

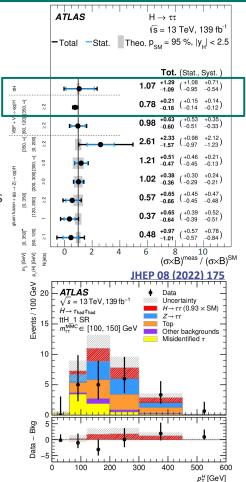
Improvements in the measurement of VBF and ttH production with $H\rightarrow \tau\tau$ in ATLAS

Topical Talks - Higgs Hunting 2024

Enrique Valiente Moreno (IFIC, CSIC-UV), on behalf of the ATLAS Collaboration

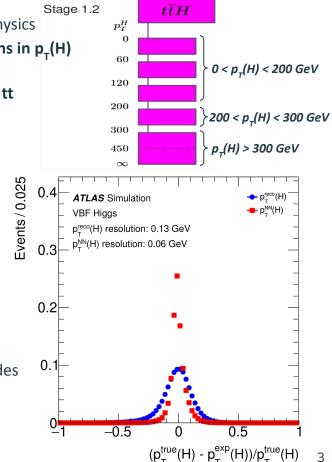
23/09/2024

Introduction - $H \rightarrow \tau \tau$ analysis

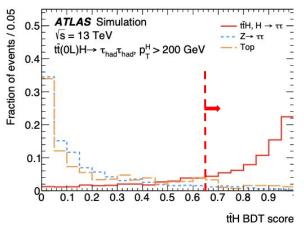

- Largest leptonic branching ratio of 6.3%. Unique opportunity to study Yukawa mechanism
- ullet Reduced SM backgrounds requiring final states with hadronic or leptonic au-lepton decays
 - Higgs boson mass peak and $p_{\tau}(H)$ easily built from di- τ system
- High purity final states + sizable branching ratio give a powerful channel for measuring Higgs boson production (ggF, VBF, VH and ttH)

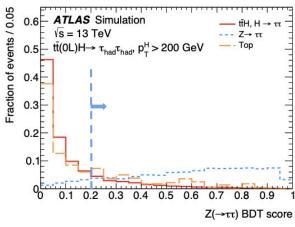
Previous H $\rightarrow \tau\tau$ Run-2 results (JHEP 08 (2022) 175)

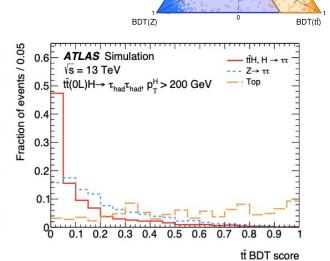
- 9 Parameter of Interest (PoI) measurement using Simplified template cross-sections (STXS)
 - Phase space partitions using kinematic properties of the Higgs boson and associated objects
- Inclusive measurement for ttH and VBF
 - \circ H $\rightarrow \tau\tau$ provided most precise **VBF** production measurement (<u>Nature 607 (2022) 52</u>)
 - \circ **ttH** limited statistically, but sensitivity for high $p_{\tau}(H)$ bins


New H $\rightarrow \tau\tau$ Run-2 legacy analysis (HIGG-2022-07)

- Based on previous round and focused on VBF and ttH
- Improvements via new MVA techniques and strategy for statistical fit
- First unfolded fiducial differential cross-section measurement of H→ττ in a VBF enhanced phase space

