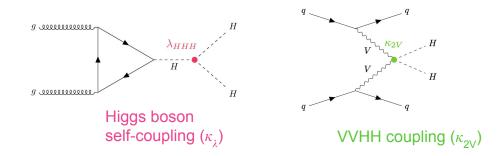


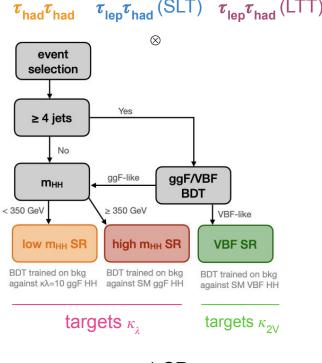
Searching for **Higgs Boson Pairs** in the **bbrr** Final State with the **ATLAS** Experiment with **Run 2 and beyond**

Florian Haslbeck (CERN, Oxford) o.b.o. the ATLAS Collaboration

Higgs Hunting 2024



Legacy Run 2 HH→bbττ


bb $\tau\tau$: relatively large BR (~7.3%) & di- τ : multijet rejection

Re-analyse Run 2 and focus on non-resonant HH production

- **New:** finer event categorisation for better κ_{λ} and κ_{2V} constraints
 - improved MVA discriminants
 - improved modelling, incl. new samples
 - EFT interpretation

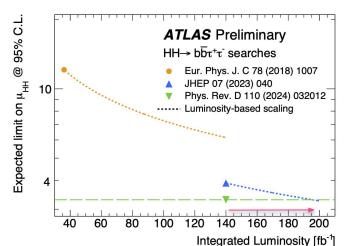
 τ -decay specific triggers

⊕ 1 CR

Legacy Run 2 Results

No significant excess observed above SM prediction.

μ_{нн}< 5.9 (3.3) x SM


 $\begin{array}{l} \mu_{ggF} < 5.9 \; (3.4) \; x \; SM \\ \mu_{VBF} < 93 \; (72) \; \; x \; SM \end{array}$

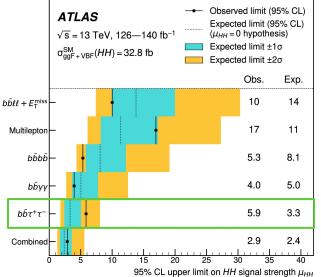
 $\kappa_{2V} \in [-0.5, 2.7] ([-0.2, 2.4])$

Obs. (Exp.) limits at 95% CL:

First simultaneous constraint of **ggF** and **VBF** HH production!

Improved κ_1 and κ_{2v} constraints: $\kappa_1 \in [-3.1, 9.0]$ ([-2.5, 9.3])

Exp. limit improves by **-15%** wrt previous Run 2 analysis Improvements are equivalent to ...


☞ ... 30% more data or

☞ ... a new analysis < 6x SM

Results are statistically limited!

many of the analysis improvements will show full potential at HL-LHC!

ATLAS HH combination

HL-LHC Extrapolation [ATL-PHYS-PUB-2024-016]

keep all uncertainties as they are

Snowmass recommendations for

no MC stat. uncertainty

half all theory signal and background unc.

scale MC stat. uncertainty with $\sqrt{(L'/L)}$

expected HL-LHC ATLAS performance,

Crystal-balling impact of HL-LHC luminosity & collision energy

Consider 6 uncertainty scenarios + algorithmic improvements

"Run 2 Systs"

"Theo. unc. halved"

"MC lumi scaled"

"Baseline"

