

Topical workshop on LFV decays of the tau

$\tau \to 3\ell$ at hadron colliders

Federica Simone¹ on behalf of the CMS, ATLAS and LHCb Collaborations

¹ Politecnico di Bari & INFN Bari

11 – 12 April 2024, IJCLab, Université Paris-Saclay (France)

τ LFV searches

Motivations for $\tau \to 3 \ell$

State of the art of $\tau \rightarrow 3\mu$ searches

Year	Collab.	Process	Data	Expected [*]	Observed [*]
<u>2010</u>	Belle	$ee \rightarrow \tau \tau$	782 fb ⁻¹	-	2.1
<u>2010</u>	BaBar	$ee \rightarrow \tau \tau$	468 fb ⁻¹	4.0	3.3
<u>2014</u>	LHCb	$D/B \to \tau X$	3.0 fb ⁻¹ (pp 7-8 TeV)	5.0	4.6
<u>2016</u>	ATLAS	$W \rightarrow \tau \nu$	20.3 fb ⁻¹ (pp 8 TeV)	39	38
<u>2023</u>	CMS	$D/B \rightarrow \tau X$ and $W \rightarrow \tau v$	131 fb ⁻¹ (pp 13 TeV)	2.4	2.9
<u>2024</u>	Belle II	$ee \rightarrow \tau \tau$	424 fb-1	-	1.9

[*] × 10⁻⁸@ 90% C.L.

State of the art of $\tau \rightarrow 3\mu$ searches at hadron colliders

Year	Collab.	Process	Data	Expected [*]	Observed [*]
<u>2010</u>	Belle	$ee \rightarrow \tau \tau$	782 fb ⁻¹	-	2.1
<u>2010</u>	BaBar	$ee \rightarrow \tau \tau$	468 fb ⁻¹	4.0	3.3
<u>2014</u>	LHCb	$D/B \to \tau X$	3.0 fb ⁻¹ (pp 7-8 TeV)	5.0	4.6
<u>2016</u>	ATLAS	$W \rightarrow \tau \nu$	20.3 fb ⁻¹ (pp 8 TeV)	39	38
<u>2023</u>	CMS	$D/B \rightarrow \tau X$ and $W \rightarrow \tau v$	131 fb ⁻¹ (pp 13 TeV)	2.4	2.9
<u>2024</u>	Belle II	$ee \rightarrow \tau \tau$	424 fb-1	_	1.9

 $[*] \times 10^{-8} @ 90\%$ C.L.

0.01%

69%

12%

12%

3%

3%

B+

B0

Bs

Decays of heavy flavour mesons

• 70% D, 25% B

D+ Exp. number of produced τ per 10 /fb at $\sqrt{s} = 13 TeV$ (PYTHIA8 LO)

Ds	Process 1	Process 2	No. of τ for $\mathcal{L} = 10 f b^{-1}$
W	$pp \rightarrow c\bar{c} + \dots$	$D \to \tau \nu_{\tau}$	$1.2\cdot10^{12}$
		$(95\% \ D_s, \ 5\% \ D^{\pm})$	
		$B \to \tau \nu_{\tau} + \dots$	$5.6 \cdot 10^{11}$
	$m \rightarrow b\overline{b}$	$(44\% \ B^{\pm}, \ 45\% \ B^0, \ 11\% \ B^0_s)$	
	$pp \rightarrow 00 + \dots$	$B \to D(\tau \nu_{\tau}) + \dots$	$1.9\cdot10^{11}$
		$(98\% \ D_s, 2\% \ D^{\pm})$	

Decays of heavy flavour mesons

70% D, 25% B •

0.01%

Decays of EW bosons

• 0.01% W, 0.002% Z

Exp. numbe	of produced τ per	10 /fb at $\sqrt{s} = 13$	<i>TeV</i> (PYTHIA8 LO)
------------	------------------------	---------------------------	-------------------------

Process 1	Process 2	No. of τ for $\mathcal{L} = 10 f b^{-1}$
$pp \to W + \dots$	$W \to \tau \nu_{\tau}$	$2.0 \cdot 10^{8}$
$pp \rightarrow Z + \dots$	$Z \to \tau \tau$	$3.9\cdot 10^7$

LHCb

Single-arm forward spectrometer covering $2 < \eta < 5$, featuring high beauty and charm production cross-sections.

