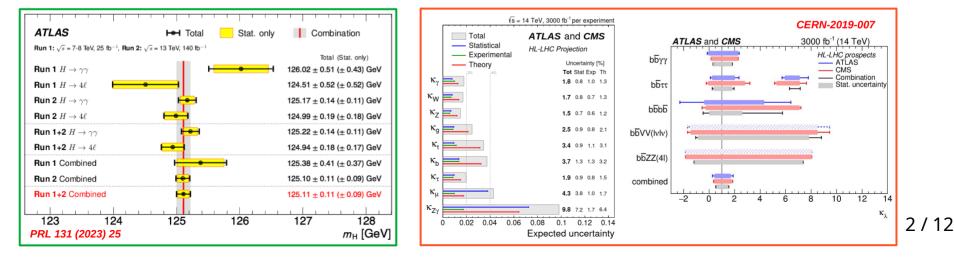
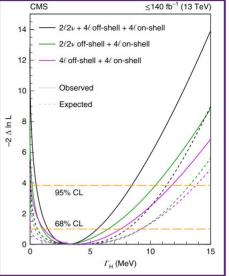
Higgs physics at FCC-ee

Louis Portalès Higgs Hunting – 25/09/2024


cea irfu


The LHC legacy

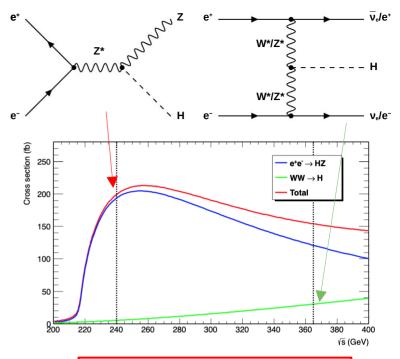
Extensive Higgs physics program currently ongoing at (HL-)LHC

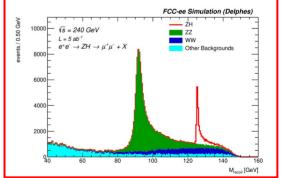
- → Higgs mass measured at per-mil level
 - Can expect ~10-20 MeV precision with HL-LHC
- → Higgs width measurements (model dependant): ~50% unc. with Run 2
 - Although direct measurement hard to achieve even at HL-LHC
- → Higgs couplings
 - 0(1-5%) precision achievable for bosonic & 3rd gen fermionic couplings (+ g_{Hµµ})
 - 95% CL exclusion of κ_λ=0 within reach
- \rightarrow Overall Impressive precision despite the harsh conditions of p-p collisions

Nat. Phys. 18, 1329-1334 (2022)

A new look with FCC-ee

At FCC-ee, things will look much different


- → Datasets enriched in ZH (@ 240 GeV) and VBF-H (@365 GeV) will be gathered
 - "ZH" run @ 240 GeV (10.8 ab⁻¹ w/ 4 IP): ~ 2 million ZH, ~ 50.000 VBF events
 - "ttbar" run @ 365 GeV (3 ab⁻¹ w/ 4 IP): ~ 400.000 ZH, ~ 100.000 VBF events
 → + possibly ee→H run @ 125 GeV, although challenging

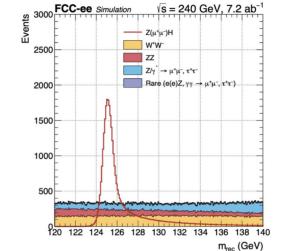

→ e^+e^- collisions → clean environment

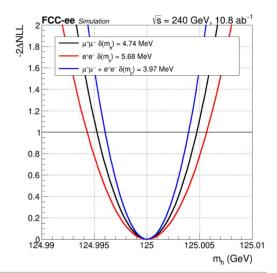
- Small background & high signal efficiencies
- <u>No PDFs!</u> Initial state energy precisely known
 - Allowing inclusive study of H production (in ZH), only looking at the Z boson:
 - Recoil mass: $M_{\rm rec.}^2 = s 2E_Z\sqrt{s} + M_Z^2$
 - \rightarrow Model independent characterisation of the Higgs boson

→ Extensive Higgs physics program can be foreseen

- Already being prepared as part of the FCC feasibility study
 - And used to give direction to the parallel detector R&D efforts
- A few are highlighted in the next slides

Measuring the Higgs mass


Higgs mass from inclusive analysis


→ Using recoil mass in Z(II)H events (I= e,μ)