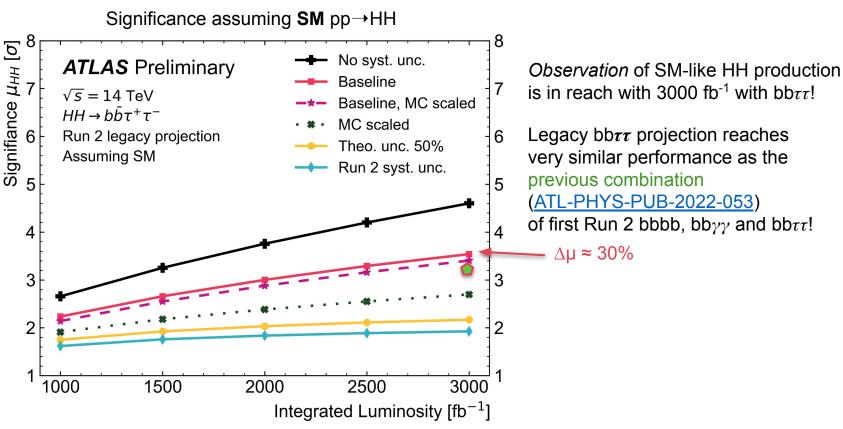
"Baseline + MC lumi scaled"

"No syst. unc"

no systematic uncertainties, no MC stat. unc. (only floating norms in the fit)

baseline, but scale MC stat. unc. with $\sqrt{(L'/L)}$

✓ Luminosity✓ Collision energy

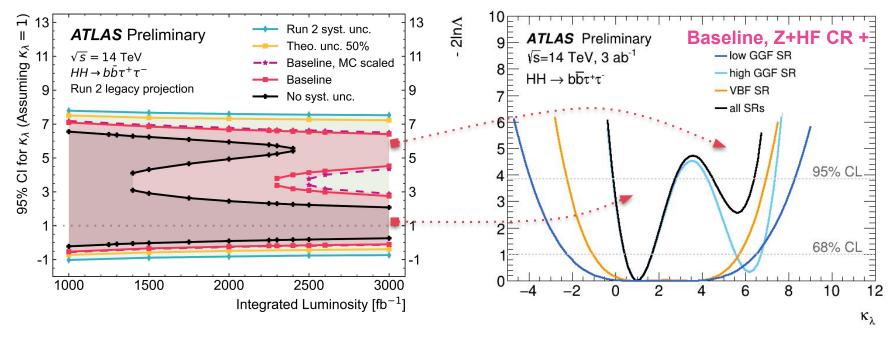

Combined performance

✓ Theory

✓ Monte Carlo

- Detector performance [simplified]
- ✓ Analysis techniques

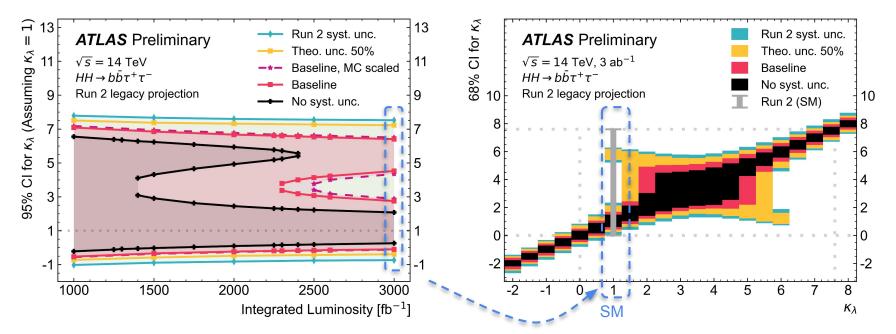
Will we observe SM-like HH production?



How well will we know κ_{λ} - if SM-like universe ?

95% CI for κ_1 (assuming **SM**)

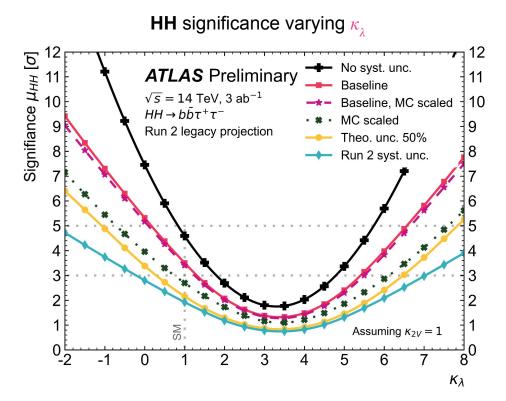
... constraint from new SRs!