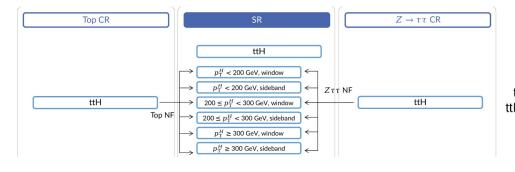

$H \rightarrow \tau \tau$ legacy analysis - Improvements in ttH

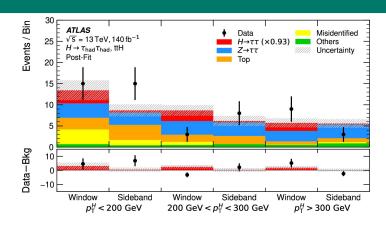

- Higgs boson coupling to heaviest fermions → Highly sensitive process to new physics
- Due to limited data statistics, ttH measurement only extended to three STXS bins in p_T(H)
- **Previously**: two BDTs trained to separate ttH from main backgrounds, **Z**(ττ) and tt
 - Signal and Control regions (SR, CR) defined combining both scores
 - \circ BDT trainings inclusive in $\mathbf{p}_{\mathsf{T}}(\mathbf{H})$
- NEW p_T(H) reconstruction via Neural Networks (NN)
 - Reduces event migration between STXS bins and improves resolution compared to the previous method
 - Input variables for NN:
 - ΔR_{τ} , $\Delta \phi_{\tau}$: angular distances between the two τ -leptons
 - E_T missing transverse energy
 - $\mathbf{p}_{\tau}^{\tau\tau}$: built from the four-momenta of the two τ -leptons and $\mathbf{E}_{\tau}^{\text{miss}}$
 - $\mathbf{m}_{\mathbf{r}}^{\text{coll}}$: di- τ invariant mass in the collinear approximation
 - Trained using ggF events, performance checked for other production modes

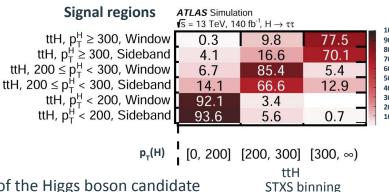


H→ττ legacy analysis - Improvements in ttH

- Legacy analysis: Multiclass classifiers trained using simultaneously the three processes (ttH, $Z(\tau\tau)$ and tt)
 - SRs and CRs defined combining the three different scores produced
 - \sim Two trainings performed for $p_T(H) < 200 \text{ GeV}$ and $p_T(H) > 200 \text{ GeV}$
 - The relative contribution from main backgrounds varies as a function of $p_{T}(H)$
 - Taking advantage of **new p_T(H) reconstruction method**
- MC distributions of BDT scores for $p_{\tau}(H) > 200 \text{ GeV}$

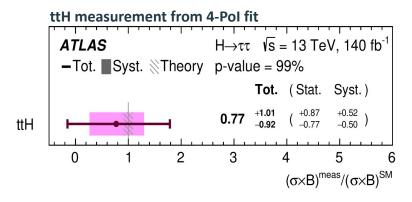

tī background

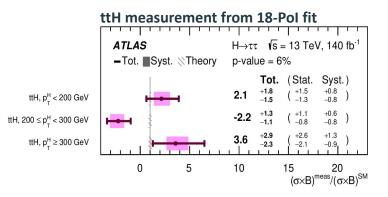

Z background


BDT(signal)

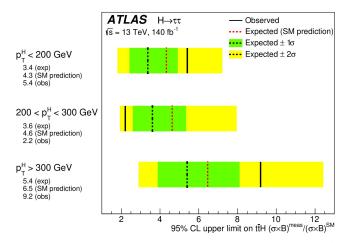
$H \rightarrow \tau \tau$ legacy analysis - Improvements in ttH

- 6 SRs defined, based on the multiclass scores and the di-τ system invariant mass (using the <u>Missing Mass Calculator, MMC</u>)
 - "Window" regions with MMC around the SM Higgs mass and "Sideband"
- Inclusive CRs also defined for $Z(\tau\tau)$ and tt in order to constraint the main background sources

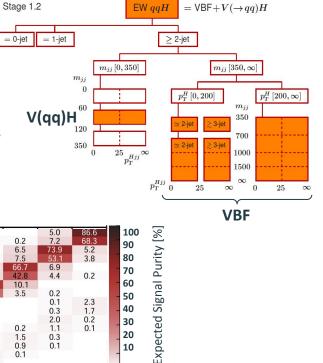




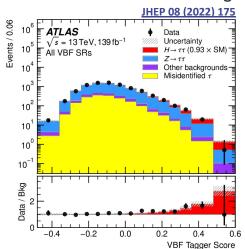
- Highly pure SRs obtained in $ttH(\tau\tau)$ events for each STXS bin in p_{τ} of the Higgs boson candidate
- Improved by 25% expected sensitivity in the PoI $\mu = (\sigma \times BR_{\tau\tau})/(\sigma \times BR_{\tau\tau})_{SM}$ of $(1^{+0.92}_{-0.79})$ compared to the previous result $(1^{+1.24}_{-1.06})$

