Revisiting Higgs Photoproduction in MadGraph5_aMC@NLO

Laboni Manna

Warsaw University of Technology work done in collaboration with J.P Lansberg, O. Mattelaer

Higgs Hunting 2024

Revisiting Higgs Photoproduction in MG

Context

- Photoproduction up to NLO in MG5 has been validated [see talk by L. Manna, EPS-HEP 2023]
- Verified the results for heavy quark pair production

• Predicted the production of $\gamma p \rightarrow b\bar{b}c\bar{c} \rightarrow \text{non-prompt } J/\psi + c + X$ and compared with prompt $J/\psi + c$ production for EIC

Image: A matrix and a matrix

 In MG5 we can study both loop_induced (loop at LO) and HEFT model for Higgs production

Higgs photoproduction

Higgs photoproduction, we have different channels [Li et. al, Nuclear Physics B, 115134]

 $\bullet e^- p \to H \nu_e q X$

 e^{-} W^{2} e^{--H} W^{2} e^{--H} d

 $\sim \mathcal{O}(100) \; ext{fb} \ \sim \mathcal{O}(5) \; ext{fb} \; \; ext{ with cut } |\eta_{m{q}}| \leq 5$

 $\sim \mathcal{O}(10) \; ext{fb} \ < 1 \; ext{fb} \; ext{with cut} \; |\eta_q| \leq 5$

Best described as a resolved-photon contribution. Possible to study with asymmetric-collision developments in MG5 [See talk by A. Safronov, ICHEP 2022]

 $e^- p \to H e^- q X$

 $\bigcirc \gamma p \to Hq\bar{q}X$

Higgs photoproduction

• $\gamma p \rightarrow HQ\bar{Q}X$ [new channel, not considered by Li et al.]

Higgs photoproduction [loop_induced vs. HEFT]

- $\gamma p
 ightarrow HgqX$ features a g-g-H triangular loop
- In principle, it can be calculated both from loop_induced & HEFT model
- One should be careful with the applicability of HEFT model
- Indeed, for $pp \rightarrow Hj$ at larger P_T , HEFT breaks down [V. Hirschi, O. Mattelaer, JHEP10(2015)146]

• Process $\gamma p \rightarrow HgqX$ fails to explain by HEFT

- (Exact) loop_induced result is 3 times higher than HEFT
- Excess from the region of H g invariant-mass near the top threshold.
- Specific of g-to-H fragmentation
- Note that the scale in the WWA flux is not m_H or something similar, but a few GeV (exp. cut) [Fixed now in MG5]

- Illustration below for u-quark channel [largest contribution]
- Infinite top mass limit for loop_induced corresponds to the HEFT result (peak shifted to higher H - g values with smaller x-section)
- Note: inclusion of b-loop amplitudes in the loop_induced computation with t-loop reduce the cross section by ~ 3%

- 4 🗗 ▶

Higgs + Heavy quark photoproduction @ NLO

< A > < E

New: Higgs + Heavy quark photoproduction @ NLO

$E_e(GeV)$	$E_{\rho}(GeV)$	Mass of Higgs	s (GeV)	Scale (GeV)	PDF used	
60	7000 / 5000	00 125	125		CT18NLO	1
	-	Partonic process a $p \rightarrow hb\bar{b}$ a $p \rightarrow ht\bar{t}$ a $p \rightarrow hc\bar{c}$	LO (ab 9.2 5.7 1.1) NLO (ab) 10 6.1 2.2	LHeC @	1.3 TeV
	-	Partonic process	LO (ab) NLO (ab)	_	
	-	a p $ ightarrow htar{t}$	490	470	<u>آ</u>	
		a p $ ightarrow hbar{b}$	81	90	> FCC-eh @	3.4 TeV
		a p $ ightarrow hcar{c}$	10	25	}	
				-		

• K_{NLO} close to 1 for H + t and H + b, but close to 2 for H + c

- For LHeC, H + b largest
- For FCC-eh, H + t largest
- Might be measurable for itself

- We have validated photoproduction in MG5 up to NLO with several checks (bottom and charm photoproduction cases)
- We have studied Higgs photoproduction and recovered some results from the paper by Li et. al [Specific scale for WWA flux important]
- We have studies $H + Q + \bar{Q}$ photoproduction up to NLO which has low cross section compared to WBF case though it is possible to study this channel .
- MG5 in fully functional for both HEFT and loop_induced model for photoproduction but be careful with the applicability of HEFT