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Beyond the Standard Model

The Standard Model provides a framework for explaining 
much of the observed results @ expts.

Major Issues

Dark Matter  

 Massive Neutrinos 

Baryon asymmetry of the 
Universe (BAU) 

Origin of electroweak (EW) 
symmetry breaking and the 
type of EWPT

Search for BSM @ forefront 
of particle physics research



Higgs Triplet Models (HTMs)

 Data suggests   

 SM + doublets (e.g. 2HDM)  

 SM + triplets        

 Can explain EWBG, DM puzzle, neutrino oscillation 

Exciting phenomenological aspects in colliders: 
LHC, HL-LHC, ILC, Muon collider, FCC etc. 

Can be probed in cosmological observatories: LISA, 
DECIGO, PRIME, Roman Telescope etc. 

κV > 1

→ κV < 1

→ κV < 1, κV > 1

HTMs



HTM with Custodial Symmetry (CS)

, at tree levelρ =
m2

W

m2
ZCos2θW

= 1 Custodial Symmetry

3

LHC data on the Higgs signal strengths. Furthermore, we revisit the GM model [50] and assess its status given these
improved theoretical and updated experimental constraints. Similar global fits were previously performed on the GM
model with tree-level unitarity bounds in [22, 25].

The structure of this paper is as follows: The model is defined in Section II. Bounded from below conditions and
NLO unitarity constraints are discussed in Section III and Section IV, respectively. We explain our global fit set-up
in Section V and list all relevant constraints in Section VI. The results from the global fits are presented in Section
VII. We conclude in Section VIII. Explicit expressions of quartic couplings in terms of the physical Higgs masses are
given in Appendix A. Our results for the BFB conditions are provided in Appendices B and C, respectively, while
Appendix D contains the results for the one-loop scattering amplitudes. Finally, Appendix E includes the one-loop and
two-loop renormalization group equations (RGEs), and the supplementary figures are placed in Appendix F.

II. MODEL

We have extended scalar sector of the SM, augmented by a real triplet ⇠ with Y = 0, and a complex triplet � with
Y = 1. The most general SU(2)L ⌦ U(1)Y invariant scalar potential reads [55],
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where � = (�+
�

0)T is the SM Higgs doublet with Y = 1/2, ⇠ = (⇠+
⇠
0

� ⇠
+⇤)T , and � = (�++

�
+

�
0)T . The charge

conjugate of the complex triplet is defined as �̃ = (�0⇤
� �

+⇤
�

++⇤)T . Note that, ⌧a and ta are the 2-dimensional
and 3-dimensional representations of the SU(2) generators, respectively, written in the spherical basis, and in general
are not hermitian. All the model parameters are taken to be real to avoid explicit CP -violation.

After EWSB, we redefine neutral components of the fields as,
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where v� and v⇠ (v�) are the VEVs of the SM Higgs doublet and real (complex) triplet, respectively. In the physical
basis, the Goldstone bosons (G+

, G
0) show up in the longitudinal mode of massive W

+ and Z
0 gauge bosons,

and the following mass eigenstates emerge: three CP -even eigenstates (F 0
, H, h), one CP -odd eigenstate (A), two

singly-charged scalars (F+
, H

+), and one doubly-charged scalar (F++). The mixings among these states are given
below,
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The form of the rotation matrices Ri (i = ↵, �, �, 0, +) are as follows,

R↵(�) =

2

4
c↵(�) s↵(�) 0

�s↵(�) c↵(�) 0
0 0 1

3

5 , R� =

2

4
1 0 0
0 c� s�

0 �s� c�

3

5 , R0 =

2

6664

1 0 0

0 1p
3

q
2
3

0 �
q

2
3

1p
3

3

7775
, R+ =

2

64
1 0 0
0 1p

2
1p
2

0 � 1p
2

1p
2

3

75 ,

with tan � = 2
p

2v�/v� , where the notation c✓ and s✓ stand for cos ✓ and sin ✓ , respectively. The mass-squared
eigenvalues of the CP -even sector can be written as,
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From these forms, it is obvious that the potential of Eq. (33) is invariant under CS, which is
reflected in the mass degeneracy of H± and H0. Therefore, 2HDM, just like SM, is a CS-1
type model, provided there is a discrete symmetry �1 ! ��1 in the potential, and �4 = �5. If
�4 6= �5, or if more terms are admitted in the potential by sacrificing the discrete symmetry, the
model is of CS-2 type.