Low GGF and VBF signal regions allow **resolving** κ_{λ} **degeneracy** ($\sigma(\sim \kappa^2)$) with ca. 2500 fb⁻¹ for most optimistic scenario.

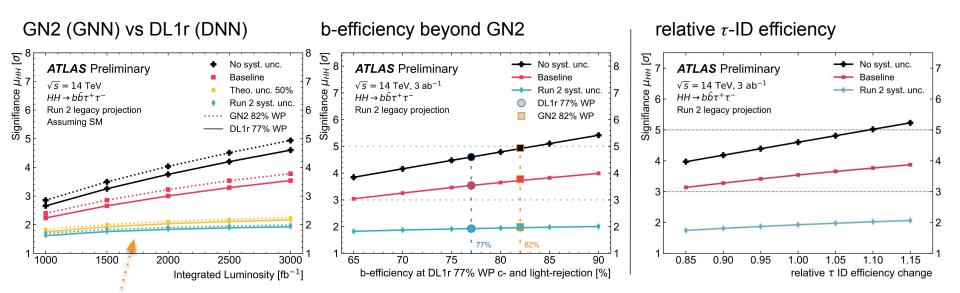
How well will we know κ_{λ} - if non-SM-like universe ?

95% CI for κ_1 (assuming **SM**)


Our knowledge of κ_{λ} very much will depend on the universe's implementation!

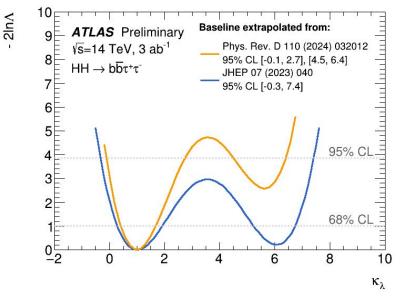
68% CI for κ_1 at 3000 fb⁻¹ varying κ_2

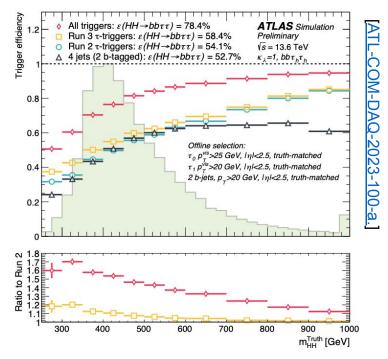
Will we observe HH production?



We will observe small and very large HHH couplings, but significantly reduced sensitivity around $\kappa_1 \approx 3.5 \pm 1$

Improving ... b-tagging




GN2's 82% working point (available today!) will bring us close to *observation* in the most optimistic scenario. Improvements in the identification of hadronic signatures would greatly benefit the analysis! Improvements how high can we go?

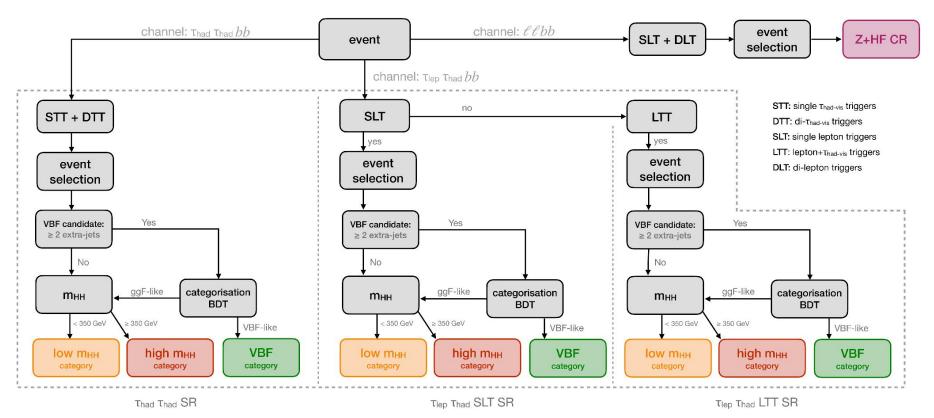
Exciting times ahead!

