1.7 \times 10^{-2}$ Δı T_2 $-\frac{1}{16}$ $-\frac{1}{16}$ $\frac{y_t}{8}$ $\frac{y_b}{4}$ $-\frac{1}{2}\frac{M_T^2}{v^2}$ $y_t rac{M_T^2}{v^2}$ T10 12 0

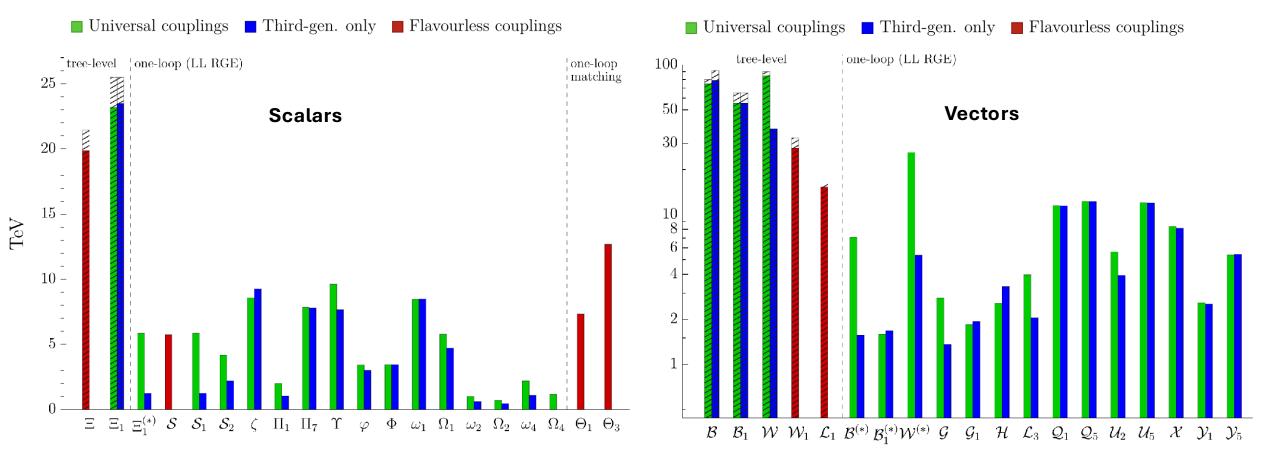
Tree-level structure and current LEP+LHC constraints:


2012.02779 Ellis, Madigan, Mimasu, Sanz, TY

			•					,		U
	\mathcal{O}_{HWB}	\mathcal{O}_{HD}	\mathcal{O}_{ll}	$\mathcal{O}_{Hl}^{(3)}$	$\mathcal{O}_{Hl}^{(1)}$	\mathcal{O}_{He}	${\cal O}_{Hq}^{(3)}$	$\mathcal{O}_{Hq}^{(1)}$	\mathcal{O}_{Hu}	\mathcal{O}_{Hd}
S	$\kappa_{\mathcal{S}}$	$\kappa_{\mathcal{S}}$		$\kappa_{\mathcal{S}}$	$\kappa_{\mathcal{S}}$	κ_{S}	$\kappa_{\mathcal{S}}$	$\kappa_{\mathcal{S}}$	$\kappa_{\mathcal{S}}$	κ_{S}
S_1			$y_{{\mathcal S}_1}$	$y_{\mathcal{S}_1}$	$y_{\mathcal{S}_1}$	$y_{\mathcal{S}_1}$				
S_2				$y_{\mathcal{S}_2}$	$y_{\mathcal{S}_2}$	$y_{\mathcal{S}_2}$				
φ	$\hat{\lambda}'_{arphi}$	$\hat{\lambda}'_{arphi}$	$y_{arphi e}$	$y_{arphi e}$	$y_{arphi e}$	$y_{arphi e}$	$y_{arphi d},y_{arphi u}$	$y_{arphi d}, y_{arphi u}$	$y_{arphi d},y_{arphi u}$	$y_{arphi d},y_{arphi u}$
Ξ		$\kappa_{\Xi}, \lambda_{\Xi}$		κ_{Ξ}	κ_{Ξ}	κ_{Ξ}	κ_{Ξ}	κ_{Ξ}	κ_{Ξ}	κ_{Ξ}
$arphi \\ \Xi \\ \Xi_1$	$\kappa_{\Xi_1},\lambda_{\Xi_1}' \ \hat{\lambda}_{\Theta_1}' \ \hat{\lambda}_{\Theta_3}'$	$\kappa_{\Xi_1}, \lambda_{\Xi_1}, \lambda'_{\Xi_1}$	y_{Ξ_1}	$\kappa_{\Xi_1}, y_{\Xi_1}$	$\kappa_{\Xi_1}, y_{\Xi_1}$	$\kappa_{\Xi_1}, y_{\Xi_1}$	κ_{Ξ_1}	κ_{Ξ_1}	κ_{Ξ_1}	κ_{Ξ_1}
Θ_1	$\hat{\hat{\lambda}}_{\Theta_1}$	$\hat{\lambda}_{\Theta_1}'',\hat{\lambda}_{\Theta_1}',\lambda_{\Theta_1}$								
Θ_3	$\hat{\lambda}'_{\Theta_{-}}$	$\hat{\lambda}_{\Theta_3}', \lambda_{\Theta_3}$								
ω_1	03	03, 03	$y_{q\ell\Omega_1}$	$y_{eu\Omega_1}, y_{al\Omega_1}$	$y_{eu\Omega_1},y_{q\ell\Omega_1}$	$y_{eu\Omega_1},y_{q\ell \Omega}$	$y_{du\Omega_1},y_{eu\Omega_1}$	$y_{du\Omega_1},y_{eu\Omega_1}$	$y_{du\Omega_1}, y_{eu\Omega_1}$	$y_{du\Omega_1},y_{q\ell\Omega_1}$
ω_2			9 donal	Commit , MAGRI	Compt / D dong	Commit , Odor	$y_{q\ell\Omega_1},y_{qq\Omega_1}$	$y_{q\ell\Omega_1},y_{qq\Omega_1}$	$y_{q\ell\Omega_1},y_{qq\Omega_1}$	$y_{qq\Omega_1}$
$\tilde{\omega_4}$				$y_{ed\Omega_4}$	$y_{ed\Omega_4}$	$y_{ed\Omega_4}$	y_{Ω_2}	y_{Ω_2}		y_{Ω_2}
Π_1	$\hat{\lambda}'_{\Pi}$	$\hat{\lambda}'_{\Pi_1}$	y_{Π_1}	y_{Π_1}	y_{Π_1}	y_{Π_1}	$y_{ed\Omega_4},y_{uu\Omega_4}$	$y_{ed\Omega_4},y_{uu\Omega_4}$	$y_{uu\Omega_4}$	$y_{ed\Omega_4}$