2.5 CS in Georgi-Machacek model

In the GM model [3], the scalar sector consists of a complex doublet � as in the SM, a real triplet
⇠ and a complex triplet � [10]. The electric charges of component scalar fields are as follows:

� =

✓
�+

�0

◆
, � =

0

@
�++

�+

�0

1

A , ⇠ =

0

@
⇠+

⇠0

�⇠�

1

A , (35)

with ⇠� = ⇠
⇤
+. Adopting the notation

h�0i = v, h�0i = u, h⇠0i = w, (36)

for the VEVs, one obtains

⇢ =
v
2 + 2 (u2 + w

2)

v2 + 4u2
. (37)

Thus, ⇢ = 1 in the GM model requires u = w.
In order to get into a discussion on CS in the scalar potential and scalar gauge interactions,

let us first identify the unphysical Goldstone fields. These are

h± = cos � �± +
1p
2
sin � (�± + ⇠±) , (38a)

h0 = cos � �
00
0 + sin � �

00
0 , (38b)
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v
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As explained earlier, these three fields must transform like a triplet of CS. There will also be
a triplet of physical Higgs bosons, given by [3]
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The doubly charged scalars will be part of a 5-plet [3]. In our notation, its components are

F±± = �±± , (41a)
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2
(�± � ⇠±) , (41b)
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Georgi Machacek Model

 In 1985, GM model was first proposed by Georgi and 
Machacek as a minimal HTM with  ρ = 1

 On the centre stage of BSM searches @collider 
and cosmological expts. 
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which also transforms like a triplet of SU(2), with the U(1) charge opposite to that of �. The
2-dimensional and 3-dimensional representations of the SU(2) generators are denoted by 1

2⌧a and
ta respectively. One may note that these generators are in the spherical basis, as discussed in
Appendix A, Eqs. (A.3), (A.7) and (A.8), and all of them are not hermitian. Their hermiticity
property is summarized in Eq. (A.9). A comparison with earlier notations, e.g. in Ref. [10],
has been presented in Appendix B. Other possible gauge-invariant combinations of four scalar
multiplets can be written as linear combinations of those appearing in Eq. (46).

This potential will be useful for us for subsequent discussion, but it does not guarantee
equal VEVs of � and ⇠ and therefore the W -mass terms are not degenerate. In order to have
a CS-invariant potential, Georgi and Machacek used a curtailed potential with 9 parameters,
obtained by putting 7 conditions on the parameters of Eq. (46). We divide these conditions into
two categories, for reasons to be explained in Section 3. In the first category, there are four
constraints:
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where � and X are two matrices defined as
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The parameters of Eq. (50) can easily be identified in terms of the parameters of Eq. (46) subject
to the conditions of Eqs. (48) and (49). Such correspondences have been shown in Appendix B.
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Extended Georgi Machacek (eGM) Model
 Minimal two triplet extension of SM with   gives rise to 
eGM model, not the conventional GM model. 

ρ = 1

SM with one real and 
one complex triplet

ρ = 1

eGM model

GM model

3 constraints  
F++, F+,
H+, F0, A,
H, h

[A. Kundu, P. B. Pal, PM, 2111.14195]

4 constraints

CS in kinetic terms only 
(CS2)

CS in scalar potential also 
(CS1)

In  sym 2HDM 
when  

2HDM holds CS2

Z2
λ4 ≠ λ5



GM model eGM model

• Scalar multiplets mass 
degenerate 

• Divergent contribution to  
parameter @ one-loop 

• Only  couples to fermions.

ρ

H+

• Scalar multiplets non mass 
degenerate                  

new decay modes open up                  

search for new physics @ 
colliders 

• All the counter-terms are 
present in the Lagrangian 

• Both  and couple to 
fermions  

 
 Much richer flavour physics  

phenomenology 

H+ F+

vs.



Theory Constraints on the parameter space

 Why theory bounds are important?  
         Ans: More statistically robust than expt data with errors 

• Higgs potential must be bounded from below 

• Yukawa and quartic couplings need to be in perturbative regime 

• Eigenvalues of the S matrix of  scattering should satisfy NLO 
unitarity bounds 

• NLO corrections to the LO eigenvalues should be smaller in 
magnitude.