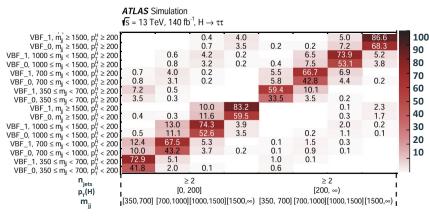

Expected Signal Purity [%]

$H \rightarrow \tau \tau \ legacy$ analysis - Results for ttH

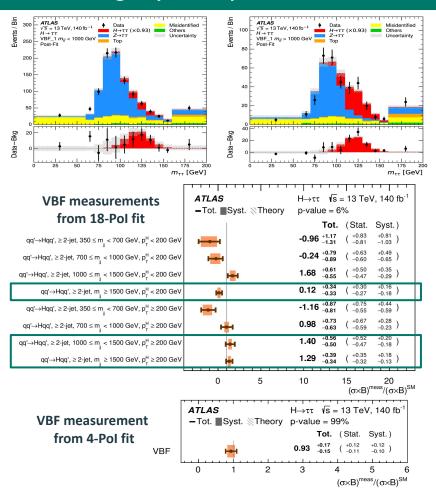


- Binned maximum likelihood fits performed using MMC as discriminant to measure the Pols
- 4-Pol fit: dedicated Pol for each production mode
- **18-Pol fit**: no significant deviations from the SM in ttH STXS bins
 - Limited sensitivity obtained in the fit due to poor statistics.
 - Upper exclusion limits at 95% CL were computed:
 - Expected (μ =0): ranging between **~3-5xSM prediction**
 - Expected injecting μ =1: ~4-6xSM prediction
 - Observed: ~2-9xSM prediction

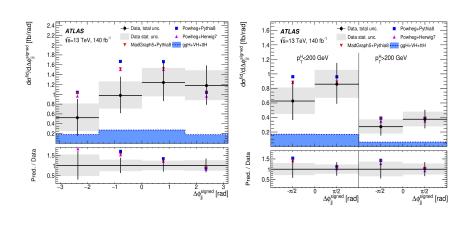



$H \rightarrow \tau \tau \ legacy$ analysis - Improvements in VBF

- Aim to extend the VBF measurement to more refined regions of phase space through new STXS bins
 - \circ From inclusive measurement to 8 STXS bin measurement in $p_T(H)$ and m_{ii} (invariant mass of di-jet system associated to Higgs boson production)
- **Event selection** strategy: **same BDT** from previous round (VBF vs ggF and $Z(\tau\tau)$ +jets) used to define VBF_1 (signal enriched) and VBF_0 SRs, optimizing cuts to enhance VBF sensitivity in each STXS bin



STXS binning


$H \rightarrow \tau \tau \ legacy$ analysis - VBF results

- No significant deviations from the SM
- High precision results in the high-p_T(H) and/or high-m_{jj} regions due to the reduced SM backgrounds
 - First measurement for the higher- $p_T(H)$, and the most precise one in the lower- $p_T(H)$ region
- Differential cross-section was measured for the first time in $H \rightarrow rr$ in a fiducial phase space optimised for VBF production
- Measured in bins of 4 variables sensitive to VBF kinematics:

$$\Delta\phi_{jj},~p_T^{j_0},~p_T^H,~\Delta\phi_{jj}~ ext{vs}~p_T^H$$

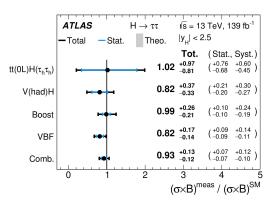
• Good agreement between measured cross-sections and SM expectations