Improvements in the Legacy Run 2 analysis half the projected uncertainty in κ_{λ} wrt previous extrapolations

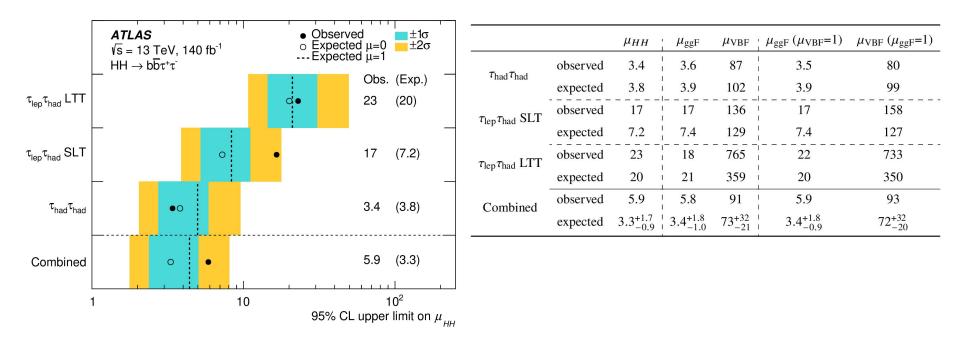
Expect improvements from refined trigger, too!

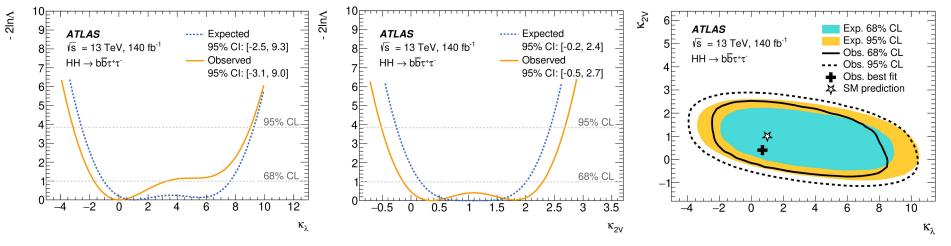
Observation gets within realistic reach!

[ATL-PHYS-PUB-2024-016]

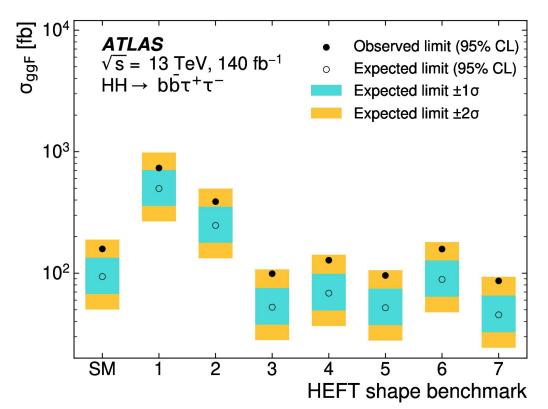


Backup


Legacy Run 2 Signal regions


Legacy Run 2 Result

Florian Haslbeck



Run 2 Legacy EFT interpretation

Phys. Rev. D 110 (2024) 032012

Post fit distribution

Main backgrounds:

HadHad top (single-t, ttbar), QCD fake τ_{had} , Z+heavy flavor jets, ttbar fake τ_{had} , single Higgs, ...

SLT LTT

top (single-t, ttbar), fake τ_{had} , Z+heavy flavor jets, single Higgs, ...