2 × 2

Theory Constraints



Bounded From Below (BFB)

Make sure that the scalar potential must be bounded from in any 
direction of the field scape
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Positivity with 3-field directions

Positivity with 2-field directions

3 and all 13 non-
vanishing field 
directions 
generating large 
overlapping 
parameter space



Unitarity Constraints

Prior to Higgs discovery : unitarity bound @ tree level          @ 1-loop 
                                                                       λ ≤

8π
3

λ ≤ 2 − 2.5

Weakly interacting Higgs scenario

2 loop calculation shows no revised limit 

Lee, Quigg, Thacker ‘77
Dawson, Eillenbrock ’89; Durand, Johnson, 

Lopez’92

Durand, Maher, Riesselmann, 92

Goldstone boson  
equivalence theorem

8
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TABLE II. Two-particle basis states broken down by their total charge Q and total hypercharge Y . We have omitted the charge
conjugated states as they give the same eigenvalues. The blocks with total weak isospin |T3| = 0, 1/2, 1, 3/2, 2 are shown in
green, lime green, olive, yellow, and brown, respectively.

B. 2 ! 2 scattering amplitudes

Goldstone-boson equivalence theorem is a useful theoretical tool to study scattering amplitudes in high energy
regime [58, 91, 92]. This theorem states that, at energies,

p
s � MW , an amplitude involving k longitudinally

polarized vector bosons (W±
L

, ZL, h, ...) at the external states can be related to an amplitude with k external Gold-
stone bosons (w±

, z, h, ...) as,

M(W±
L

, ZL, h, ...) = (iC)k
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, z, h, ...) .

In the limit, s � |�i|v
2

� M
2

W
, s � |µi|v, only one-particle irreducible (1PI) diagrams with two internal lines survive

at one-loop.4 We choose MS scheme to renormalize the quartic couplings in the one-loop computation to satisfy the
Goldstone theorem with C = 1 [92].

The renormalized parameter (⇤) can be defined in terms of the bare parameter (⇤0) as,
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where µ is the renormalization scale. Our one-loop beta functions obtained from Eq. (19) are consistent with the
existing results in the literature [94, 95],5
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4 We have chosen this energy regime to simplify our computations. In principle, these bounds are examined uniformly throughout the
energy regime that are su�ciently far away from the resonances of the theory [61, 93].

5 Note that, �Eq. (19) = 1
2�Ref. [95] .

Unitarity in eGM/GM



16,15,11,3,1 unique tree level eigenvalues for the Block Q = 0,1,2,3,4

19 eigenvalues are independent

Tree-level Unitarity 

eGM
9 eigenvalues are independent GM

NLO unitarity

[Grinstein, Murphy, Uttayarat ’15; 
Cacchio, Chowdhury, Murphy, Eberhardt’16] 11

the following quantities [70],
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where a
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stands for NLO corrections calculated in the eigenbasis of the matrix, aLO
0

.

Therefore, the perturbative expansion is not valid at NLO when R
0
1

= 1 or R1 = 1. Similar criteria were used in case
of the SM [90] and later in 2HDM [70, 71] to analyze perturbative unitarity. However, there are certain directions
in the parameter space that lead to accidental cancellations in the LO amplitudes. For example, a

LO
0

= 2 � ���

is small when 2 ⇡ ���, while the NLO correction can be large since it depends on other quartic couplings of the
theory (see Eq. (22)). Therefore, while doing R

0
1

test, we impose a cut on the tree-level eigenvalues, |a
LO
0

| > 0.02,
such that the fit does not encounter any such accidental cancellations for reasonable values of the quartic couplings.
Furthermore, it is worth noting that the bounds on the eigenvalues of the S-matrix are obtained at very high energy,
s � |�i|v

2
� M

2

W
, s � |µi|v. However, the running of the VEVs destabilize the custodial symmetric vacua [95].9

Therefore, the constraints on the model parameters (see Eqs. (5) and (6)) no longer hold in the high energy limit.
In order to make it consistent with the S-matrix computations, we consider the most general potential (Eq. (1))
containing ten quartic couplings and we use the one-loop unitarity conditions on these couplings. Our results of the
S-matrix elements at one-loop are given in Appendix D. For the renormalization group runnings, we use two-loop
RGEs, which are computed using PyR@TE [101]. Explicit expressions of two-loop RGEs are given in Appendix E.
Among the Yukawa’s we only consider the contributions coming from third generation fermions.
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Wh 0.95 ± 0.26 139 [6]