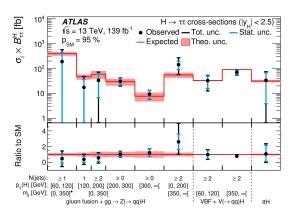
Summary

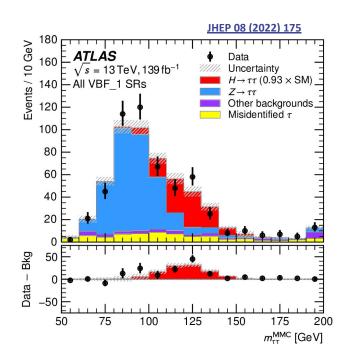
- Presented latest improvements in the measurements of VBF and ttH production processes in the $H \rightarrow \tau\tau$ channel in the ATLAS experiment
- STXS: Improvements mostly driven by new MVA techniques and strategy for statistical fit
 - \circ Improved resolution in reconstructed $p_{\tau}(H)$ thanks to new developed NN-based approach
 - o for ttH process, using a multiclass identifier compared to the previous binomial BDT
 - o for VBF optimizing cuts on MVA score for each of the STXS bins
- Results mainly limited by size of analyzed data sample
 - $_{\odot}$ ttH measurement improved by 25% with respect to previous analysis $~\mu_{tar{t}H}=1.06^{+1.28}_{-1.08}$
 - \circ Reached most precise measurement of VBF Higgs boson production $~\mu_{VBF}=0.98^{+0.17}_{-0.15}$
 - \circ Higher precision achieved for VBF in higher $p_T(H)$ and higher m_{ii} regions
- Obtained first unfolded differential cross-section measurements for VBF in H $\rightarrow \tau\tau$

Acknowledgements

- The author's work is supported by:
 - FPU2021 grant funded by MICIU/AEI /10.13039/501100011033 and by the FSE+
 - Grants PID2021-124912NB-I00 and PID2021-125069OB-100 funded by MCIN/AEI/10.13039/501100011033
 - Project ASFAE/2022/010 funded by MCIN, by the European Union NextGenerationEU (PRTR-C17.I01)
 and Generalitat Valenciana

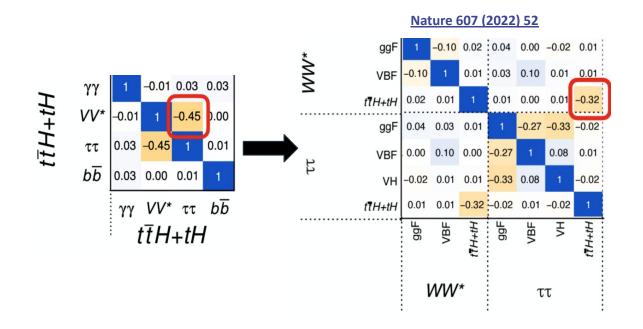




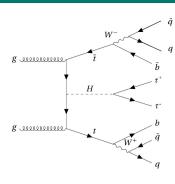

Additional material

Previous analysis - Highlights

- Measured global μ for $pp \rightarrow H \rightarrow \tau \tau$, by production process (ggF, VBF, VH and ttH) and in 9 STXS bins (according to sensitivity)
 - \circ ggF separated in p_T^H (expected better purity at high p_T^H)
 - VBF, VH and ttH are split using BDTs
- Di-tau system mass distribution considered in the statistical fit
- Achieved a relative uncertainty on global μ of 14%



 $[\]rightarrow$ Measured μ_{VBF} with uncertainty of +22%, -19%

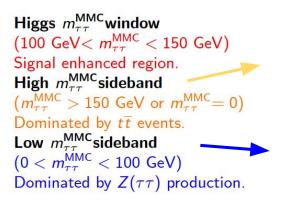

 $[\]rightarrow$ From Higgs combination has been seen that $\tau\tau$ channel is one of the most powerful and sensible to VBF production mode

