Particle Physics

Pôle théorie IJClab Journée des Nouveaux Entrants 27/03/2024

Irène Joliot-Curie

Goal of Particle Physics

To Answer the Ultimate Question of Life, The Universe, and Everything

- D'où venons-nous ?
 Que sommes-nous ?
 Où allons-nous ?
- •What is the world made of
- What forces keep it together

Borrowed from Matt Strassler's blog: http://profmattstrassler.com/

Recent and ancient history

Particle	Year	Collider	Energy	Place	Spin
Higgs boson	2012	LHC	8 TeV	Europe	0
Top quark	1995	Tevatron	1.8 TeV	USA	1/2
W/Z bosons	1984	SppS	630 GeV	Europe	1
Gluon	1979	PETRA	38 GeV	Europe	1
Bottom quark	1977	E288	20 GeV	USA	1/2
Tau lepton	1975	SPEAR	3 GeV	USA	1/2
Charm quark	1974	SLAC/BNL	3 GeV	USA	1/2
Photon	1905	Einstein's brain	/	Europe	0
Electron	1897	Cathode rays @Cambridge	~1 MeV	UK	1/2

Position within Theory Pole

BSM/Higgs

Salvador ROSAURO-ALCARAZ

Yann MAMBRINI (DR)

Jong-Hyun YOON Simon CLERY Mathieu GROSS

Gregory MOREAU (MdC)

Ulrich ELLWANGER (Em)

BSM group asks a lot of question

- Are there new particles beyond those of the Standard Model
- How is electroweak symmetry broken
- How do neutrinos get their mass
- What was happening in the first seconds of the universe
- What is the nature of dark matter
- What caused matter-antimatter asymmetry
- Are there extra dímensions of spacetime

BSM/Higgs

Flavor Physics

Alain LE YAOUANC (Em)

Flavor Physics

- Flavor physics group is straddling the line between beyond and within the Standard Model
- It is focused on the dynamics and decays of composite particles containing a heavy quark (b or c)
- On one hand, these allow us to better understand the Standard Model, in particular the action of the strong force
- On the other hand, flavor transitions are naturally suppressed in the Standard Model and therefore they are very sensitive to physics beyond the standard model

Flavor Physics

QCD

Christopher FLETT Maxim NEFEDOV

Jean-Philippe LANSBERG (DR)

Kate LYNCH Yelyzaveta YEDELKINA

Allencris JOHN RUBESH RAJAN

Melih OZCELIK (CR)

Michael FUCILLA

Saad NABEEBACCUS

Joseph YARWICK

Samuel WALLON (Pr)

Véronique BERNARD (Em) Michel FONTANNAZ (Em) Bachir MOUSSALLAM (Em) Hagop SAZDJIAN (Em)

QCD

- QCD group attempts to better understand the consequence of the Standard Model strong dynamics in various systems
- Many conceptual and quantitative problems remains to be solved
- Examples of problems tackled in UClab include quarkonium production, (generalized) parton distribution functions, small x physics, non-perturbative power corrections

Conclusions