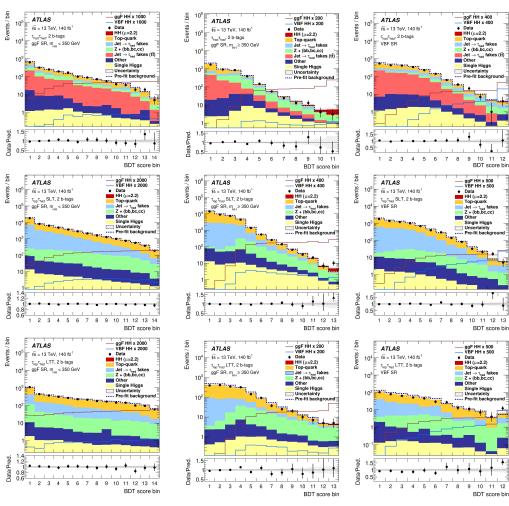
Backgrounds are estimated from MC except fake $r_{\rm had}$

BDT score binning:

maximize expected sensitivity while minimising MC statistical uncertainty (Trafo 60 algorithm)

Florian Haslbeck

low-m_{HH} GGH


HadHad

SLT

F

VBF

Projection Scalings

Luminosity

Scale MC to HL- LHC L_{int} testing values from 1ab⁻¹ to 3ab⁻¹ This assumes that the Phase-II ATLAS detector will be as performant as the current one The BDT histogram binning is not changed by this scaling \rightarrow very conservative approach [next slide]

Collision energy

 $\sqrt{s} \rightarrow 14$ TeV increases σ (process)

 σ (process, 14 TeV) = A x σ (process, 13 TeV)

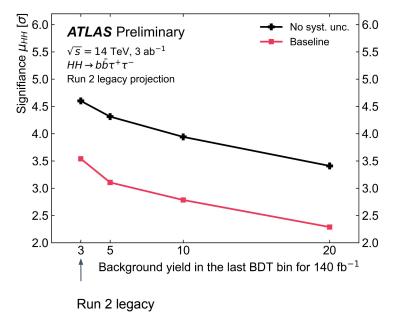
Process	Scale factor		
Signals			
ggF HH	1.18		
VBF HH	1.19		
Backgrounds			
ggF H	1.13		
VBF H	1.13		
WH	1.10		
ZH	1.12		
ttH	1.21		
Others	1.18		

Residual scale factors

Run 2 found the Z+heavy flavour norm to significantly deviate from unity \rightarrow scale with 1.3 before building (pre-fit) Asimov

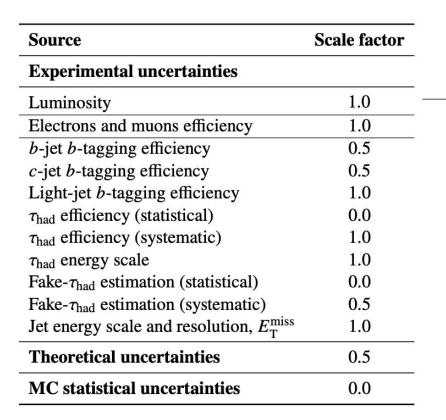
The remaining normalisations are taken from MC

Binning


Trafo 60

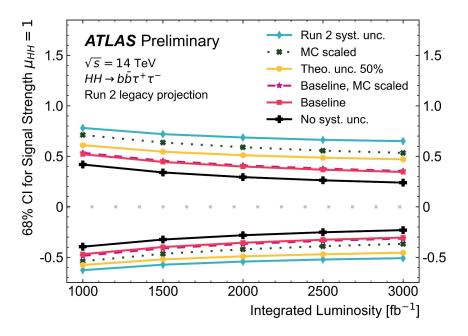
Scale MC to HL- LHC L_{int} testing values from 1 ab⁻¹ to 3 ab⁻¹ The BDT histogram binning is not changed by this scaling \rightarrow very **conservative** approach

Since we cannot estimate how much better we would be with more aggressive binning at 3 ab⁻¹ we can estimate how much worse we would be with a more conservative binning at 140fb⁻¹


This clearly demonstrates that all our extrapolations are very conservative \rightarrow the binning matters a lot

With the current extrapolation, the last BDT bin has O(100) events at 3 ab^{-1} ...