- Simple event selection
 - 2 SF-OS leptons
 - ▶ 86 < m_{ll} < 96 GeV
 - ▶ $20 < p_{\parallel} < 70 \text{ GeV}$ ($p_{\parallel} > 20 \text{ GeV} @ \sqrt{s}=365 \text{ GeV}$)
 - 120 < m_{rec} < 140 GeV</p>
- Simple combined fit of recoil mass
 - Combining ee & μμ categories
 - With realistic array of systematic uncertainties:
 → Beam energy spread, √s & energy scales (e/µ)
- Expecting $\delta m \sim 4$ MeV (3.1 stat. + 2.5 syst)
 - Assuming 10.8 ab⁻¹ of data (4 IP scenario)
 - Sensitivity ~ fully driven by $\sqrt{s} = 240 \text{ GeV}$

→ Thorough study of detector design impact

- Larger variations from track resolution
 - High field & lighter tracker beneficial
- But no dramatic impact from detector configuration
 - All tested scenarios reaching ~ 4 MeV
 - \rightarrow Resolution on mH at the level of Γ_{H}

Nominal configuration —	Final state	Muon 240 GeV	Electron 240 GeV	Combination 240 GeV
	Nominal	3.92(4.74)	4.95(5.68)	3.07(3.97)
Crystal ECAL to Dual Readout	Inclusive	3.92(4.74)	4.95(5.68)	3.10(3.97)
Nominal 2 T \rightarrow field 3 T	Degradation electron resolution	3.92(4.74)	5.79(6.33)	3.24(4.12)
	Magnetic field 3T	3.22(4.14)	4.11(4.83)	2.54(3.52)
IDEA drift chamber \rightarrow CLD Si tracker \longrightarrow	Silicon tracker	5.11(5.73)	5.89(6.42)	3.86(4.55)
Import of Door County County	BES 6% uncertainty	3.92(4.79)	4.95(5.92)	3.07(3.98)
Impact of Beam Energy Spread	Disable BES	2.11(3.31)	2.93(3.88)	1.71(2.92)
Perfect (=gen-level) momentum	Ideal resolution	3.12(3.95)	3.58(4.52)	2.42(3.40)
resolution	Freeze backgrounds	3.91(4.74)	4.95(5.67)	3.07(3.96)
	Remove backgrounds	3.08(4.13)	3.51(4.58)	2.31(3.45)

Inclusive ZH cross-section

55

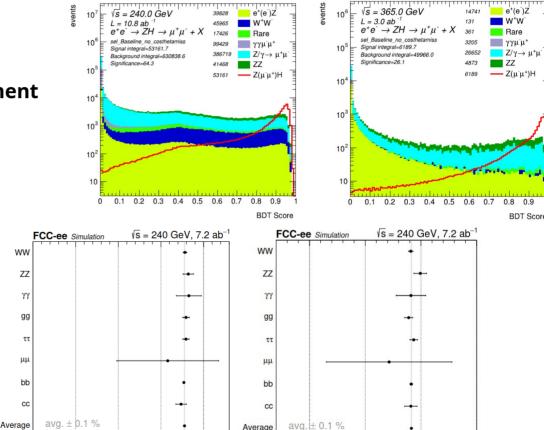
60

65

Selection efficiency $Z(\mu^+\mu^-)H$ (%)

Similar analysis/selection as mass measurement

→ But training/fitting dedicated BDTs


- ▶ 4 in total: $(Z \rightarrow ee/\mu\mu) \times (\sqrt{s} = 240,365 \text{ GeV})$
 - Combining Z decay channels separately for the two \sqrt{s}

→ Cross-section measurement statistically-dominated

- $\sqrt{s} = 240 \text{ GeV: } \delta \sigma \sim 0.6 \% (0.59 \% \text{ stat-only})$
- $\sqrt{s} = 365 \text{ GeV}: \delta \sigma \sim 1.5 \% (1.42 \% \text{ stat-only})$

→ Directly translates to constraints on g_{HZZ}

- As $\sigma(ZH) \sim q_{H77}^2$
 - Opens up possibility of precise Higgs couplings measurements through exclusive $ZH(H \rightarrow xx)$ analyses
 - Accessible through recoil-like analysis, as decay-mode independent .

