





# Searches for heavy resonances decaying into a Higgs boson pair or one Higgs boson and a new scalar $(X \rightarrow HH/HY)$ at CMS

Higgs Hunting 2024 **Elise Jourd'huy**, on behalf of CMS

# Higgs to probe new physics







Higgs sector as a tool to probe physics **beyond the SM** 



Some **BSM theories** predict additional particles Like a **resonance X decaying into**:

- A Higgs(125) pair
- A Higgs(125) and a new scalar Y

# **Extended Higgs Sectors**



The Higgs sector does not need to be minimal (SM)  $\rightarrow$  Can be extended with additional singlet, doublet, ...

- > Additional real singlet :
  - Introduce a new real singlet S, leading to a new scalar  $X : X \to HH$
  - Adding one more real singlet (**TRSM**) :  $X \rightarrow HY/HH$



- 3 neutral and 2 charged Higgs bosons
- $X \rightarrow HH$  and  $A \rightarrow ZH$
- Possible couplings of second doublet with fermions :
  - Type I: All charged fermions
  - Type II : Only up-type quarks
  - Type X or lepton-specific : Only quarks
  - Type Y or flipped : Only up-type quarks+lepton
- Additional singlet (N2HDM, NMSSM) :  $X \rightarrow HY$  possible



Minimal supersymmetric standard model (MSSM)









Phys.Rev.Lett.83:3370-3373,1999

Warped Extra Dimension by Randall and Sundrum (RS)  $\rightarrow$  Existence of an **extra spatial dimension** 

- Existence of a spin 0 Radion and a spin 2 Kaluza-Klein (KK) Graviton
- HH is among the highest Branching Ratios for the Bulk scenario



# Analyses involved -







|                 | HH<br>spin 2              | HH<br>spin 0 | НҮ |
|-----------------|---------------------------|--------------|----|
| bbWW (resolved) | <u>JHEP 07 (2024) 293</u> |              |    |
| bbWW (boosted)  | JHEP 05 (2022) 005        |              |    |
| → multilepton   | JHEP 07 (2023) 095        |              |    |
| bbbb (boosted)  | PLB 842 (2023) 137392     |              |    |
| bbγγ            | JHEP 05 (2024) 316        |              |    |
| bbττ            | JHEP 11 (2021) 057        |              |    |

# **Involved analyses**









# **Combination procedure**







- **✓** One event should not appear in two different analyses
- **✓** Systematics alignment

The systematics that are supposed to behave the same way across analyses are considered 100% correlated

#### **✓** Same normalization for all analysis

HH: Each analysis is normalized to its SM BR

HY: Each analysis is normalized to the Higgs SM BR. No normalization for  $Y \to b\bar{b}$  to stay model independent

√ Stastical tests









Wide mass range → Wide range of sensitivity









Wide mass range → Wide range of sensitivity

Combination dominated by one channel









Wide mass range → Wide range of sensitivity

Combination dominated by one channel

Gain in sensitivity (400-700 GeV)

















No excess observed











Combination for the  $M_X$  in which we have several analyses.

The 4b boosted channel dominates the combination for  $M_X > 1$  TeV and small/medium values of  $M_Y$ 

No excess above 2 s.d. for the combined mass points

Considering a more complete combination









hMSSM model in backup



**Unique exclusion limits** for  $m_A > 400 \text{ GeV}$ !

















HH decay channels vs combination

 $\Lambda_R$ : mass scale

**k** : Warp factor,  $\overline{M_{pl}}$  : reduced Planck mass

Together with VV channel, **HH provides the** strongest constraints on this model

HH combination vs Other Diboson searches













- A Combination of  $X \rightarrow HH/HY$  searches was performed with LHC Run 2 data
  - o Combination offered a **great gain of sensitivity** for masses between 0.5 and 1 TeV for HH spin 0
  - No excess was observed
  - For HH spin0, below masses of 320 GeV and above 800 GeV, this combination gives the strongest observed limits to date
  - New exclusion limits in MSSM and WED





