Search for a light CP-odd Higgs boson decaying into a pair of $\tau\text{-leptons}$ in the full ATLAS Run 2 dataset

Manuel Gutsche on behalf of the ATLAS Collaboration Institute of Nuclear and Particle Physics, TU Dresden

> Higgs Hunting 2024 Paris, September 24, 2024

Motivation ●	Processes	Selection criteria and regions	Results 0000	Summary O	References

Motivation

- Model independent search: extend search for new Higgs bosons to low masses in unexplored phase space
- Model dependent search: deviation in anomalous magnetic moment of the muon a_{μ} between experiment and SM prediction [1–7]
- Flavour-aligned two-Higgs-doublet model
 - \Rightarrow One SM-like Higgs boson *h* and additional Higgs bosons H[±], H, A
 - \Rightarrow A CP-odd and could have $m_A < m_h$
- Free parameters such as masses and couplings ζ :
 - $\Rightarrow\,$ Experimentally constrained: Up-type quarks: $\zeta_{\rm u}<$ 0.5, Down-type quarks: $\zeta_{\rm d}<{\cal O}(1)$
 - \Rightarrow Deviation explained for large lepton couplings $\zeta_\ell pprox$ 50 & light A [8]
 - \Rightarrow This search: mass hypotheses m_A between 20 GeV and 90 GeV

Motivation O	Processes ●○	Selection criteria and regions	Results 0000	Summary O	References

Signal process

- Production of A via gluon fusion and top quark loop
- Cross-sections calculated via <u>ggHiggs</u> [9–20]
- Decay 100 % to $\tau\text{-lepton pairs}$
- Limited to leptonic channels because of trigger thresholds
 - \Rightarrow Mainly boosted topology
- Restriction to electron-muon final state to reject $Z o e^+ e^-$, $Z o \mu^+ \mu^-$ events

und Forschung

FSP

Motivation O	Processes ○●	Selection criteria and regions	Results 0000	Summary O	References

Background processes

- Largest background is $Z/\gamma^* + \mathrm{jets} \rightarrow \tau^+ \tau^-$
- Fake lepton background:
 - \Rightarrow Particles reconstructed as prompt leptons, but are e.g. misidentified jets
 - \Rightarrow Not well modeled by Monte Carlo
 - \Rightarrow Estimated via data-driven matrix method [21]
- Other MC backgrounds

OF DEPENDING NOT

und Forschung

FSP Erforschung von Universum und Materie

4/22

Motivation O	Processes	Selection criteria and regions ●000000000000	Results 0000	Summary ⊙	References

Selection criteria

- One electron and one muon, opposite charge
- Medium ID and Tight isolation
- Electron: $p_{T}^{e} > 7 \text{ GeV}, |\eta_{e}| < 2.47, |\eta_{e}| \notin (1.37, 1.52)$ muon: $p_{T}^{\mu} > 7 \text{ GeV}, |\eta_{\mu}| < 2.7$
- Overlap removal prioritizing muons over electrons over jets

Three electron-muon triggers

FSP Erforschung von Universum und Materie OFFERENT VOM

für Bildung und Forschung

Burdaaministerine

Motivation O	Processes	Selection criteria and regions ⊙●○○○○○○○○○○	Results 0000	Summary O	References

Selection cuts defining regions

$$\begin{split} ^{a}m_{\mathrm{T}}^{\mathrm{tot}} &= \sqrt{\left(p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left(\vec{p}_{\mathrm{T}}^{e} + \vec{p}_{\mathrm{T}}^{\mu} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}} \\ ^{b}\Delta R_{\ell\ell} &= \sqrt{(\Delta \Phi_{\ell\ell})^{2} + (\Delta \eta_{\ell\ell})^{2}} \end{split}$$

FSP Erforschung von Universum und Materie

- High missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$
 - \Rightarrow Expecting neutrinos
- Low transverse mass a $m_{\mathrm{T}}^{\mathrm{tot}}$
 - \Rightarrow Diboson & top suppression
- Low angular separation^b $\Delta R_{\ell\ell}$
 - $\Rightarrow \text{ Decay topology of } \\ \text{CP-odd } A \text{ boson}$
- No *b*-tagged jets
 - \Rightarrow Top suppression

 $\Rightarrow m_{\rm MMC}$ is Higgs mass reconstructed via Missing Mass Calculator, which estimates neutrino kinematics with likelihood approach

