Next-to-Leading Order Unitarity Fits in the (Extended) Georgi-Machacek Model

based on

[arXiv: 2111.14195] with A. Kundu and P. B. Pal [arxiv: 2404.18996] with D. Chowdhury and S. Samanta

> **Poulami Mondal IIT Kanpur, India**

Higgs Hunting Workshop, Orsay/Paris September 25, 2024

Beyond the Standard Model

The Standard Model provides a framework for explaining much of the observed results @ expts.

Major Issues

- Dark Matter
- Massive Neutrinos
- Baryon asymmetry of the Universe (BAU)
- Origin of electroweak (EW) symmetry breaking and the type of EWPT

Search for BSM @ forefront of particle physics research

Higgs Triplet Models (HTMs)

Exciting phenomenological aspects in colliders: **LHC, HL-LHC, ILC, Muon collider, FCC etc.**

Can be probed in cosmological observatories: **LISA, DECIGO, PRIME, Roman Telescope etc.**

HTM with Custodial Symmetry (CS) $\rho = \frac{mv}{2\Omega} = 1$, at tree level m_W^2 m_Z^2 Cos² θ_W = 1 **Custodial Symmetry** \mathbb{P}^1 FITIVE WELD CUSCOULD SYMMELIY (CS) m_π^2 contains the results for the one-loop scattering amplitudes. Finally, Appendix E includes the one-loop and n_π $\theta = \frac{m_W}{l} = 1$, at tree level custodial Symmetry m^2 Cos² $\theta_{\rm tr}$ **i**, accession charges of conventing symmetry $\sqrt{2}$ χ_{++} $\sqrt{2}$ $\sqrt{2}$ ξ_+ $\sqrt{2}$

$$
V = -m_{\phi}^{2}(\phi^{\dagger}\phi) - m_{\xi}^{2}(\xi^{\dagger}\xi) - m_{\chi}^{2}(\chi^{\dagger}\chi) + \mu_{1}(\chi^{\dagger}t_{a}\chi)\xi_{a} + \mu_{2}(\phi^{\dagger}\tau_{a}\phi)\xi_{a}
$$

+
$$
\mu_{3}\left[(\phi^{T}\epsilon\tau_{a}\phi)\tilde{\chi}_{a} + \text{h.c.}\right] + \lambda_{\phi}(\phi^{\dagger}\phi)^{2} + \lambda_{\xi}(\xi^{\dagger}\xi)^{2} + \lambda_{\chi}(\chi^{\dagger}\chi)^{2}
$$

+
$$
\tilde{\lambda}_{\chi}|\tilde{\chi}^{\dagger}\chi|^{2} + \lambda_{\phi\xi}(\phi^{\dagger}\phi)(\xi^{\dagger}\xi) + \lambda_{\phi\chi}(\phi^{\dagger}\phi)(\chi^{\dagger}\chi) + \lambda_{\chi\xi}(\chi^{\dagger}\chi)(\xi^{\dagger}\xi)
$$

+
$$
\kappa_{1}|\xi^{\dagger}\chi|^{2} + \kappa_{2}(\phi^{\dagger}\tau_{a}\phi)(\chi^{\dagger}t_{a}\chi) + \kappa_{3}\left[(\phi^{T}\epsilon\tau_{a}\phi)(\chi^{\dagger}t_{a}\xi) + \text{h.c.}\right],
$$

$$
\langle \phi \rangle = v_{\phi}, \langle \xi \rangle = v_{\xi}, \langle \chi \rangle = v_{\chi}
$$
\n
$$
\text{EW symmetry}
$$
\n
$$
\rho = \frac{v_{\phi}^2 + 4(v_{\xi}^2 + v_{\chi}^2)}{v_{\phi}^2 + 8v_{\chi}^2}, \quad \rho = 1 \to v_{\chi} = v_{\xi}
$$
\n**breaking**

Georgi Machacek Model

 In 1985, GM model was first proposed by Georgi and Machacek as a minimal HTM with $\rho=1$ $\ddot{}$ 2 ¹ = 2⇠ ¹ 20 . (49b). with the GM α is a minimistration with $\rho = 1$

$$
V = \frac{1}{2}m_2^2 \operatorname{Tr}(\Phi^{\dagger}\Phi) + \frac{1}{2}m_3^2 \operatorname{Tr}(X^{\dagger}X)
$$

- $M_1 \operatorname{Tr}(\Phi^{\dagger}\tau_a^{\dagger}\Phi\tau_b)X_{ab} - M_2 \operatorname{Tr}(X^{\dagger}t_a^{\dagger}Xt_b)X_{ab}$
+ $\lambda_1 (\operatorname{Tr}\Phi^{\dagger}\Phi)^2 + \lambda_2 (\operatorname{Tr} X^{\dagger}X)^2 + \lambda_3 \operatorname{Tr}(X^{\dagger}XX^{\dagger}X)$
+ $\lambda_4 (\operatorname{Tr}\Phi^{\dagger}\Phi) \operatorname{Tr}(X^{\dagger}X) - \lambda_5 \operatorname{Tr}(\Phi^{\dagger}\tau_a^{\dagger}\Phi\tau_b) \operatorname{Tr}(X^{\dagger}t_a^{\dagger}Xt_b),$

On the centre stage of BSM searches @collider and cosmological expts. where two matrices defined as a set of the state of the st
Where two matrices defined as a set of the state of the st
 $\overline{}$ **du** $\overline{}$ o smolog \mathbf{v} ical expts. ⇤ ⁰ ⇠⁺ ++ ⇠ ⁰ $\overline{}$

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

PHYSICAL REVIEW D 106, 055019 (2022)

Updated constraints on the Georgi-Machacek model and its electroweak phase transition and associated gravitational waves

