

MULTI-HIGGS IN THE BSM: IMPLICATIONS IN EWPT AND COLLIDERS

Wrishik Naskar

(based on L. Biermann, C. Borschensky, C. Englert, M. Mühlleitner, WN 2408.08043)

25th Sept. 2024 – **Higgs Hunting 2024**

IJC Lab, Orsay, and APC, Paris

(ATLAS 2023; CMS 2023)

(ATLAS 2023; CMS 2023)

 hhh is gaining more focus, crucial for future collider strategies.

(Papaefstathiou et al. 2016; Fuks et al. 2016; Chen et al. 2016; Robens et al. 2020; Papaefstathiou et al. 2019; Papaefstathiou et al. 2021; Florian et al. 2020; Papaefstathiou and Tetlalmatzi-Xolocotzi 2023; Stylianou et al. 2023; Delgado et al. 2023; Anisha et al. 2024; Brigljevic et al. 2024; Karkout et al. 2024)

(ATLAS 2023; CMS 2023)

 hhh is gaining more focus, crucial for future collider strategies.

(Papaefstathiou et al. 2016; Fuks et al. 2016; Chen et al. 2016; Robens et al. 2020) ...

• We analysed **multi-Higgs production** related to **strong first-order EWPT** for BSM scalar extensions.

(ATLAS 2023; CMS 2023)

 hhh is gaining more focus, crucial for future collider strategies.

(Papaefstathiou et al. 2016; Fuks et al. 2016; Chen et al. 2016; Robens et al. 2020) ...

- We analysed **multi-Higgs production** related to **strong first-order EWPT** for BSM scalar extensions.
- Compared **hh** vs **hhh**: collider implications for scalar extensions.

• SM cross-section for hhh (LO)

 $\left| \sigma_{hhh}^{ggF} = \mathcal{O}(50 \text{ ab}) \right| \sim 4 \text{ (10) events} \text{ (HL-LHC)}$

• SM cross-section for hhh (LO)

$$\sigma_{hhh}^{ggF} = \mathcal{O}(50 \text{ ab}) \sim 4 \text{ (10) events} \text{ (HL-LHC)}$$

(Florian et al. 2020)

THE MORE, THE MERRIER?

· SMEFT vs HEFT.

(Delgado et al. 2023; Anisha et al. 2024)

THE MORE, THE MERRIER?

· SMEFT vs HEFT.

(Delgado et al. 2023; Anisha et al. 2024)

· **hhh** \Rightarrow Higgs potential \Rightarrow EW vacuum structure \Rightarrow EWPTs, baryogenesis, stability of the universe, etc.

(Papaefstathiou and Tetlalmatzi-Xolocotzi 2023; Stylianou et al. 2023; Karkout et al. 2024)

THE MORE, THE MERRIER?

· SMEFT vs HEFT.

(Delgado et al. 2023; Anisha et al. 2024)

· **hhh** \Rightarrow Higgs potential \Rightarrow EW vacuum structure \Rightarrow EWPTs, baryogenesis, stability of the universe, etc.

(Papaefstathiou and Tetlalmatzi-Xolocotzi 2023; Stylianou et al. 2023; Karkout et al. 2024)

• Enhancements $\sim O(100)$ events at HL-LHC, can be relevant at FCC-*hh*.

(Papaefstathiou et al. 2019; Papaefstathiou et al. 2021; Papaefstathiou et al. 2016; Fuks et al. 2016)

THE SCALAR EXTENSIONS

$$\begin{split} V_{\text{2HDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 \\ &+ \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \end{split}$$

R2HDM : $m_{11}^2, m_{22}^2, m_{12}^2, \lambda_{1,...,4}, \lambda_5 \in \mathbb{R}$ (CP-Conserving)**C2HDM** : $m_{11}^2, m_{22}^2, \lambda_{1,...,4} \in \mathbb{R}, \ m_{12}^2, \lambda_5 \in \mathbb{C}$ (CP-Violating)

THE SCALAR EXTENSIONS

$$\begin{split} V_{\text{2HDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 \\ &+ \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \end{split}$$

R2HDM : $m_{11}^2, m_{22}^2, m_{12}^2, \lambda_{1,...,4}, \lambda_5 \in \mathbb{R}$ (CP-Conserving)**C2HDM** : $m_{11}^2, m_{22}^2, \lambda_{1,...,4} \in \mathbb{R}, \ m_{12}^2, \lambda_5 \in \mathbb{C}$ (CP-Violating)

Next-to-Minimal 2HDM (**N2HDM**): R2HDM + $\Phi_S \leftarrow$ Singlet

$$V_{\text{N2HDM}} = V_{\text{R2HDM}} + \frac{1}{2}m_{\text{S}}^2\Phi_{\text{S}}^2 + \frac{\lambda_6}{8}\Phi_{\text{S}}^4 + \frac{\lambda_7}{2}\left(\Phi_1^{\dagger}\Phi_1\right)\Phi_{\text{S}}^2 + \frac{\lambda_8}{2}\left(\Phi_2^{\dagger}\Phi_2\right)\Phi_{\text{S}}^2$$

THE SCALAR EXTENSIONS

$$\begin{split} V_{2\text{HDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 \\ &+ \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \\ V_{\text{N2HDM}} &= V_{\text{R2HDM}} + \frac{1}{2} m_{\text{S}}^2 \Phi_{\text{S}}^2 + \frac{\lambda_6}{8} \Phi_{\text{S}}^4 + \frac{\lambda_7}{2} \left(\Phi_1^{\dagger} \Phi_1 \right) \Phi_{\text{S}}^2 + \frac{\lambda_8}{2} \left(\Phi_2^{\dagger} \Phi_2 \right) \Phi_{\text{S}}^2 \end{split}$$

• **R2HDM**: 2 Physical Mass Eigenstates (*h*, *H*)

 $m_h pprox$ 125 GeV $< m_H$

• C2HDM and N2HDM: 3 Physical Mass Eigenstates (H₁, H₂, H₃).