- Excellent particle identification,
- π / K separation for 2 < p < 100 GeV,
- µ misID ~ 2%.

 $\sigma(pp o bar{b}X)_{2 < \eta < 5} = 144 \pm 1 \pm 21 \mu {
m b}$ [PRL 119, 169901 (2017)]

 $\sigma(pp \to c\overline{c}X)_{p_{\rm T}\,<\,8\,\,{\rm GeV/c},\,2.0\,<\,y\,<\,4.5} = 2369 \pm 3 \pm 152 \pm 118\,\mu{\rm b}\,\,\text{[JHEP 05 (2017) 074]}$

. Simone - $\tau \rightarrow 3\ell$ at hadron colliders

Search for $\tau \rightarrow 3\mu$ decays with the LHCb detector

- Result based on 3 fb⁻¹ at $\sqrt{s} = 8$ TeV Heavy flavour channel: D/B $\rightarrow \tau(3\mu)X$
- Isolated and displaced 3μ signature
- Small pointing angle

Analysis strategy:

- Background described using data in the mass sidebands (SB)
- Normalisation channel $D_s \rightarrow \phi(\mu\mu)\pi$

$$\mathcal{B}(\tau^{-} \rightarrow \mu^{-}\mu^{+}\mu^{-}) = \frac{\mathcal{B}(D_{s}^{-} \rightarrow \phi(\rightarrow \mu^{+}\mu^{-})\pi^{-})}{\mathcal{B}(D_{s}^{-} \rightarrow \tau^{-}\bar{\nu}_{\tau})} \times f_{\tau}^{D_{s}} \times \frac{\epsilon_{cal}}{\epsilon_{sig}} \times \frac{N_{sig}}{N_{cal}}$$

$$\int_{0}^{0} \frac{3500}{2500} \int_{0}^{0} \frac{1}{920} \int_{0}^{0} \frac{1}{940} \int_{0}^{0} \frac{1}{960} \int_{0}^{0} \frac{1}{980} \int_{0}^{0} \frac{1}{2000} \int_{0}^{0} \frac{1}{980} \int_{0}^{0} \frac{1}{2000} \int_{0}^{0} \frac{1}{980} \int_{0}^{0}$$

Search for $\tau \rightarrow 3\mu$ decays with the LHCb detector

DV

- Result based on 3 fb⁻¹ at $\sqrt{s} = 8$ TeV Heavy flavour channel: D/B $\rightarrow \tau(3\mu)X$
- Isolated and displaced 3μ signature
- Small pointing angle

Analysis strategy:

- Background described using data in the mass sidebands (SB)
- Normalisation channel $D_s \rightarrow \phi(\mu\mu)\pi$
- Background rejection:
 - $m(3\mu)$ invariant mass of the τ candidate
 - \mathcal{M}_{3body} BDT trained using three-body decay topology features
 - \mathcal{M}_{PID} NN trained using inputs from the RICH detector to identify muons
 - → Fit invariant $m(3\mu)$ in each bin of $\mathcal{M}_{3body} \times \mathcal{M}_{PID}$

per bin LHCh (a)- - Simulated $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ Fraction of candidates Calibrated $\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}$ Data sidebands 10^{-1} 0.2 0.4 0.6 0.8 M_{3body} response LHCb b Simulated $\tau^- \rightarrow \mu^- \mu^+ \mu$ · Calibrated $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ --- Data sidebands

0.6

0.8

M_{PID} response

Search for $\tau \rightarrow 3\mu$ decays with the LHCb detector

Results:

- All bins compatible with bkg-only hypothesis
- Observed (expected) upper limit of $\textbf{4.6}\times\textbf{10}^{-8}$ on. Br($\tau\to3\mu$) at **90 % CL** using phase-space $\tau\to3\mu$ simulation
- Model-independent analysis of the decay distributions in an EFT approach including BSM operators with different chirality structures → the observed limit varies within the range (4.1 – 6.8) × 10⁻⁸

ATLAS (A Toroidal LHC ApparatuS)

Search for $\tau \rightarrow 3\mu$ decays with the ATLAS detector [EPJ C (2016) 76 232]

Result based on 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV W channel only: $\mathbf{W} \rightarrow \tau(3\mu) \mathbf{v}_{\tau}$

- Missing energy
- Isolated and displaced 3μ signature

Analysis strategy:

- Background described using data in the mass sidebands (SB)
- $\mathcal{B}(\tau \to 3\mu)$ estimated based on W $\to \mu\nu$ crosssection measurement (PRD 85 (2012) 072004)

Workflow:

- 1. Train BDT and apply loose cut x_0 on BDT output x
- 2. Cut-based tight selection
- 3. Estimate bkg yield from mass SB using "tight + $x > x_0$ "
- 4. Fit BDT output in region $x > x_0$
- 5. Apply tight cut x_1 on BDT output, optimising for the expected \mathcal{B} limit
- 6. Extrapolate background yield for "tight $+ x > x_1$ "

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \frac{\mathit{N}_{\mathsf{sig}}}{\epsilon_{\mathsf{sig}} \times \sigma_{W^- \to \tau^- \bar{\nu}_{\tau}} \times \mathcal{L}}$$

Search for $\tau \rightarrow 3\mu$ decays with the ATLAS detector

Results:

- No events found in signal region
- Expected background N_{bkg} = 0.193 ± 0.037 (stat) ± 0.131 (syst) (dominant uncertainty = extrapolation procedure)
- Efficiency $\varepsilon_{sig} = 0.0231 \pm 0.0005$ (Jet) ± 0.0009 (MC) ± 0.0025 (trig) ± 0.0030 (reco)
- Limit: **observed** (expected) upper limit of 3.76×10^{-7} (3.94 $\times 10^{-7}$) on Br($\tau \rightarrow 3\mu$) at 90 % CL

CMS (Compact Muon Solenoid)

Search for $\tau \rightarrow 3\mu$ decays at CMS BPH-21-005 (2023) submitted to PLB

Result based on 131 fb⁻¹ at $\sqrt{s} = 13$ TeV (full Run 2) **Both W and HF channels exploited!** Given the different topology, the analysis strategies are different, and the results are statistically combined

Analysis of 2016 data from previous paper: doi:10.1007/JHEP01(2021)163

2017+2018 data analysis overview:

 online event selection: dedicated trigger paths selects events with three muons or two muons and a track

F. Simone - $\tau \rightarrow 3\ell$ at hadron colliders

- offline signature: charge-one three muon events from a displaced vertex
- categorization based on the invariant mass resolution and production channel
- figure of merit: three-muon invariant mass distribution

PV

Background composition:

The dominant background is combinatorial of two real muons plus one fake (typically decay-in-flight) Most common one is $B \rightarrow D$ cascade decay, for example

- $B \rightarrow D + \mu + X$
- $D \rightarrow \mu + v + Kaon$
- Kaon fakes muon

The second source is background with 3 genuine muons two of which come from resonances $\rightarrow \pm (1020)$ and $\exp(782)$

- $\rightarrow \phi(1020)$ and omega(783)
- → Ds → η (μμγ) μν

No peaking background in the search region (1.6-2.0 GeV) \rightarrow Data sidebands are used as proxies of background

A BDT is used for low-p_T muon identification, trained on MC signal muons vs fake muons from pion/kaon decays using reconstruction quality features.