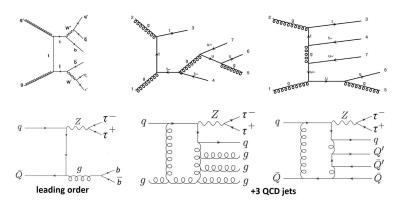
Previous analysis - Highlights

General ATLAS Higgs combination: reduced ttH(WW) and ttH($\tau\tau$) anti-correlation **from -45% to -32%.** Attempted improvement in new legacy analysis

ttH event selection

Signal topology: fully hadronic top-antitop decays

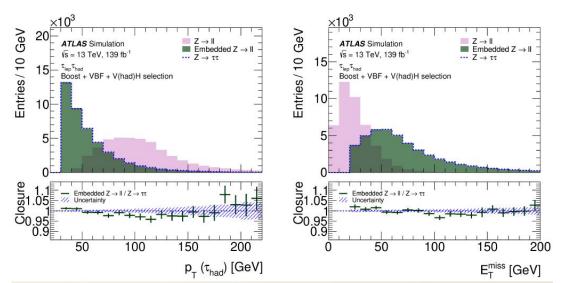

- 6 jets, 2 of them coming from b-quark hadronization
- Only considering <u>hadronically decaying tau-leptons</u>


Event selection criteria:

criteria:		Number	p_{T}	$ \eta $	Other	
	$ au_{had}$	≥ 2	> 20 GeV	< 2.5	opposite charge, medium RNN identification	
	Jets	$\geq 5(6)$	> 20 GeV	< 4.4	anti- $\kappa_t,\ R=0.4$	
	<i>b</i> -jets	$\geq 2(1)$	> 20 GeV	< 2.5	70% efficiency working point	

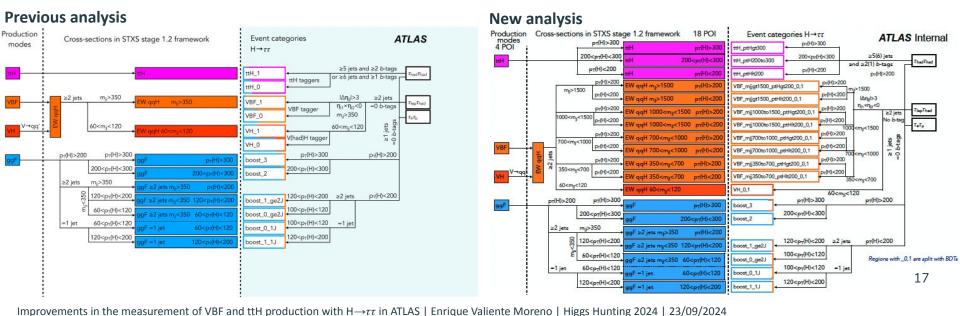
MMC: (~) invariant mass of the di-T _____system (missing mass calculator)

- Plays an important role: first separation of signal against main background can be made applying cuts on this variable
- Signal-to-background enhanced regions can be defined out of this variable