Π_7	$\hat{\lambda}'_{-}$	$\hat{\lambda}'_{\Pi_7}$	$y_{\ell u\Pi_7}$	$y_{eq\Pi_7}, y_{\ell u\Pi_7}$			y_{Π_1}	y_{Π_1}		y_{Π_1}
	$\hat{\lambda}_{\Pi_1} \ \hat{\lambda}_{\Pi_7} \ \hat{\lambda}_{\zeta}'$	$\hat{\lambda}_{\mathcal{L}}^{\Pi_7}$			$y_{eq\Pi_7}, y_{\ell u\Pi_7}$	$y_{eq\Pi_7},y_{\ell u}$	$y_{eq\Pi_7},y_{\ell u\Pi_7}$	$y_{eq\Pi_7},y_{\ell u\Pi_7}$	$y_{eq\Pi_7},y_{\ell u\Pi_7}$	$y_{eq\Pi_7}$
$\zeta \Omega_1$	\wedge_{ζ}	\wedge_{ζ}	$y_{q\ell\zeta}$	$y_{q\ell\zeta}$	$y_{q\ell\zeta}$	$y_{q\ell\zeta}$	$y_{q\ell\zeta},y_{qq\zeta}$	$y_{q\ell\zeta},y_{qq\zeta}$	$y_{q\ell\zeta},y_{qq\zeta}$	$y_{q\ell\zeta},y_{qq\zeta}$
							$y_{qq\Omega_1},y_{ud\Omega_1}$	$y_{qq\Omega_1},y_{ud\Omega_1}$	$y_{qq\Omega_1},y_{ud\Omega_1}$	$y_{qq\Omega_1},y_{ud\Omega_1}$
Ω_2							y_{Ω_2}	y_{Ω_2}		y_{Ω_2}
Ω_4	ŝ	ŝ					y_{Ω_4}	y_{Ω_4}	y_{Ω_4}	
Υ	$\hat{\lambda}'_{\Upsilon}$	$\hat{\lambda}'_{\mathbf{\Upsilon}} \ \hat{\lambda}'_{\Phi}, \hat{\lambda}''_{\Phi}$					y_{Υ}	y_Υ	y_Υ	y_{Υ}
Φ	$\hat{\lambda}'_{\Phi}$	$\lambda'_{\Phi}, \lambda''_{\Phi}$					$y_{qd\Phi},y_{qu\Phi}$	$y_{qd\Phi},y_{qu\Phi}$	$y_{qd\Phi},y_{qu\Phi}$	$y_{qd\Phi},y_{qu\Phi}$
N	λ_N	λ_N	λ_N	λ_N	λ_N	λ_N	λ_N	λ_N	λ_N	λ_N
E	λ_E	λ_E	λ_E	λ_E	λ_E	λ_E	λ_E	λ_E	λ_E	λ_E
Δ_1	λ_{Δ_1}	λ_{Δ_1}		λ_{Δ_1}	λ_{Δ_1}	λ_{Δ_1}	λ_{Δ_1}	λ_{Δ_1}	λ_{Δ_1}	λ_{Δ_1}
Δ_3	λ_{Δ_3}	λ_{Δ_3}		λ_{Δ_3}	λ_{Δ_3}	λ_{Δ_3}	λ_{Δ_3}	λ_{Δ_3}	λ_{Δ_3}	λ_{Δ_3}
Σ	λ_{Σ}	λ_{Σ}	λ_{Σ}	λ_{Σ}	λ_{Σ}	λ_{Σ}	λ_Σ	λ_Σ	λ_{Σ}	λ_Σ
Σ_1	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}	λ_{Σ_1}
U	λ_U	λ_U		λ_U	λ_U	λ_U	λ_U	λ_U	λ_U	λ_U
D		λ_D		λ_D	λ_D	λ_D	λ_D	λ_D	λ_D	λ_D
Q_1	$\lambda_{dQ_1},\lambda_{uQ_1}$	$\lambda_{dQ_1}, \lambda_{uQ_1}$		$\lambda_{dQ_1},\lambda_{uQ_1}$	$\lambda_{dQ_1},\lambda_{uQ_1}$	$\lambda_{dQ_1}, \lambda_{u\zeta}$		$\lambda_{dQ_1}, \lambda_{uQ_1}$	$\lambda_{dQ_1}, \lambda_{uQ_1}$	$\lambda_{dQ_1},\lambda_{uQ_1}$
Q_5	λ_{Q_5}	λ_{Q_5}		λ_{Q_5}	λ_{Q_5}	λ_{Q_5}	λ_{Q_5}	λ_{Q_5}	λ_{Q_5}	λ_{Q_5}
Q_7	λ_{Q_7}	λ_{Q_7}		λ_{Q_7}	λ_{Q_7}	λ_{Q_7}	λ_{Q_7}	λ_{Q_7}	λ_{Q_7}	λ_{Q_7}
T_1	λ_{T_1}	λ_{T_1}		λ_{T_1}	λ_{T_1}	λ_{T_1}	λ_{T_1}	λ_{T_1}	λ_{T_1}	λ_{T_1}
T_2	λ_{T_2}	λ_{T_2}		λ_{T_2}	λ_{T_2}	λ_{T_2}	λ_{T_2}	λ_{T_2}	λ_{T_2}	λ_{T_2}