- Separated from SR by requiring large $\Delta R_{\ell\ell}$
- Validate $Z
 ightarrow au^+ au^-$ background modeling
- Reweight $Z \rightarrow \tau^+ \tau^-$ MC in dependence on $n_{\rm jets}$ within systematic uncertainties
- Used as control region for fit

FSP Erforschung von Universum und Materie OFFERENT VOM

für Bildung und Forschung

Burdeaministeriu

Motivation O	Processes	Selection criteria and regions 0000●00000000	Results 0000	Summary O	References

- Separated from SR by requiring large $\Delta R_{\ell\ell}$
- Validate $Z
 ightarrow au^+ au^-$ background modeling
- Reweight $Z \rightarrow \tau^+ \tau^-$ MC in dependence on $n_{\rm jets}$ within systematic uncertainties
- Used as control region for fit

FSP Erforschung von Universum und Materie OFFERENT VOM

für Bildung und Forschung

Bundesministeriu

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

- Separated from SR by requiring large $\Delta R_{\ell\ell}$
- Validate $Z
 ightarrow au^+ au^-$ background modeling
- Reweight $Z \rightarrow \tau^+ \tau^-$ MC in dependence on $n_{\rm jets}$ within systematic uncertainties
- Used as control region for fit

FSP Erforschung von Universum und Materie OFFERENT VOT

für Bildung und Forschung

Motivation	Processes	Selection criteria and regions	Results	Summary	References
O	00	000000●000000	0000	O	

- Separated from SR by requiring large $\Delta R_{\ell\ell}$
- Validate $Z
 ightarrow au^+ au^-$ background modeling
- Reweight $Z \rightarrow \tau^+ \tau^-$ MC in dependence on $n_{\rm jets}$ within systematic uncertainties
- Used as control region for fit

FSP Erforschung von Universum und Materie OFFERENT VOT

für Bildung und Forschung

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

Fake validation region

- Same cuts as Z
 ightarrow au au CR, except $q_e imes q_\mu = 1$
- Estimate fake lepton background via data-driven matrix method
- Validate fake lepton background modeling

FSP Erforschung von Universum und Materie OFFERENT VOM

Motivation O	Processes	Selection criteria and regions 00000000●0000	Results 0000	Summary O	References

Fake validation region

- Same cuts as Z
 ightarrow au au CR, except $q_e imes q_\mu = 1$
- Estimate fake lepton background via data-driven matrix method
- Validate fake lepton background modeling

FSP Erforschung von Universum und Materie OFFERENT VOM

Motivation O	Processes	Selection criteria and regions 000000000●000	Results 0000	Summary O	References

Top control region

- Separated from SR by requiring at least 2 *b*-jets
- Validate top background modeling
- Used as control region for fit

FSP Erforschung von Universum und Materie OFFERENT VOM

für Bildung und Forschung

Burdeaministeriu

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

Top control region

- Separated from SR by requiring at least 2 b-jets
- Validate top background modeling
- Used as control region for fit

FSP Erforschung von Universum und Materie

OFFERENT VOM

Motivation O	Processes	Selection criteria and regions 0000000000000	Results 0000	Summary O	References

Systematics

- Experimental systematics on efficiencies, detector calibration, missing transverse momentum, pileup reweighting, luminosity
- Uncertainties of MC samples
 - \Rightarrow Cross-section uncertainties
 - $\Rightarrow\,$ Generator uncertainties for $Z \rightarrow \tau^+ \tau^-$, Top, Diboson, Signal
- Uncertainties of fake background modeling
 - \Rightarrow Statistical uncertainty of efficiencies, parametrizations, composition
- Uncertainties of $Z \rightarrow \tau^+ \tau^-$ reweighting

Motivation O	Processes	Selection criteria and regions 00000000000●	Results 0000	Summary O	References

Systematic uncertainties on signal strength

$m_A=20{ m GeV}$		$m_A=90~{ m GeV}$	
Category	Relative	Category	Relative
	contrib. to $\Delta \mu$		contrib. to $\Delta \mu$
Data statistical	42%	Data statistical	10%
Systematic	91%	Systematic	99%
Background statistical	81%	Background statistical	67%
$Z o au^+ au^-$ statistical	75%	$Z ightarrow au^+ au^-$ statistical	48%
Fake lepton statistical	30%	Fake lepton statistical	47%
Other background statistical	7%	Other background statistical	8%
Fake lepton systematic	37%	$Z ightarrow au^+ au^-$ reweighting	55%
Signal modeling	11%	Signal statistical	51%
$Z ightarrow au^+ au^-$ modeling	10%	Fake lepton systematic	47%
Muon efficiencies	8%	$Z \rightarrow \tau^+ \tau^-$ modeling	45%
Diboson modeling	8%	$Z ightarrow au^+ au^-$ and $t \overline{t}$ normalization	34%
Flavor tagging	5%	$t\bar{t}$ modeling	14%
Signal statistical	5%	Flavor tagging	14%