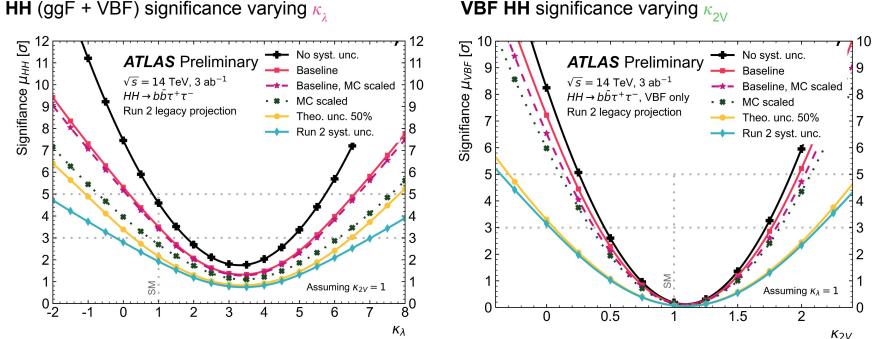
Uncertainty scaling for Baseline


Run 2 lumi. unc is better than the HL-LHC expectation, thus not scaled here [pragmatically it does not matter]

Otherwise this is following the latest recommendations that were also used for Snowmass 2022 [TWiki]

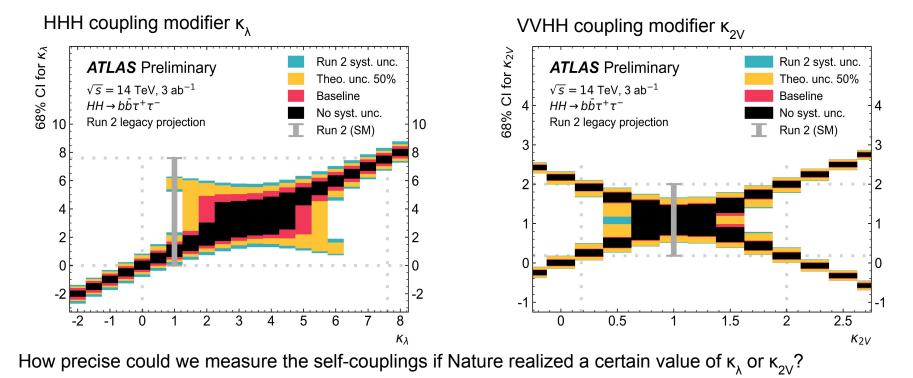
What will be limiting us?