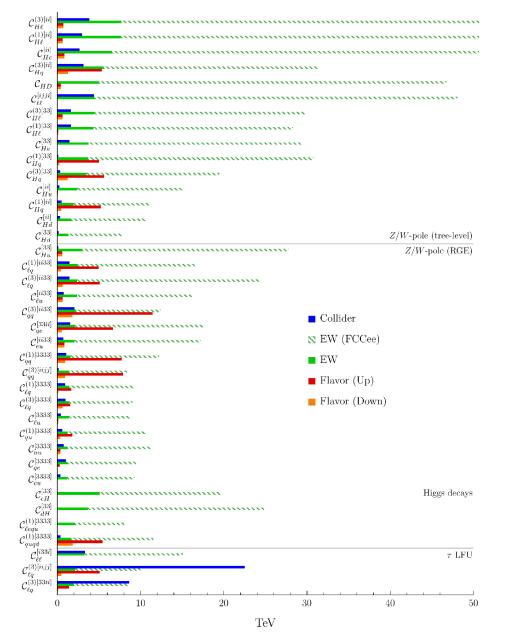
One-loop structure and **Tera-Z** constraints (see John Gargalionis talk):

2410.xxxx Gargalionis, Vuong, Quevillon, TY

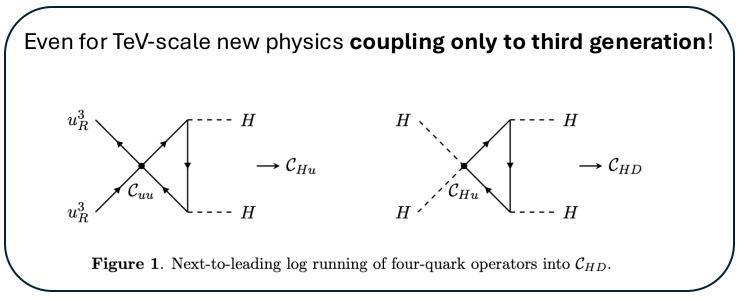


(Preliminary)

Linear SM extensions extensively probed by **Z-pole** at FCC-ee – a quantum leap in sensitivity.

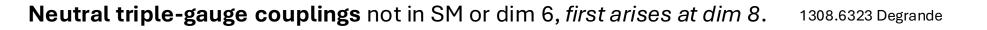

"Tera-Z is argued to provide an almost inescapable probe of heavy new physics"

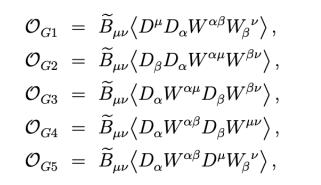
2408.03992 Allwicher, McCullough, Renner