OF DESIGN YOM

Bundesministerium für Bildung

und Forschung

FSP Erforschung von Universum und Materie

Motivation O	Processes	Selection criteria and regions	Results ●000	Summary O	References

Results

- No significant deviation of the data from SM background expectation observed
- Determine upper limit on $\sigma(gg \rightarrow A) \times B(A \rightarrow \tau^+ \tau^-)$
- Binned likelihood fit of $m_{\rm MMC}$ distribution for each mass hypothesis
- Asymptotic CLs method

FSP Erforschung von Universum und Materie OFFERENT VOM

Motivation O	Processes 00	Selection criteria and regions	Results 0●00	Summary O	References
Doculto					

Results

- No significant deviation of the data from SM background expectation observed
- Determine upper limit on $\sigma(gg \rightarrow A) \times B(A \rightarrow \tau^+ \tau^-)$
- Binned likelihood fit of $m_{\rm MMC}$ distribution for each mass hypothesis
- Asymptotic CLs method

FSP Erforschung von Universum und Materie

Motivation O	Processes	Selection criteria and regions	Results 00●0	Summary O	References

Expected and observed exclusion limits

- Limit set on $\sigma(gg
 ightarrow A) imes B(A
 ightarrow au^+ au^-)$
- Transition from low-mass SR to high-mass SR at $m_A = 75 \text{ GeV}$
- Mass range between $20\,{\rm GeV}$ and $60\,{\rm GeV}$ explored for the first time for this production and decay mode

Motivation O	Processes 00	Selection criteria and regions	Results 000●	Summary O	References

Expected and observed exclusion limits

- Limit set on $|\zeta_{\rm u}|$
- Transition from low-mass SR to high-mass SR at $m_A = 75 \text{ GeV}$
- This search improves on current upper limit of $|\zeta_{\rm u}| < 0.5$ [8] over the full mass range

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary ●	References

Summary

- Low-mass $A \rightarrow \tau^+ \tau^-$ search in $e \mu$ channel
- No significant excess
 - \Rightarrow largest deviation from SM prediction at 20 ${\rm GeV}$ with 1.8 σ
- Exclusion limits set for gluon-fusion production of A boson with decay to τ⁺τ⁻:
 - \Rightarrow First limits for 20 GeV $\leq m_A <$ 60 GeV
 - \Rightarrow 3.0 m pb to 67.5 m pb for $\sigma(gg o A) imes B(A o au^+ au^-)$
 - \Rightarrow 0.074 to 0.47 for $|\zeta_{
 m u}|$

\Rightarrow Future reference

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

References I

- T. Aoyama et al., The anomalous magnetic moment of the muon in the standard model, Physics Reports 887 2020 1 1, 2020, The anomalous magnetic moment of the muon in the Standard Model. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157320302556 (cit. on p. 2).
- Muon g 2 Collaboration, B. Abi, et al., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 14 2021 141801 141801, 14 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.126.141801 (cit. on p. 2).
- [3] Muon g 2 Collaboration, D. P. Aguillard, et al., Measurement of the positive muon anomalous magnetic moment to 0.20 ppm, Phys. Rev. Lett. 131 16 2023 161802 161802, 16 2023.
 [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.131.161802 (cit. on p. 2).
- G. Colangelo et al., Prospects for precise predictions of a_μ in the Standard Model, 2022, 2022. arXiv: 2203.15810 [hep-ph] (cit. on p. 2).

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

References II

 S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 2021 51 51, 2021. [Online]. Available: https://doi.org/10.1038%2Fs41586-021-03418-1 (cit. on p. 2).

[6] A. Boccaletti *et al.*,

High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, 2024, 2024. arXiv: 2407.10913 [hep-lat]. [Online]. Available: https://arxiv.org/abs/2407.10913 (cit. on p. 2).