55

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

BDT Score

5/12

65

Selection efficiency Z(e⁺e⁻)H (%)

Hadronic Higgs decays

We have never been as good at "jet tagging"

→ "ParticleNet" jet tagger

- GNN-based flavour tagging algorithm
 - Already widely used in CMS
 - Now also used for FCC prospect studies

→ Going for the second generation

- "FCC version" of Pnet classes jets into b/c/s/g/τ
- Tested so far in 3 complementary analyses
 - Orthogonal through Z decay choice (Z→ll,vv,qq)
 - All performing combined fits of Higgs/Z-boson mass
 - Using "Higgs decay" categories, defined from PNet + kinematic features
- Here considering 10.8 ab⁻¹ @ 240 GeV
 - Expected ~ 10 % sensitivity improvement from combination with 365 GeV

→ Extension to light quarks & exotic (FCNC) decays

- Similar approach, with additional classes in discriminant
 - So far only considering Z→νν
 - Still far from SM, but significant room for improvement

au
02
1
2
2
1
1
01

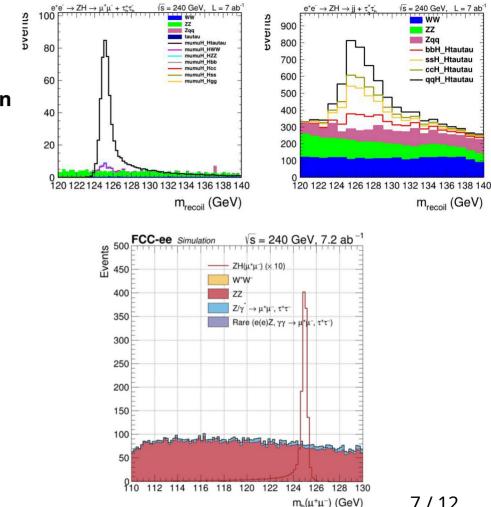
Predicted labe

- 80		δ(σ×BR) [%]						
80		Z(II)H	Z(vv)H	Z(qq)H	Comb.			
- 60	$H \to bb$	0.7	0.4	0.3	0.22			
	$H \to \text{CC}$	4.1	2.2	3.3	1.7			
- 40	$H \mathop{\rightarrow} SS$	230	150	440	120			
- 20	$H \to gg$	2.2	1.1	3.1	0.9			
	$H \to WW$	1.8	1.1	8.7	1.1			

Hbb -	91	0.12	0.76	.002	30.1	4.9	0	0 0	0.00	2.00	D. 47	0.53	0
Hcc	0.04	86		0.47	3.9	2.D	.001	207	50.1	6.8	0.14	D.070	.027
Hgg -	1.4	1.3	77	3.7	5.9	2.9			4.1	1.3	0.24	0.37	1
Hss	005	G .18	5.9	75	1.6			4.2	4.7	0.53	80.16	0.029	94.9
HWW	0.074	41.7		0.87	76	6	2.4	0.96	1.2		0.33	0.22	0.28
HZZ -	6.6	4.2	6.8	2.8	18	58	1.9	1.4		0.76	0.53	0.62	0.5
utau -	0		00	0.002	G .38	0.09	99	0.000	100	2 0		0 0	0.008
Huu	001	B04	89.2	6.4	4.4	1.10	.003	647		1.2	0.03	50.12	4.3
Hdd •	0.00	1.06	49.3	7.7	4.4	1.30	.001	225	50	0.93	0.03	50.15	4.8
Hcu	0.01	73.8	1.8	1.9	7,4	0.51		2.5		80	0.33	0.62	1.1
Hbs -	0.78	0.33	0.54	ю.38		1.1	0	0.030	105	80.89	78	170	0.029
Hbd -	0.96	0.13	0.64	D.09	0.9 1		0	0.08	20.2	1.7	21	74 0	0.027
Hsd -	00	0.04	33.3	13	1.2	0.92		5.7	8.3	0.52	0.05	20.04	17
	Hbb	Нсс	Hgg	Hss		vHZ				Hcu	Hbs	Hbd	Hsd

	σ [×] BR 95% CL	BR(SM)
$H \to dd$	1.4e-03	6e-07
H → uu	1.5e-03	1.4e-07
$H \to bs$	3.7e-04	e-07
$H \to bd$	2.7e-04	e-09
$H \to sd$	7.7e-04	e-11
$H \to c u$	2.5e-04	e-20

Leptonic Higgs decay


$H \rightarrow \mu \mu \& H \rightarrow \tau \tau$ similarly probed through ZH production

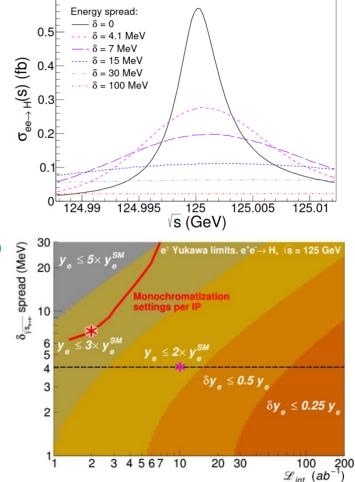
→ Η→ττ

- Similar "recoil mass selection" as for ZH analysis
 - In Z decay categories (ee/µµ/bb/gg, vv not yet considered)
 - Focusing on $\sqrt{s}=240$ GeV, assuming 7.2 ab⁻¹ .
- For now targeting hadronic tau decays only
 - Tau reconstruction procedure studied in several separated efforts ►
 - Optimal solution to be determined •
- (Very) preliminary sensitivity estimates
 - Sub-percent uncertainties on $\sigma xBR(ZH,H\rightarrow tautau)$
 - Driven by $Z \rightarrow qq$ channels ONLY statistical for now .