Uncertainty on **SM** $pp \rightarrow HH$ signal strength


3000 fb⁻¹

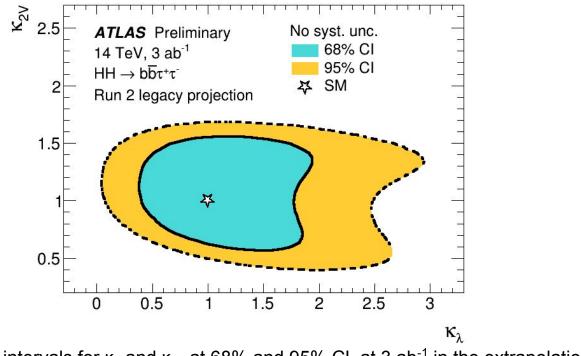
Source of uncertainty	Baseline $\Delta \mu_{HH}$		Run 2 Syst. $\Delta \mu_{HH}$			
Total	+0.35	-0.31	+0.65	-0.51	_	
Statistical	+0.24	-0.23	+0.24	-0.23		
\hookrightarrow Data stat only	+0.24	-0.23	+0.24	-0.23		
\hookrightarrow Floating normalisations	+0.02	-0.02	+0.04	-0.02	∆syst ~ ∆stat	
Systematic	+0.25	-0.20	+0.61	-0.46		
Experimental uncertainties						
Electrons and muons	< 0.01		< 0.01		_	
τ -leptons	+0.03	-0.03	+0.06	-0.05		
Jets	+0.06	-0.06	+0.06	-0.07	jets, τ , E_{T}^{miss}	
<i>b</i> -tagging	+0.02	-0.02	+0.04	-0.03	$JCIO, \iota, L_{T}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	+0.03	-0.02	+0.04	-0.02		
Pile-up	+0.01	-0.01	+0.01	-0.01		
Luminosity	+0.02	-0.01	+0.02	-0.01		
Theoretical and modelling uncertainties						
Signal	+0.12	-0.05	+0.39	-0.07	_	
Backgrounds	+0.19	-0.17	+0.37	-0.30	signal	
\hookrightarrow Single Higgs	+0.17	-0.15	+0.34	-0.27	-	
\hookrightarrow Z + jets	+0.06	-0.05	+0.10	-0.09	& bkg	
$\hookrightarrow W + jets$	< 0.01		< 0.01		modelling	
$\hookrightarrow t\bar{t}$	+0.02	-0.02	+0.03	-0.02		
\hookrightarrow Single top quark	+0.01	-0.01	+0.03	-0.04		
\hookrightarrow Diboson	< 0.01		< 0.01			
\hookrightarrow Jet $\rightarrow \tau_{had}$ fakes	+0.05	-0.05	+0.09	-0.08	_	
MC statistical	< 0	.01	+0.38	-0.36	20	

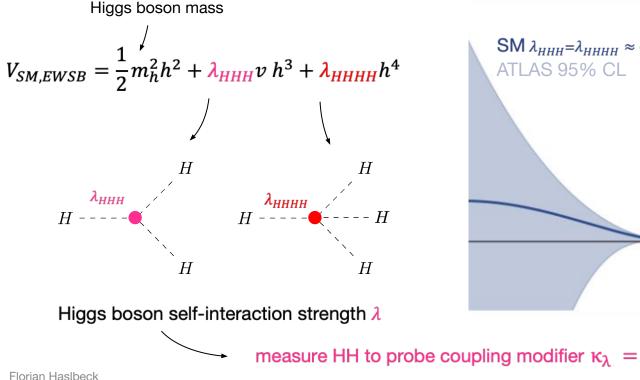
Will we observe HH production?

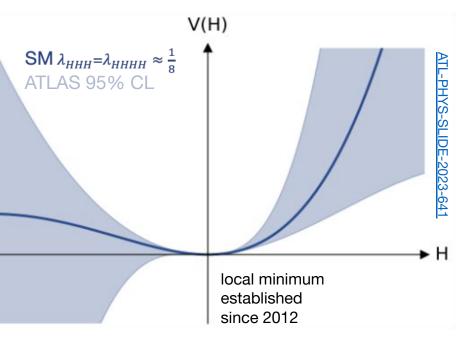


HH (ggF + VBF) significance varying κ_1

We will observe small and very large HHH couplings, but significantly reduced sensitivity around $\kappa_1 \approx 3.5 \pm 1$ HH VBF production will likely not be observed even at HL-LHC (if SM-like universe)


Uncertainty on κ as a function of κ


2D likelihood scan of κ_{λ} vs κ_{2V}


Expected 2D confidence intervals for κ_{λ} and κ_{2V} at 68% and 95% CL at 3 ab⁻¹ in the extrapolation scenario without systematic uncertainties

The Higgs potential and Di-Higgs searches

Standard Model Higgs Potential

Potential's shape & origin are experimentally very loosely unconstrained

24