- [7] CMD-3 Collaboration, F. V. Ignatov, et al., Measurement of the e⁺e⁻ → π⁺π⁻ cross section from threshold to 1.2 gev with the cmd-3 detector, Phys. Rev. D 109 11 2024 112002 112002, 11 2024. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.109.112002 (cit. on p. 2).
- [8] A. Cherchiglia, D. Stöckinger, and H. Stöckinger-Kim, *Muon g - 2 in the 2hdm: Maximum results and detailed phenomenology*, Phys. Rev. D 98 3 2018 035001 035001, 3 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.98.035001 (cit. on pp. 2, 21).

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

References III

- R. D. Ball, M. Bonvini, S. Forte, S. Marzani, and G. Ridolfi, *Higgs production in gluon fusion beyond nnlo*, Nuclear Physics B 874 2013 746 746, 2013, ISSN: 0550-3213. [Online]. Available: http://dx.doi.org/10.1016/j.nuclphysb.2013.06.012 (cit. on p. 3).
- M. Bonvini, R. D. Ball, S. Forte, S. Marzani, and G. Ridolfi, *Updated higgs cross section at approximate n3lo*, Journal of Physics G: Nuclear and Particle Physics 41 2014 095002 095002, 2014, ISSN: 1361-6471. [Online]. Available: http://dx.doi.org/10.1088/0954-3899/41/9/095002 (cit. on p. 3).
- M. Bonvini, S. Marzani, C. Muselli, and L. Rottoli, On the higgs cross section at n3lo+n3ll and its uncertainty, Journal of High Energy Physics 2016 2016, 2016, ISSN: 1029-8479. [Online]. Available: http://dx.doi.org/10.1007/JHEP08(2016)105 (cit. on p. 3).
- T. Ahmed et al., Pseudo-scalar higgs boson production at n³lo_A + n³ll', The European Physical Journal C 76 2016, 2016, ISSN: 1434-6052.
 [Online]. Available: http://dx.doi.org/10.1140/epjc/s10052-016-4510-1 (cit. on p. 3).

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary O	References

References IV

- M. Bonvini and S. Marzani, Double resummation for higgs production, Physical Review Letters 120 2018, 2018, ISSN: 1079-7114.
 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.120.202003 (cit. on p. 3).
- [14] M. Bonvini, An approximate n3lo cross section for higgs production in gluon fusion, EPJ Web of Conferences 60 2013 12008, M. Bosman, A. Juste, M. Martínez, I. Riu, and V. Sorin, Eds. 12008, 2013, ISSN: 2100-014X. [Online]. Available: http://dx.doi.org/10.1051/epjconf/20136012008 (cit. on p. 3).
- [15] R. V. Harlander and W. B. Kilgore, Next-to-next-to-leading order higgs production at hadron colliders, Physical Review Letters 88 2002, 2002, ISSN: 1079-7114.
 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.88.201801 (cit. on p. 3).
- [16] R. V. Harlander and K. J. Ozeren, Finite top mass effects for hadronic higgs production at next-to-next-to-leading order, Journal of High Energy Physics 2009 2009 088 088, 2009, ISSN: 1029-8479. [Online]. Available: http://dx.doi.org/10.1088/1126-6708/2009/11/088 (cit. on p. 3).

Motivation O	Processes	Selection criteria and regions	Results 0000	Summary ⊙	References

References V

- [17] R. V. Harlander, H. Mantler, S. Marzani, and K. J. Ozeren, *Higgs production in gluon fusion at next-to-next-to-leading order qcd for finite top mass*, The European Physical Journal C 66 2010 359 359, 2010, ISSN: 1434-6052. [Online]. Available: http://dx.doi.org/10.1140/epjc/s10052-010-1258-x (cit. on p. 3).
- [18] C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in n3lo qcd, 2014, 2014. arXiv: 1411.3584 [hep-ph]. [Online]. Available: https://arxiv.org/abs/1411.3584 (cit. on p. 3).
- [19] C. Anastasiou et al.,
 - High precision determination of the gluon fusion higgs boson cross-section at the lhc, 2016, 2016. arXiv: 1602.00695 [hep-ph]. [Online]. Available: https://arxiv.org/abs/1602.00695 (cit. on p. 3).
- B. Mistlberger, Higgs boson production at hadron colliders at n3lo in qcd, Journal of High Energy Physics 2018 2018, 2018, ISSN: 1029-8479.
 [Online]. Available: http://dx.doi.org/10.1007/JHEP05(2018)028 (cit. on p. 3).