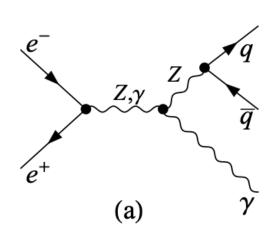


SMEFT at FCC-ee

2311.00020 Allwicher, Cornella, Isidori, Stefanek


Powerful indirect exploration of the multi-TeV scale @ FCC-ee

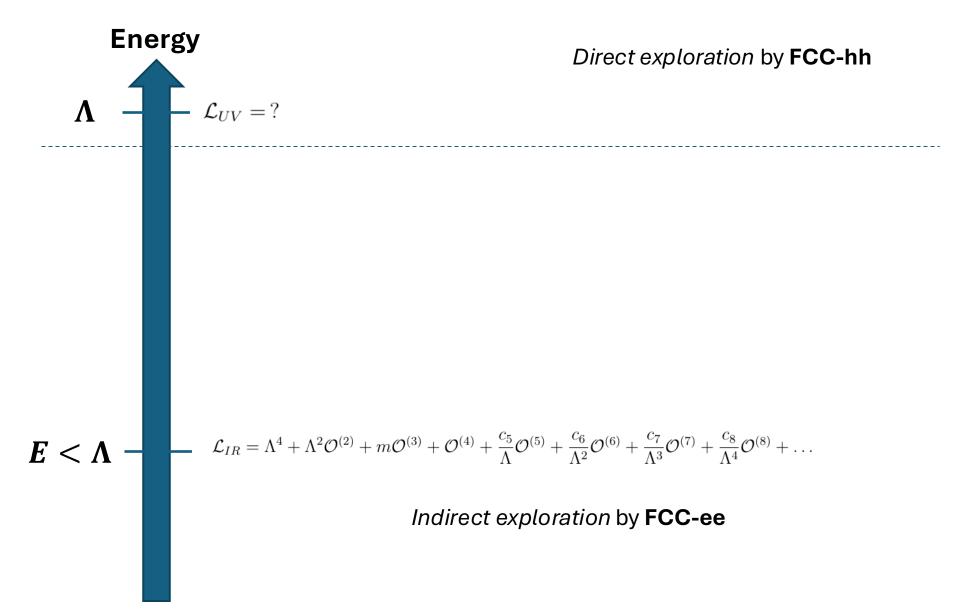


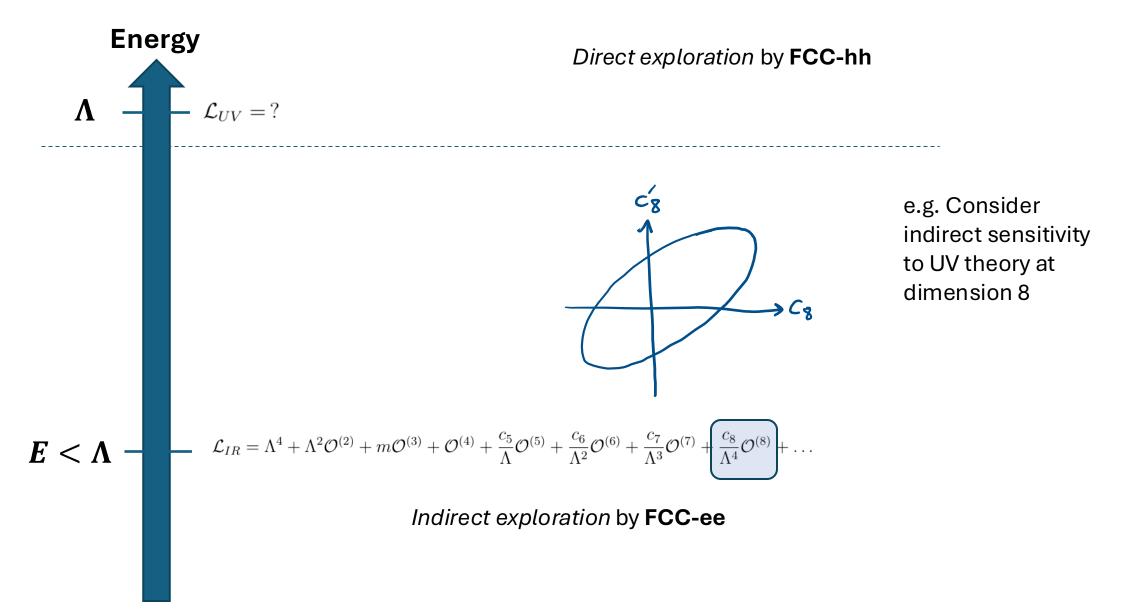

Naturalness a major motivation for fully exploring 3rd gen @ TeV

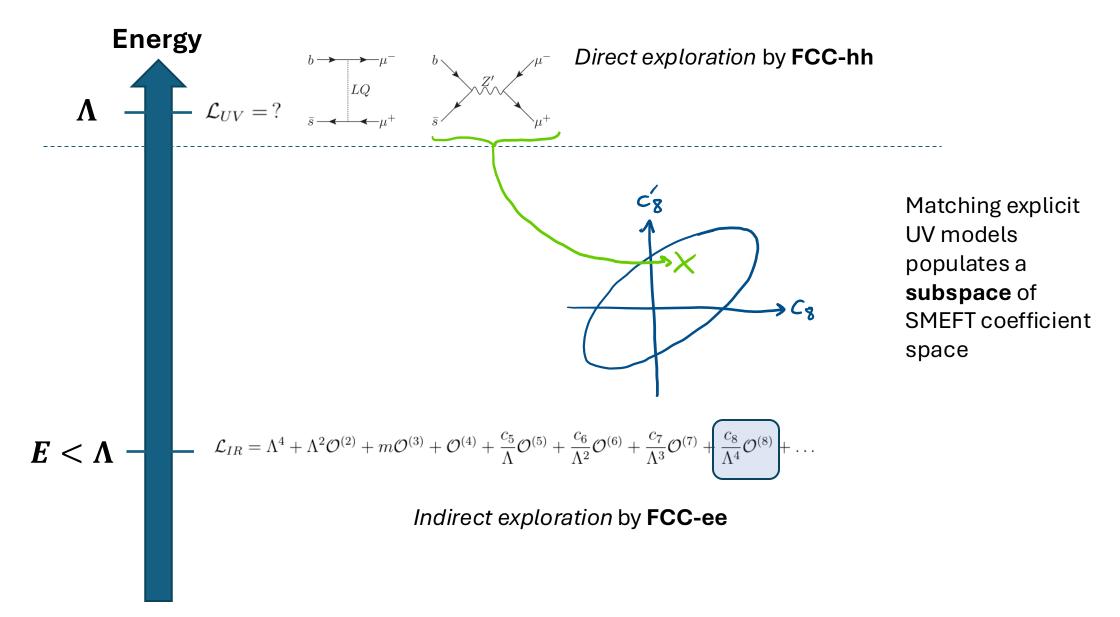
See also 2407.09593 Stefanek

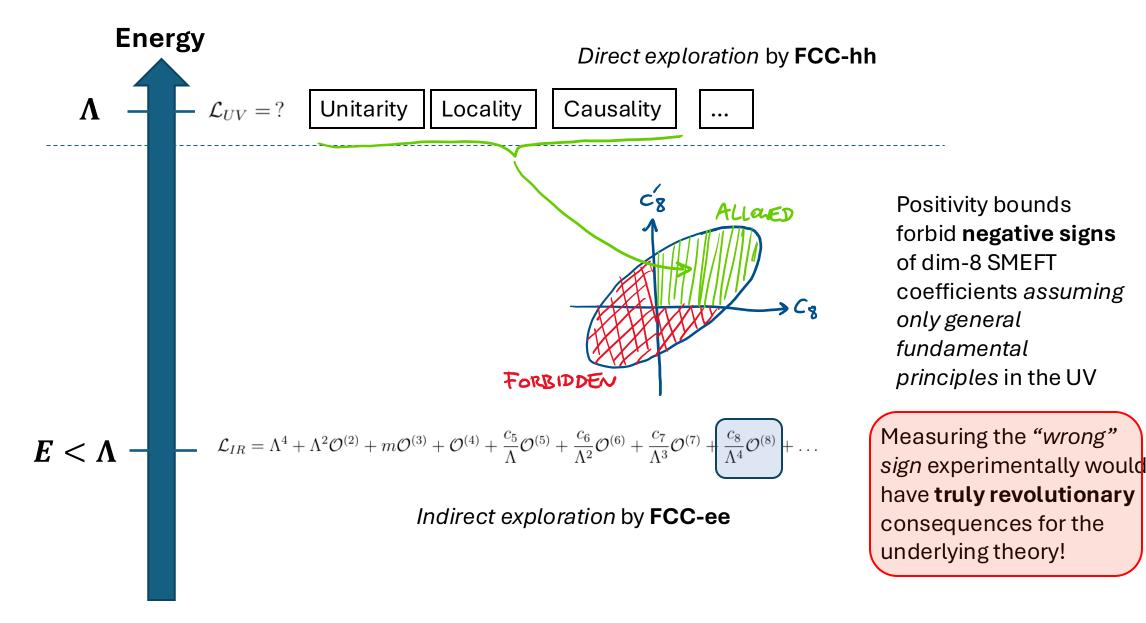
Dimension 8 operators in SMEFT

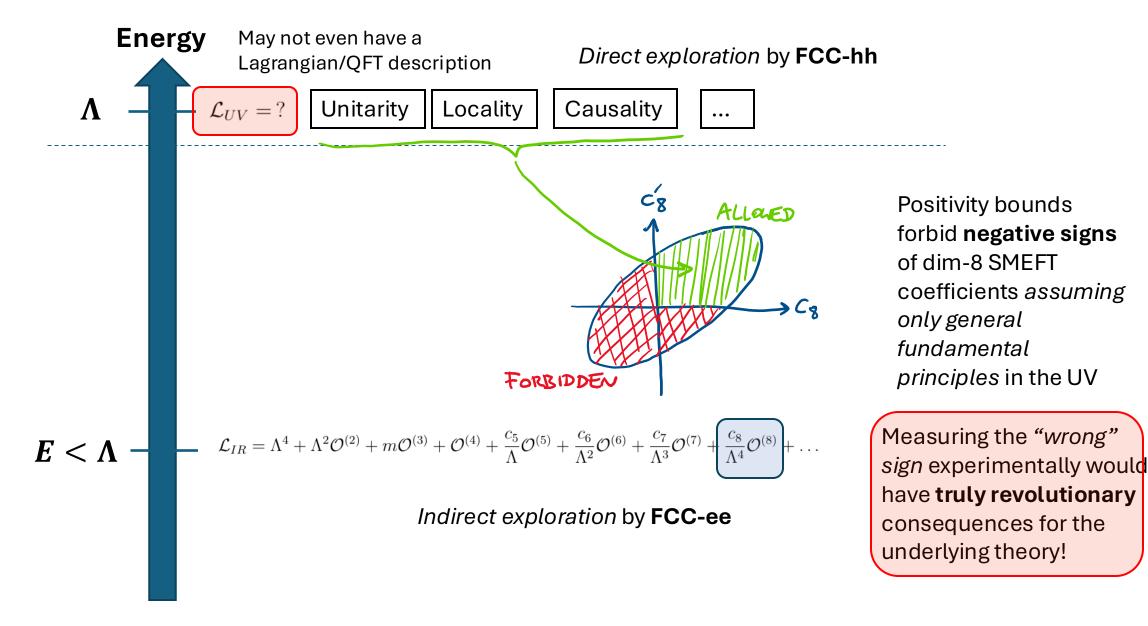
\sqrt{s}	$250\mathrm{GeV}$		$500{ m GeV}$		1 TeV		3 TeV		5 TeV	
$\Lambda^{2\sigma}_{G+}$	1.4	1.6	2.5	2.7	4.3	4.7	9.8	11.0	14.2	15.9
$\Lambda^{5\sigma}_{G+}$	1.1	1.2	2.0	2.2	3.4	3.7	7.8	8.6	11.3	12.7
$\Lambda^{2\sigma}_{G-}$	1.0	1.1	1.5	1.7	2.2	2.4	3.8	4.2	4.9	5.5
$\Lambda^{5\sigma}_{G-}$	0.81	0.89	1.2	1.3	1.7	1.9	3.0	3.3	3.9	4.4
$\Lambda^{2\sigma}_{\widetilde{B}W}$	1.2	1.3	1.7	1.9	2.3	2.6	4.1	4.5	5.3	5.9
$\Lambda^{5\sigma}_{\widetilde{B}W}$	0.94	1.0	1.3	1.4	1.9	2.1	3.2	3.6	4.2	4.7
$\Lambda^{2\sigma}_{C+}$	1.4	1.6	2.0	2.2	2.6	2.9	4.8	5.2	6.1	6.8
$\Lambda^{5\sigma}_{C+}$	1.1	1.2	1.5	1.7	2.2	2.4	3.7	4.1	4.9	5.5