µ
bb

Zh 1.08 ± 0.24 139 [6]

µ
bb

Vh 1.02 ± 0.17 139 [6]

µ
bb

tth,th 0.35 ± 0.35 139 [12]

µ
µµ

pp 1.2 ± 0.6 139 [7]

µ
Z�

pp 2.0 ± 0.95 139 [5]

TABLE V. Latest Run 2 data on h signal strengths measured by ATLAS at
p

s = 13 TeV. Correlations below 0.1 are treated
to be zero. The colors in the first column represent the corresponding decay channels in Figure 5.

9 Note that, the self energy corrections also break the symmetry if the loop e↵ects of U(1)Y gauge coupling, top Yukawa coupling, and
new Higgs bosons are taken into account. As a result, the predictions of Peskin-Takeuchi parameters (S, T, and U) deviate from their
SM values [53].

Perturbative expansion is not valid at NLO when or R1 = 1 R′￼1 = 1
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Status of GM model
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Summary
 Minimal two triplet extension of SM with  

 gives eGM model 
  
 Quartic couplings in GM and eGM model 
gets strongly constrained by NLO unitarity 

 Mixing angles and vevs get constrained 
from the latest LHC Higgs signal strength 
data 

 Updated theory constraints (NLO 
unitarity, BFB) alone exclude a large part 
of the parameter space 

ρ = 1



Thank You!
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Mass plane 
of eGM model
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Signal Value Correlation matrix

strength

µ
��

ggF 1.10± 0.23 1 -0.25 0 -0.14 0

µ
��

VBF 1.3± 0.5 -0.25 1 0 0 0

µ
��

Wh 0.5± 1.3 0 0 1 -0.64 0

µ
��

Zh 0.5± 2.8 -0.14 0 -0.64 1 -0.11

µ
��

tth 2.2± 1.5 0 0 0 -0.11 1

µ
ZZ

ggF 1.13± 0.33 1 -0.26

µ
ZZ

VBF 0.1± 0.9 -0.26 1

µ
WW

ggF 0.84± 0.17 1 -0.16

µ
WW

VBF 1.2± 0.4 -0.16 1

µ
⌧⌧

ggF 1.0± 0.6 1 -0.37 0 -0.25 0 -0.21

µ
⌧⌧

VBF 1.3± 0.4 -0.37 1 0 0 0 0

µ
WW

Wh 1.6± 1.1 0 0 1 -0.12 -0.12 0

µ
⌧⌧

Wh �1.4± 1.4 -0.25 0 -0.12 1 0 0

µ
WW

Zh 5.9± 2.4 0 0 -0.12 0 1 0

µ
⌧⌧

Zh 2.2± 2.0 -0.21 0 0 0 0 1

µ
WW

tth 5.0± 1.8 1 -0.47

µ
⌧⌧

tth �1.9± 3.5 -0.47 1

µ
bb

Wh 1.0± 0.5

µ
bb

Zh 0.4± 0.4

µ
bb

tth 1.1± 1.0

µ
µµ
pp 0.1± 2.5

Table 2. h signal strengths from Table 8, Table 13 and Figure 27 of the o�cial ATLAS and CMS
combination for Run 1 [3], based on 25 fb�1 of integrated luminosity. We neglect correlations below
0.1. The colours in the first column indicate the decay category in Figures 1 and 2.

For the signal strengths, we define µ
decay
production, where “production” stands for the ggF,

VBF, Vh, Zh, Wh, tth or pp production channels of the h, while “decay” denotes the

subsequent h decay products ��, ZZ, WW , ⌧⌧ , bb, µµ or Z�.1 For the last one, only

upper limits are available; we assign to this signal strength a central value of 0 and adjust

the Gaussian error such that the likelihood distribution has the 95% limit at the value

provided by the experimental collaborations. All h couplings are calculated at leading

order: While the fermionic decays and the bosonic decays to WW and ZZ are possible at

1In order to improve readability, we drop charge or conjugation labels when there is no ambiguity.

– 4 –

h signal strength 
from official ATLAS and 
CMS combination for 
run 1