Motivation O	Processes	Selection criteria and regions 0000000000000	Results 0000	Summary O	References

References VI

[21] ATLAS Collaboration, Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton-proton collisions at √s = 8 TeV with the ATLAS Detector, ATLAS-CONF-2014-058, 2014. [Online]. Available: https://cds.cern.ch/record/1951336 (cit. on p. 4).

Selection criteria	Observed p ₀ value	Matrix method	Additional distributions	Event yields
O	O	000000		0

BACKUP

FSP Erforschung von Universum und Materie OFFERENT VOM Bundesministerium für Bildung und Forschung

29/22

Selection criteria ●	Observed p ₀ value O	Matrix method 000000	Additional distributions	Event yields O

Selection criteria

		SR		Top CR	$Z \rightarrow \tau \tau \ CR$	Fake VR
		Low-mass	High-mass			
		20 to 75 ${ m GeV}$	75 to 90 ${ m GeV}$			
$\mathit{E}_{\mathrm{T}}^{\mathrm{miss}}$ cut	${\it E}_{ m T}^{ m miss}$	$> 50{ m GeV}$	$> 30{ m GeV}$	$> 30{ m GeV}$	_	_
Mass cut ¹	$m_{ m T}^{ m tot}$	$< 45{ m GeV}$	$< 65{ m GeV}$	$< 65{ m GeV}$	$< 65{ m GeV}$	$< 65{ m GeV}$
Angular cut ²	$\Delta R_{\prime\prime}$	< 0.7	< 1.0	< 1.0	> 1.4	> 1.4
MMC cut	$m_{ m MMC}$	$> 0 { m GeV}$	$> 35{ m GeV}$ &	$> 0{ m GeV}$	$> 0 { m GeV}$ &	$> 0 { m GeV}$ &
			$< 130{\rm GeV}$		$< 130{ m GeV}$	$< 130{ m GeV}$
b-tag	$n_{b-\mathrm{jets}}$	0	0	> 1	0	0
Charge cut	$q_e imes q_\mu$	-1	-1	-1	-1	1

$$\mathbf{1}_{m_{\mathrm{T}}^{\mathrm{tot}}} = \sqrt{\left(p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left(\vec{p}_{\mathrm{T}}^{e} + \vec{p}_{\mathrm{T}}^{\mu} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}}, \ \mathbf{2}\Delta R = \sqrt{(\Delta \Phi)^{2} + (\Delta \eta)^{2}}$$

OF DESIGN YOM

Selection criteria	Observed p ₀ value	Matrix method	Additional distributions	Event yields
O	●	000000	000	0

Observed p_0 value

OFFERENT VOM

und Forschung

FSP Erforschun von Universur und Materie

Selection criteria	Observed p ₀ value	Matrix method	Additional distributions	Event yields
O	O	●00000		O

Matrix method in the low-mass $A \rightarrow \tau^+ \tau^-$ search

for 1 electron (1^{st} index) and 1 muon (2^{nd} index):

$$\begin{pmatrix} N_{\rm XX}^{\rm TT} \\ N_{\rm XX}^{\rm TT} \end{pmatrix} = \begin{pmatrix} \varepsilon_{\rm real}^e \varepsilon_{\rm real}^\mu & \varepsilon_{\rm real}^e \varepsilon_{\rm fake}^\mu & \varepsilon_{\rm fake}^e \varepsilon_{\rm real}^\mu & \varepsilon_{\rm fake}^e \varepsilon_{\rm fake}^\mu \\ \varepsilon_{\rm real}^e \overline{\varepsilon}_{\rm real}^\mu & \varepsilon_{\rm real}^e \overline{\varepsilon}_{\rm fake}^\mu & \varepsilon_{\rm fake}^e \overline{\varepsilon}_{\rm real}^\mu \\ \overline{\varepsilon}_{\rm real}^e \varepsilon_{\rm real}^\mu & \overline{\varepsilon}_{\rm real}^e \varepsilon_{\rm fake}^\mu & \overline{\varepsilon}_{\rm fake}^e \varepsilon_{\rm real}^\mu & \overline{\varepsilon}_{\rm fake}^e \varepsilon_{\rm fake}^\mu \\ \overline{\varepsilon}_{\rm real}^e \varepsilon_{\rm real}^\mu & \overline{\varepsilon}_{\rm real}^e \overline{\varepsilon}_{\rm fake}^\mu & \overline{\varepsilon}_{\rm fake}^e \varepsilon_{\rm real}^\mu & \overline{\varepsilon}_{\rm fake}^e \varepsilon_{\rm fake}^\mu \\ \overline{\varepsilon}_{\rm real}^e \overline{\varepsilon}_{\rm real}^\mu & \overline{\varepsilon}_{\rm real}^e \overline{\varepsilon}_{\rm fake}^\mu & \overline{\varepsilon}_{\rm fake}^e \overline{\varepsilon}_{\rm real}^\mu & \overline{\varepsilon}_{\rm fake}^e \overline{\varepsilon}_{\rm fake}^\mu \\ \end{array} \right) \cdot \begin{pmatrix} N_{\rm RF}^{\rm LL} \\ N_{\rm FF}^{\rm LL} \\ N_{\rm FF}^{\rm LL} \end{pmatrix}$$