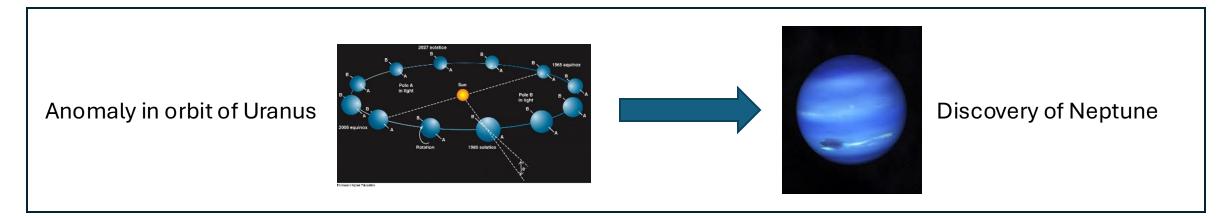

Future lepton colliders sensitive to TeV scale.

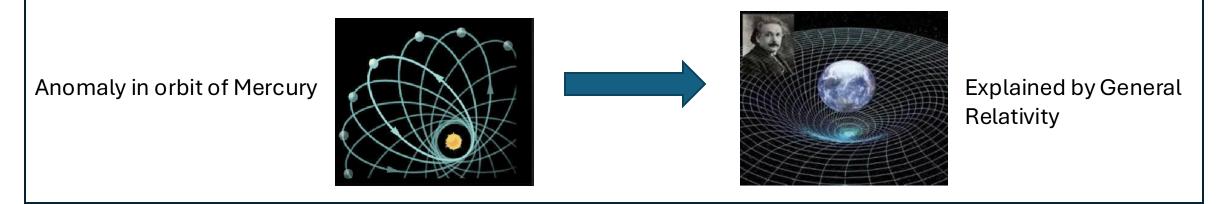

2009.14298 Ellis, He, Xiao 2404.15937 Liu et al


Positivity bounds place a *theoretical prior* on the dimension 8 parameter space that could be probed at


future colliders.


e.g. 1908.09845 Remmen, Rodd 2308.06226 Davighi, Melville, Mimasu, TY 2204.13121 Li et al, 2011.03055 Gu, Wang, Zhang





Sometimes an anomaly in **indirect precision** measurement = *something missing*:

Other times its implications are far more radical:

Conclusion

The **Standard Model Effective Field Theory** is our *Theory of Everything* until experiment shows otherwise.

Exploration of Zeptoscale is charted by space of higher-dimensional operator coefficients.

Indirect precision measurements of fundamental importance, complementary to direct searches.

Indirect evidence preceded direct discovery for nearly all SM particles – same may be true of BSM.