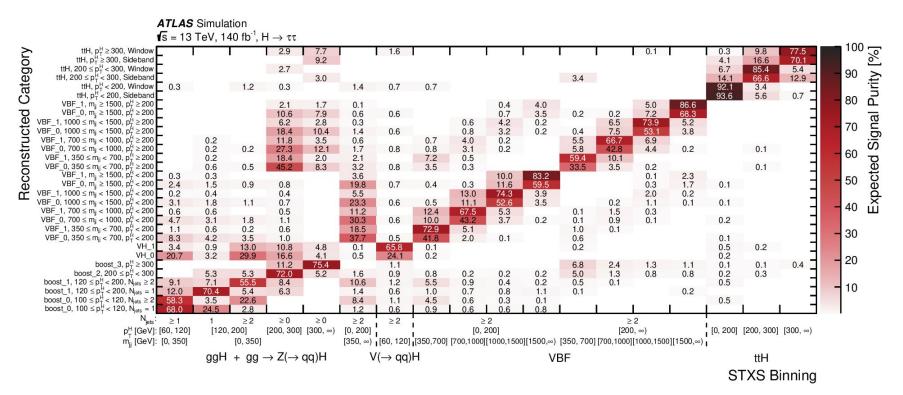

14

Input variables for MVA trainings

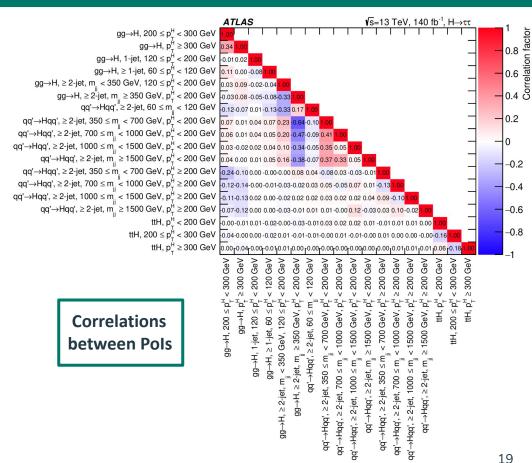
	Variable	VBF	ttH multiclass
	Invariant mass of the two leading jets	•	
	$p_{ m T}(jj)$	•	
	Product of η of the two leading jets	•	
	Sub-leading jet $p_{\rm T}$	•	
Jet properties	η of the 5 leading jets		•
	Scalar sum of all jets p_T		•
	Scalar sum of all b -tagged jets p_T		•
	Best W-boson candidate dijet invariant mass		•
	Best top-quark candidate three-jet invariant mass		•
	$\Delta \phi$ between the two leading jets	•	
	$\Delta \eta$ between the two leading jets	•	
Angular	Minimum ΔR between two jets		•
distances	Minimum ΔR between a <i>b</i> -tagged jet and a $\tau_{\text{had-vis}}$		•
	$ \Delta\eta(au, au) $		•
	$\Delta R(au, au)$		•
au-lepton	$p_{ m T}(au au)$		•
properties	Sub-leading τ $p_{\rm T}$		•
	Leading τ η		•
H candidate plus	$p_{\mathrm{T}}(Hjj)$	•	
jets system			
$ec{p}_{ ext{T}}^{ ext{ miss}}$	Missing transverse energy $E_{\rm T}^{\rm miss}$		•
•	Smallest $\Delta\phi(au, ec{p}_{ m T}^{ m miss})$		•


Background Estimation

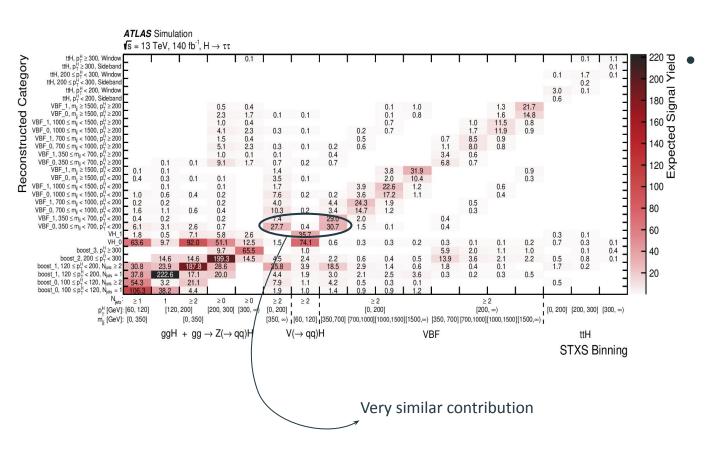
- For this new round, background estimation strategy is mostly inherited from previous analysis
- $Z \rightarrow \tau \tau$ is the largest background. Object-level-embedding is employed to build control regions out of $Z \rightarrow \ell \ell$ events.
 - \circ Kinematic cuts are applied on embedded τ objects that are created by splitting the ℓ into a visible and a neutrino component
 - \circ Each signal region has single bin Z control region to constrain the Z contribution. MC is used to model the m_{$\tau\tau$} contribution in the SR.
- Fake leptons background estimation: same Matrix Method (MM) in the $\tau_e \tau_\mu$ channel as before, and a fake factor derived for $\tau_l \tau_h$ and $\tau_h \tau_h$ channels.