 \rightarrow Inverting matrix gives 3 fake backgrounds:

INSTITUTE OF

ARTICLE PHYSICS

ECHNISCHE

$$\begin{split} N_{\rm RF,\,est}^{\rm TT} &= \frac{\varepsilon_{\rm real}^{\rm e}\varepsilon_{\rm fake}^{\mu}}{(\varepsilon_{\rm real}^{\rm e} - \varepsilon_{\rm fake}^{\rm e})(\varepsilon_{\rm real}^{\mu} - \varepsilon_{\rm fake}^{\mu})} \left[-\bar{\varepsilon}_{\rm fake}^{\rm e}\bar{\varepsilon}_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} + \bar{\varepsilon}_{\rm fake}^{\rm e}\varepsilon_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} + \varepsilon_{\rm fake}^{\rm e}\bar{\varepsilon}_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} - \varepsilon_{\rm fake}^{\rm e}\varepsilon_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} \right], \\ N_{\rm FR,\,est}^{\rm TT} &= \frac{\varepsilon_{\rm fake}^{\rm e}\varepsilon_{\rm real}^{\mu} - \varepsilon_{\rm fake}^{\mu}}{(\varepsilon_{\rm real}^{\rm e} - \varepsilon_{\rm fake}^{\rm e})(\varepsilon_{\rm real}^{\mu} - \varepsilon_{\rm fake}^{\mu})} \left[-\bar{\varepsilon}_{\rm real}^{\rm e}\bar{\varepsilon}_{\rm fake}^{\mu} N_{\rm XX}^{\rm TT} + \bar{\varepsilon}_{\rm real}^{\rm e}\varepsilon_{\rm fake}^{\mu} N_{\rm XX}^{\rm TT} + \varepsilon_{\rm real}^{\rm e}\bar{\varepsilon}_{\rm fake}^{\mu} N_{\rm XX}^{\rm TT} - \varepsilon_{\rm real}^{\rm e}\varepsilon_{\rm fake}^{\mu} N_{\rm XX}^{\rm TT} \right], \\ N_{\rm FF,\,est}^{\rm TT} &= \frac{\varepsilon_{\rm fake}^{\rm e}\varepsilon_{\rm fake}^{\mu}(\varepsilon_{\rm real}^{\mu} - \varepsilon_{\rm fake}^{\mu})}{(\varepsilon_{\rm real}^{\rm e} - \varepsilon_{\rm fake}^{\rm e})(\varepsilon_{\rm real}^{\mu} - \varepsilon_{\rm fake}^{\mu})} \left[+\bar{\varepsilon}_{\rm real}^{\rm e}\bar{\varepsilon}_{\rm real}^{\rm real} N_{\rm XX}^{\rm TT} - \bar{\varepsilon}_{\rm real}^{\rm e}\varepsilon_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} + \varepsilon_{\rm real}^{\rm e}\varepsilon_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} + \varepsilon_{\rm real}^{\rm e}\varepsilon_{\rm real}^{\mu} N_{\rm XX}^{\rm TT} \right], \\ \end{array}$$

Bundesministerium für Bildung

• Can be converted to event weights via IFF Fake Bkg Tools

FSP

Selection criteria O	Observed p ₀ value O	Matrix method ○●○○○○	Additional distributions	Event yields O
Calculation c • Normall ⇒ IFF	of efficiencies y: measure assumingly in Fake Efficiency Tool	ndependent efficiency	$= \frac{\# tight \ leptons}{\# loose \ leptons}$ of each leptons	ton
• Here: p	arametrize one lepton's e	efficiencies in other lep	ton's tightness	