→ H→µµ

- "Recoil mass selection"
- 2 additional high-momentum muons ►
 - Using well-resolved muu distribution in fit
- Reaching $\delta(\sigma^{\times}BR) < 20\%$ •
 - Again driven by Z→gg channel

About the electron Yukawa

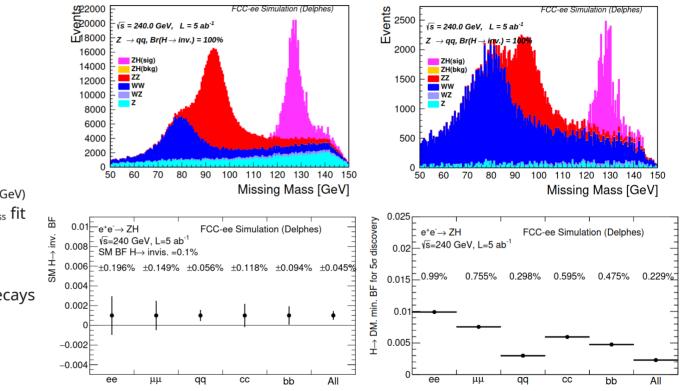

An absolute challenge: BR(H→ee) ~ 10⁻⁹ !

→ But not entirely out of the picture

- Would require a dedicated run at 125 GeV
 - ► Targetting s-channel ee→H production
- BUT also extremely challenging requirements
 - Higgs mass measured with < 5 MeV uncertainty → ok (240/365 GeV program)
 - (Very!) high luminosity \rightarrow ok (several ab⁻¹/year/IP of data achievable at 125 GeV)
 - Extremely precise control of beams, with ideally BES ~ $\Gamma_H \rightarrow$ hard to achieve

→ With current best knowledge of achievable sensitivy

- Assuming monochromatization of beams (→ BES~7 MeV)
 - Reaching $y_e < 3 \times y_e^{SM}$ (95% CL) assuming 2 ab⁻¹ (1 IP, 1 year of data)
 - ▶ Naive scaling with 2 years & 4 IP (\rightarrow 16 ab⁻¹): could ~ reach y_e < y_eSM


Invisible Higgs decay

→ Yet another ZH analysis

- Investigating Z→ll/qq
 - 5 categories: ee/μμ/bb/cc/qq
 - Further splitting into Njet categories
 → better background control
 - Requiring large missing momentum (p_{miss} > 10-20 GeV)
- Extracting limits on BR(H \rightarrow inv.) from m_{miss} fit

→ Able to reach SM-level sensitivity

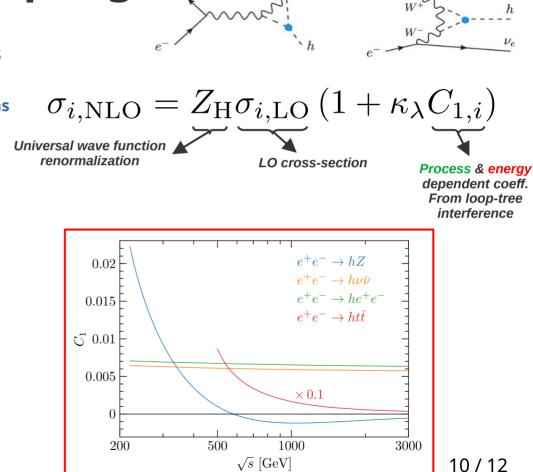
- ~ 2σ significance (w/ 5 ab⁻¹)
- ► Capable of observing eventual H→DM decays
 - With down to BR~0.2%

< 2 jets

> 4 jets

Higgs boson self coupling

HH production not accessible at FCC-ee energies


- → But Higgs self coupling accessible through NLO corrections
 - Can be probed exclusively
 - Through combined fit of various Higgs decay modes:

Decay Modes						
$C_1^\Gamma[\%]$	$\gamma\gamma$	ZZ	WW	$f\bar{f}$	gg	
on-shell H	0.49	0.83	0.73	0	0.66	
$C_1^{\Gamma_{ m tot}}\equiv\sum_j{ m BR^{ m SM}(j)}C_1^{\Gamma}(j)~~~2.3{ m x}10^{-3}$						