STXS Statistical fit - Fit setup

- Binned maximum likelihood fit using TRExFitter. A total of 3 differents fits are carried out, for different combination of parameters of interest (PoI):
 - \circ **1-Pol** fit: inclusive H $\rightarrow \tau\tau$ production combining main Higgs production modes
 - **4-Pol** fit: dedicated Pol for each production mode i.e ggH, VBFH, VH, ttH. Targets σ_ixBR_{xx} for each mode
 - o **18-Pol** fit: nominal STXS fit, with setup optimized to measure the maximum number of possible STXS bins

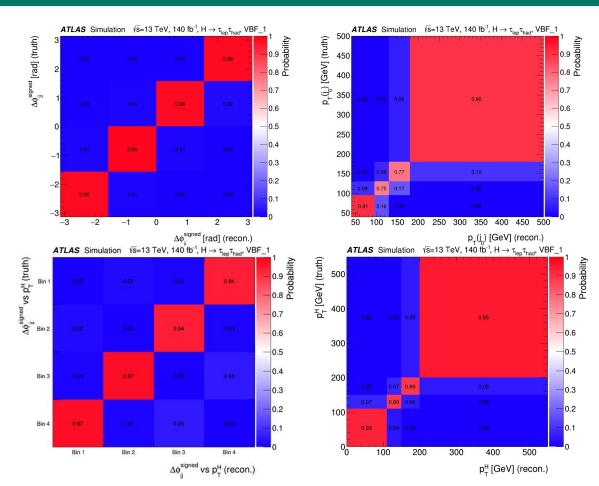

STXS - 18 Pol fit

Pre-fit signal purity in each reconstructed category (per bin)



STXS - 18 Pol fit

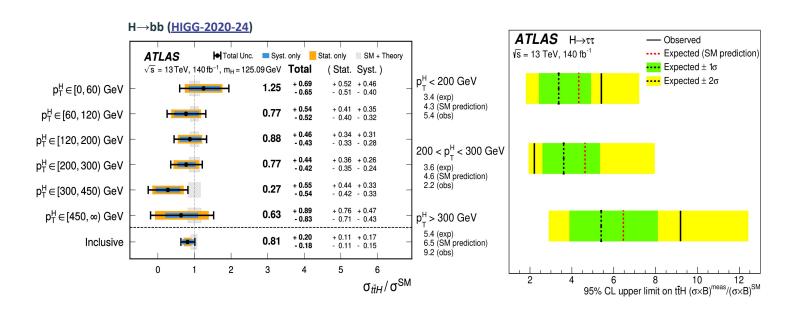
- 18 Pol fit corresponding to the different STXS regions considered
 - Obtained better precision in VBF phase space for higher p_T^H and/or m_{jj} due to reduced SM backgrounds
 - VBF cross-sections at lower m_{jj} and p_T^H<200 GeV slightly below the SM prediction
 - Significant VBF-like ggH contribution (ggH+2 jet production with m_{jj} > 350 GeV, p_T^H < 200 GeV) in reconstructed level categories targeting VBF signal (see next slide)
 - Leads to anti-correlation in the measurements



STXS - 18 Pol fit

We knew that VBF-like ggH contribution was significant in the VBF 0 SRs. However, we thought that the separation between VBF 0 and VBF 1 provided by the VBF tagger (VBF vs Ztt+ggF) was enough to isolate efficiently the VBF signal contributions.

Unfolded differential measurement



- **Migration matrices** evaluated from MC simulations of Higgs bosons decaying to
- Each matrix element is the probability for a signal event generated in a fiducial truth-bin to be selected in a VBF_1 reconstructed (recon.) bin in the TlepThad channel.

 $au_{\mathsf{lep}} au_{\mathsf{had}}$

18-Pol unblinded fit results

Limited sensitivity for ttH obtained in the fit due to poor statistics, compared to other channels like H→bb.
 Upper exclusion limits at 95% CL can be also computed for the three Pols on signal strength