- \Rightarrow (Fake) leptons no longer assumed to be independent!
- Real efficiencies calculated in SR (and ZCR for non-tight) using MC only

$$\Rightarrow \varepsilon_{\rm real}^{e}(\mu) = \begin{cases} \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm TT}}, & \mu \text{ tight} \\ \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm TT}}, & \mu \text{ not tight} \end{cases} \qquad \varepsilon_{\rm real}^{\mu}(e) = \begin{cases} \frac{N_{\rm XR}^{\rm TT}}{N_{\rm XR}^{\rm TL}}, & e \text{ tight} \\ \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm TL}}, & \mu \text{ not tight} \end{cases}$$

• Fake efficiencies from FVR, using data, subtracting MC with real lepton

Calculation of efficiencies

- Same combined *e*-*µ*-triggers as in analysis
- Loose ID & Loose isolation vs. Medium ID & Tight isolation
- Efficiencies binned in $\ensuremath{p_{\mathrm{T}}}$ and tightness of other lepton
- Difference of up to 9% due to tightness parametrization

FSP Erforschung von Universum OFFERENT VOT

Calculation of efficiencies

- Same combined *e*-*µ*-triggers as in analysis
- Loose ID & Loose isolation vs. Medium ID & Tight isolation
- Efficiencies binned in $\ensuremath{p_{\mathrm{T}}}$ and tightness of other lepton
- Difference of up to 9% due to tightness parametrization

FSP Erforschung von Universum und Materie OFFERENT VOT

INSTITUTE OF

NUCLEAR AND

TECHNISCHE

IINIVERSITÄ

DRESDEN

OFFERENT VOM

und Materie

DRESDEN

38/22

$Z \rightarrow \tau \tau$ CR – prefit and postfit distribution

FSP Erforschung von Universum und Materie OFFERENT VOM

Bundesministerium für Bildung

Selection criteria	Observed p ₀ value	Matrix method	Additional distributions	Event yields
O	O	000000	○○●	O

Top CR – prefit and postfit distribution

FSP Erforschung von Universum und Materie

OFFERENT VOM

Selection criteria Observed p0 value Matrix method 0 0 000000		thod	Additional distributio	ns Event yields ●		
Ever	nt vields					
		ZCR	FVR	TCR	low-mass SR	high-mass SR
	Fakes	59680 ± 690	44850 ± 430	213 ± 50	316 ± 45	495 ± 55
		(18%)	(97%)	(3.5%)	(17%)	(9.0%)
	$Z/\gamma^* ightarrow au^+ au^-$	262700 ± 1800	82 ± 27	116.1 ± 4.0	1210 ± 36	3701 ± 46
		(79%)	(0.18%)	(1.9%)	(63%)	(67%)
	Diboson	4552 ± 26	747.3 ± 7.4	10.82 ± 0.50	139.1 ± 2.4	449.2 ± 4.4
		(1.4%)	(1.6%)	(0.18%)	(7.3%)	(8.2%)
	$Z/\gamma^* ightarrow \ell^+ \ell^-$	468 ± 71	354 ± 68	0.28 ± 0.12	4.0 ± 1.7	9.8 ± 3.3
		(0.14%)	(0.77%)	(< 0.1%)	(0.21%)	(0.18%)
	Тор	3327 ± 22	2.02 ± 0.51	5653 ± 28	162.9 ± 4.7	611.4 ± 9.3
		(1.0%)	(< 0.1%)	(94%)	(8.5%)	(11%)
	SM Higgs	1108.7 ± 2.6	3.63 ± 0.18	5.79 ± 0.23	76.86 ± 0.79	227.4 ± 1.3
		(0.33%)	(< 0.1%)	(0.097%)	(4.0%)	(4.1%)
	total Bkg	331800 ± 2000	46040 ± 440	5999 ± 57	1908 ± 58	5494 ± 73
	Data	331 797	44 587	6227	1987	6119

 \Rightarrow Values in brackets show relative contributions

INSTITUTE OF NUCLEAR AND PARTICLE PHYSICS

1

FSP Erforschung von Universum und Materie OF DESIGN YOM

Bundesministerium für Bildung und Ferschung

PERIMENT