#### **NMSSM**











## BR(X->HH) in 2HDMs



Figure 5: Branching fractions of X  $\rightarrow$  HH decays in 2HDMs of Type I (upper) and Type II (lower) in the  $\cos(\beta - \alpha)$ -tan  $\beta$  plane for  $m_X = 500$  GeV (left) and in the  $m_X$ -tan  $\beta$  plane for  $\cos(\beta - \alpha) = 0.02$  (right). The masses of all non-SM-like Higgs bosons are set to be the same,  $m_X = m_A$ , and  $m_{12}^2 = m_A^2 \tan \beta / (1 + \tan^2 \beta)$ . The branching fractions have been calculated with 2HDMC v1.8.0 [55, 56].

# **Extended Higgs Sectors**







25

#### Minimal supersymmetric standard model (MSSM)

- > Additional doublet : 2 HDM
  - 3 neutral and 2 charged Higgs bosons
  - $X \rightarrow HH$  and  $A \rightarrow ZH$
  - Possible couplings of second doublet with fermions :
    - Type I : All charged fermions
      - Type II : Only up-type quarks
    - Type X or lepton-specific: Only quarks
    - Type Y or flipped : Only up-type quarks+lepton
  - Additional singlet :  $X \rightarrow HY$  possible





# **Interpretation - hMSSM**









# Singlet model











JHEP07(2023)095

- WWWW,  $WW\tau_h\tau_h$  and  $\tau_h\tau_h\tau_h\tau_h$  decay modes
- For each event category, a set of **event level BDTs** is trained to separate resonant spin-0, resonant spin-2 and non-resonant HH signal from the corresponding backgrounds.
- To avoid overlap with other analyses, a b-veto is applied (DeepJet)





 Events are selected using a set of single-, double- and triple lepton triggers as well as di-tau and lepton-tau cross triggers.



#### <u>JHEP</u>

- Very low BR but small background contamination
- ightharpoonup **2D fit** on the mass distributions of  $H o\gamma\gamma$  , H/Y o bar b





Excess of 3.8 (2.8) $\sigma$  found at  $m_X = 650 \ GeV$  and  $m_Y = 90 \ GeV$ 

#### **Selection:**

- Two photons trigger
- b-jets : Jet pair with the highest DeepJet score sum



Physics Letters B 842 (2023) 137392

- 4b analysis at **high**  $M_X$ . Very **high BR** . Low background search.
- Jet substructure tagging
- ParticleNet is employed to discriminate the decays of a boosted H boson to a pair of b quarks against a background of other jets





Search for a narrow signal in 2D  $m_{jj}$ ,  $m_j^Y$  plane

#### bbVV resolved



<u>JHEP</u>

•  $bbWW : 2^{nd}$  largest BR

Final states : bblq (SL) bbll (DL)

b-jets selection : DeepJet (AK4 jets) DeepCSV (AK8 subjets)

Use of a DNN to classify the events and a Heavy Mass Estimator (HME) to reconstruct the resonnance for DL





JHEP05(2022)005



- $b\overline{b} + l$  final states in **the bbWW** and bb au au HH decay modes
- Selection: one AK8 jet  $(H \rightarrow bb)$  and 1 (SL: 1 more AK8 jet is required) or 2 (DL) leptons
- Aditional b-tagged AK4 jets (DeepJet) are vetoed
- ML fit to the 2D  $m_X/m_{bb}$  distribution with 4 background and 1 signal template

<u>JHEP11(2021)057</u>

• 
$$Y \rightarrow b\overline{b} + H \rightarrow \tau\tau$$

•  $bb(\tau_h\tau_h + e\tau_h + \mu\tau_h)$  final states (largest sensitivity to searched signature)



- **Selection**: At least 1(b jet + jet) + 1  $\tau\tau$  pair
- au identification using DeepTau
- b-Jet identification using DeepJet
- Selected events are passed to a NNs to distinguish signal from 4 background classes