- And/or inclusively
 - Taking advantage of the energy-dependance of the correction

→ Sensitivity mostly driven by statistics

- Can realistically achieve $\delta\lambda < 30\%$
 - $\delta\lambda = 28\%$ from latest prospects
 - Still requires an update with the latest scenario: \rightarrow 4 IP, 10.8 ab⁻¹ @ 240 GeV + 3 ab⁻¹ @ 365 GeV
 - → Updated machine parameters (+ detector models)

 $\bar{\nu}_{\rho}$

Higgs boson width

Clean access to Γ_{H} at FCC-ee

→ Through ZH(H→ZZ*) analysis $\Gamma_H \propto \frac{\sigma_{ZH}^2}{\sigma_{ZH,H(ZZ^*)}}$

- $\sigma(ZH, H \rightarrow ZZ^*)$ estimated from dedicated analysis
 - Large number of different final states, 5 considered so far → Z(→II)H(vvqq) + Z(→II)H(qqvv) + Z(vv)H(Ilqq)
 - $\rightarrow Z(\rightarrow ||)H(4q)$
 - \rightarrow Z(\rightarrow qq)H(\rightarrow qq)
 - Using multiclass BDTs to enhance sensitivity
- Latest estimates from Feasibility study:
 - ▶ $\delta(\sigma^{x}BR) \sim 14\%$ from ZZZ*→6q analysis
 - ▶ $\delta(\sigma^{X}BR) \sim 8.4 \%$ from ZZZ*→2l+4q analysis
 - ▶ $\delta(\sigma^{x}BR) \sim 3.1 \%$ from ZZZ*→2l+2v+2q analysis

• Yielding $\delta\Gamma_{\rm H} \sim 4 \%$

►

- Preliminary estimate!
 - \rightarrow Found not to be too sensitive to neutral hadron energy res.
 - \rightarrow Further tuning of the sub-leading channels in progress

→ Through H→WW* & VBF H→bb

- Slightly more complex approach
 - Not yet tackled in the Feasibility study
- Could allow to reach δΓ_H ~ 1 %

Uncertainty in
$$\Gamma_H(\%)$$

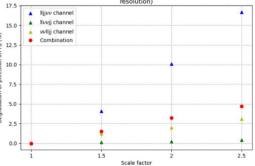
 Total
 4.6%

 Statistics
 4.5%

 H(WW*) normalisation (5%)
 0.8%

 ZZ normalisation (10%)
 0.2%

 WW normalisation (10%)
 0.1%


 $\Gamma_H \propto rac{\sigma(
u
u H o bb) \sigma(ZH)^2}{\sigma(ZH o bb) \sigma(ZH o WW^*)}$

events

FCCAnalyses: FCC-ee Simulation (Delphes) VVH. HZZ ww Vs = 240.0 GeV ZZ $L = 5 ab^{-1}$ H->TT $ZH \rightarrow ZZZ \rightarrow u^{\dagger}u^{\dagger}/e^{\dagger}e^{\dagger}$ H→WW BDT 6 classes H→bb H→gg 10² H→other Signal 10 -1 10-1 -2 10 4 6 12

Optimal variable

Degradation of precision on F_H (while degrading neutral hadrons energy resolution)

11/12

Conclusion & take-away

Extensive Higgs physics program at the FCC-ee

- → Unprecedented precision can be achieved for most accessible quantities (mass, width, couplings, ...)
 - Based on most up to date accelerator design & expected Luminosities

Excellent playground to understand detector requirement

- → Tackled as part of the ongoing FCC feasibility studies
 - Overall limited impact from detector designs seen so far on measurements
 - BUT still a lot uncovered / to understand

The effort is still young

- → Most results are (very) preliminary
 - Most analyses can likely be significantly improved
 - And many just started, or are just at the "concept" stage at this point
- \rightarrow But we're getting a clearer picture of what can be achieved by the day

Parameter	FCC-ee CDR	FCCee today
H→WW	1 %	2.0 %
H→ZZ	3.6 %	4.6 %
H→gg	1.6 %	0.94 %
Н→үү	7.5 %	3.5 %
H→cc	1.8 %	1.92 %
H→bb	0.25 %	0.22 %
H→µµ	15.8 %	19.5 %
$H \rightarrow \tau \tau$	0.75 %	0.9%
H→Zγ		
H→ss	_	124 %
Invisible	< 0.25 %	< 0.18 %
т _н	5 MeV	4 MeV
Г _н	1 %	4%
κ_{λ}	42 %	30%