 $m_{H_1} \cong m_h pprox$ 125 GeV $< m_{H_2} < m_{H_3}$

METHODOLOGY

• ScannerS, HiggsTools: Vary exotic Higgs masses, mixing angles; apply theoretical & experimental constraints.

(Mühlleitner et al. 2022; Bechtle, Dercks, et al. 2020; Bechtle, Heinemeyer, et al. 2021; Bahl et al. 2023)

METHODOLOGY

• ScannerS, HiggsTools: Vary exotic Higgs masses, mixing angles; apply theoretical & experimental constraints.

(Mühlleitner et al. 2022; Bechtle, Dercks, et al. 2020; Bechtle, Heinemeyer, et al. 2021; Bahl et al. 2023)

BSMPT: Finite temperature potential:

$$V_{\text{eff}}(T) = V_0(T = 0) + V_{\text{CW}}(T = 0) + V_{\text{CT}}(T = 0) + V_T(T) + V_{\text{daisy}}(T)$$

(Basler, Biermann, et al. 2024; Basler, Mühlleitner, and Müller 2021; Basler and Mühlleitner 2019)

Focus on strong first-order phase transitions: $\xi_p = \frac{v_p}{T_p} > 1$.

METHODOLOGY

• ScannerS, HiggsTools: Vary exotic Higgs masses, mixing angles; apply theoretical & experimental constraints.

(Mühlleitner et al. 2022; Bechtle, Dercks, et al. 2020; Bechtle, Heinemeyer, et al. 2021; Bahl et al. 2023)

• **BSMPT**: Finite temperature potential:

$$V_{\text{eff}}(T) = V_0(T = 0) + V_{\text{CW}}(T = 0) + V_{\text{CT}}(T = 0) + V_T(T) + V_{\text{daisy}}(T)$$

(Basler, Biermann, et al. 2024; Basler, Mühlleitner, and Müller 2021; Basler and Mühlleitner 2019)

- Focus on strong first-order phase transitions: $\xi_p = \frac{v_p}{T_0} > 1$.
- FeynRules ⇒ Ufo ⇒ MadGraph_aMC@NLO: Implement the models, generate hh(h) cross-sections.

(Alloul et al. 2014; Degrande et al. 2012; Darmé et al. 2023; Alwall et al. 2014)

R2HDM AT THE LHC AND FCC-hh

- hhh more enhanced compared to hh!
- · Enhancements generalise to FCC-hh!

ENHANCING hh/hhh (R2HDM)

Resonant contributions to hh

ENHANCING hh/hhh (R2HDM)

Resonant contributions to hhh

ENHANCEMENTS

BPs	$\sigma_{hh}/\sigma_{hh}^{ m SM}$	$\sigma_{hhh}/\sigma_{hhh}^{ m SM}$	M _H [GeV]	Г _Н [GeV]
Enhanced	3.24	15.26	274.29	0.20
SM-like	1.02	1.02	469.30	2.49

BPs	g _{hhh} [GeV]	g _{hhH} [GeV]	g _{hhhh}	g _{hhhH}
Enhanced	167.26	75.28	0.661	0.203
SM-like	190.54	-7.11	0.774	-0.011

MASS SPECTRA OF R2HDM

EWPTs driven by the physics of light dofs

⇒ Stronger phase transitions proceed via lighter spectra!

R2HDM ($\xi_p \ge 1$)

Neutral Higgs rates alone **not** indicative of the strength of EWPTs.

ENHANCING hh/hhh (3 DOFS)

Resonant contributions to hh

ENHANCING hh/hhh (3 DOFS)

Resonant contributions to hhh

R2HDM + C2HDM

- Additional dof \Rightarrow hhh more enhanced.
- Stringent EDMs \Rightarrow Minimal CP admixture (\lesssim 10%), thus no dramatic changes.

N2HDM

- The additional dof enhances hhh, like C2HDM.
- Enhancements ~ 10 25 in hhh, within HL-LHC hh sensitivity; can be accessible in FCC-hh!

 hhh-production enhanced over the SM cross-section for extended scalar sectors.

- hhh-production enhanced over the SM cross-section for extended scalar sectors.
- Enhancements driven by $H \rightarrow hh$, $H \rightarrow hhh$, additional dofs, largest increases resulting from their combination.

- hhh-production enhanced over the SM cross-section for extended scalar sectors.
- Enhancements driven by $H \rightarrow hh$, $H \rightarrow hhh$, additional dofs, largest increases resulting from their combination.
- The lightness of the exotics affects EWPT, multi-Higgs production rates.

- hhh-production enhanced over the SM cross-section for extended scalar sectors.
- Enhancements driven by $H \rightarrow hh$, $H \rightarrow hhh$, additional dofs, largest increases resulting from their combination.
- The lightness of the exotics affects EWPT, multi-Higgs production rates.
- hhh sensitivity at HL-LHC is challenging, but still motivated!

- hhh-production enhanced over the SM cross-section for extended scalar sectors.
- Enhancements driven by $H \rightarrow hh$, $H \rightarrow hhh$, additional dofs, largest increases resulting from their combination.
- The lightness of the exotics affects EWPT, multi-Higgs production rates.
- hhh sensitivity at HL-LHC is challenging, but still motivated!

Thank you!