Ting-Kuo Chen $\mathbf{D}^{1,*}$ Cheng-Wei Chiang $\mathbf{D}^{1,2,*}$ Cheng-Tse Huang $\mathbf{D}^{1,*}$ and Bo-Qiang Lu^{3,§} ¹Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China ²Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan 10617, Republic of China ³School of Science, Huzhou University, Huzhou, Zhejiang 313000, People's Republic of China

(Received 15 May 2022; accepted 22 August 2022; published 19 September 2022)

PHYSICAL REVIEW D 90, 015007 (2014)

The decoupling limit in the Georgi-Machacek model

Katy Hartling,^{*} Kunal Kumar,[†] and Heather E. Logan[‡] Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada (Received 25 April 2014; published 9 July 2014)

PHYSICAL REVIEW D 91, 015013 (2015)

Indirect constraints on the Georgi-Machacek model and implications for Higgs boson couplings

Katy Hartling,* Kunal Kumar,† and Heather E. Logan[‡] Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada (Received 4 November 2014; published 15 January 2015)

PUBLISHED FOR SISSA BY 2 SPRINGER

RECEIVED: December 19, 2018 REVISED: January 16, 2019 ACCEPTED: January 24, 2019 PUBLISHED: January 29, 2019

Electroweak phase transition and Higgs phenomenology in the Georgi-Machacek model

Ruiyu Zhou,^{*a*} Wei Cheng,^{*a*} Xin Deng,^{*a*} Ligong Bian^{$a,b,1$} and Yongcheng Wu^c

PUBLISHED FOR SISSA BY 2 SPRINGER

RECEIVED: November 15, 2012 ACCEPTED: December 8, 2012 PUBLISHED: January 3, 2013

Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model

Cheng-Wei Chiang a,b,c and Kei Yagyu a

vs.

• Scalar multiplets mass degenerate

• Divergent contribution to *ρ* parameter @ one-loop

• Only H^+ couples to fermions.

• Scalar multiplets non mass degenerate

new decay modes open up

search for new physics @ colliders

• All the counter-terms are present in the Lagrangian

• **Both** H^+ and F^+ couple to fermions

> Much richer flavour physics phenomenology

Theory Constraints on the parameter space

Why theory bounds are important?

Ans: More statistically robust than expt data with errors

Theory Constraints

- **• Higgs potential must be bounded from below**
- **• Yukawa and quartic couplings need to be in perturbative regime**
- **• Eigenvalues of the S matrix of scattering should satisfy NLO** 2 × 2 **unitarity bounds**
- **• NLO corrections to the LO eigenvalues should be smaller in magnitude.**

Bounded From Below (BFB)

Make sure that the scalar potential must be bounded from in any direction of the field scape

3 and all 13 nonvanishing field directions generating large overlapping parameter space

Unitarity Constraints 2 ^p² ⁰⇤++ ⁺⇠⁺ ⁰⇤++ +⁺

Prior to Higgs discovery: unitarity bound @ tree level @ 1-loop *Lee*, Quigg, Thacker '77 $\lambda \leq \frac{8\pi}{2}$ 3 $\lambda \leq 2 - 2.5$ 2 loop calculation shows no revised limit *Lee, Quigg, Thacker* '*77* $\Lambda \leq$ - $\Lambda \leq$ \angle - \angle . \mathcal{C} Dawson, Eillenbrock '89; Durand, Johnson, *Lopez*'*92* green, lime green, and brown, we can be green to be green, and brown, respectively. The green, respectively. I

Durand, Maher, Riesselmann, 92

Weakly interacting Higgs scenario

Tree-level Unitarity

16,15,11,3,1 unique tree level eigenvalues for the Block $Q = 0,1,2,3,4$

- **19 eigenvalues are independent eGM**
- **9 eigenvalues are independent GM**

NLO unitarity

[Grinstein, Murphy, Uttayarat '15; Cacchio, Chowdhury, Murphy, Eberhardt'16]

$$
R_1 = \frac{|a_0^{\text{NLO}}|}{|a_0^{\text{LO}} + a_0^{\text{NLO}}|} \,, \qquad R_1' = \frac{|a_0^{\text{NLO}}|}{|a_0^{\text{LO}}|} \,,
$$

Perturbative expansion is not valid at NLO when $R_1 = 1$ or $R_1' = 1$ Perturbative expansion is not valid at NLO when $R_1 = 1$ or $R_1' = 1$

Higgs Signal Strength (Run 2)

Status of GM model

The maximum mass splitting for heavy Higgs boson masses > 700 GeV is 400 GeV for GM model

which is reduced ∼ 100 **GeV from the literature**

• Maximum Mass difference within same multiplet in eGM model is < 210 GeV

Allowed mass differences and quartic couplings

Summary

- **Minimal two triplet extension of SM with** $\rho = 1$ gives eGM model
- **Quartic couplings in GM and eGM model gets strongly constrained by NLO unitarity**
- **Mixing angles and vevs get constrained from the latest LHC Higgs signal strength data**
- **Updated theory constraints (NLO unitarity, BFB) alone exclude a large part of the parameter space**

Backup Slides

Mass plane of eGM model

250

250

500

 m_1 [GeV]

750

1000

500

m

 $[{\rm GeV}]$

750

1000

500

 m_5 [GeV]

750

1000

250 500 750 1000 *m*⁵ [GeV] 250 -500 0 500 $m_5 - m_3$ [GeV]

Higgs Signal Strength

ATLAS CMS

Table 2. *h* signal strengths from Table 8, Table 13 and Figure 27 of the ocial ATLAS and CMS combination for Run 1 [3], based on 25 fb1 of integrated luminosity. We need to integrate the correlations below α

h signal strength from official ATLAS and CMS combination for run 1