Background rejection:

- Cut-based preselections
- Additional categorisation based on the reconstruction of the lowest-p_T muon
- Multivariate analysis used to suppress dominant backgrounds
 - Signal MC vs data sideband
 - Features with highest importance:
 - α_{3D} pointing angle
 - 3μ vertex fit χ^2
 - the smallest distance of closest approach to the trimuon vertex of all the other tracks in the event with $p_T > 1$ GeV
 - muon reconstruction quality BDT score of the lowest p_T muon

$$N_{3\mu(W)} = \mathcal{L} \sigma(pp \to W + X) \mathcal{B}(W \to \tau \nu_{\tau}) \mathcal{A}_{3\mu(W)} \epsilon_{3\mu(W)} \mathcal{B}(\tau \to 3\mu)$$

Online: dedicated trigger 3µ forming isolated tau candidate

Efficiency corrections (trigger, µID) applied to MC

Train Boosted Decision Tree for signal-background separation

Signal: MC - Bkg: data in mass sidebands

Event categories based on m(3µ) resolution ~ barrel, overlap, endcap

Background rejection:

- Cut-based loose preselections
- Multivariate analysis (BDT) to enhance signal sensitivity
 - Signal MC vs data sideband
 - Most discriminating features:
 - Pointing angle
 - Isolation of the tau candidate
 - p_T of the tau
 - Other useful observations include the transverse mass, trimuon vertex fit quality, trimuon vertex displacement ...

Search for $\tau \rightarrow 3\mu$ decays at CMS – Results

Dominant systematics related to signal normalisation, muon reconstruction and identification efficiencies etc

Results dominated by statistical uncertainty

2017+2018 analysis results:

HF channel: observed (exp) upper limit: 3.4x10⁻⁸ (3.6x10⁻⁸) 90% CL

W channel: observed (exp) upper limit: 8.0x10⁻⁸ (5.6x10⁻⁸) 90% CL

Search for $\tau \rightarrow 3\mu$ decays at CMS – Results

Analysis of 2016 data from previous paper: doi:10.1007/JHEP01(2021)163

New analysis of 2017+2018 data combined with 2016 for the full Run 2 result:

Observed (exp) upper limit: 2.9x10⁻⁸ (2.4x10⁻⁸) 90% CL

Conclusions and perspectives

- $\tau \rightarrow 3\mu$ decays as a golden channel for probing LFV in the charged sector
- clean experimental signature
- at hadron colliders: high number of tau lepton produced with different mechanisms (HF channel, W channel)

The ATLAS and LHCb experiments carried out this search using Run 1 data

CMS recently published the full Run 2 analysis, setting the best upper limit at LHC, but still far from Belle II

Conclusions and perspectives

What's next?

CMS Run 3: dedicated trigger strategies for low-energy muons are expected to further enhance the signal significance in the HF channel

LHCb Run 2 result expected to be in the same ballpark as Belle II \rightarrow stay tuned

This search is mostly dominated by statistical uncertainties: HL-LHC is expected to give a major boost to LFV studies!

Backup

HF Branching fractions

Process	Branching ratio (BR)	Reference
$D_s \to \tau \nu_{\tau}$	$(5.48 \pm 0.23) \cdot 10^{-2}$	PDG [10]
$B^+ \to \tau \nu_\tau \bar{D^0}$	$(7.7 \pm 2.5) \cdot 10^{-3}$	PDG [10]
$B^+ \to \tau \nu_\tau D^{*0}$	$(1.88 \pm 0.20) \cdot 10^{-2}$	PDG [10]
$other B^+ \to \tau \nu_\tau X$	$0.7 \cdot 10^{-2}$	PYTHIA [84]
$B^0 \to \tau \nu_\tau D^{*-}$	$(1.57 \pm 0.09) \cdot 10^{-2}$	PDG [10]
$B^0 \to \tau \nu_\tau D^-$	$(1.08 \pm 0.23) \cdot 10^{-2}$	PDG [10]
$other B^0 \to \tau \nu_\tau X$	$0.7 \cdot 10^{-2}$	PYTHIA [84]
$D_s \to \phi(\mu\mu)\pi$	$(1.3 \pm 0.1) \cdot 10^{-5}$	PDG [10]
$B^+ \to D_s X$	$(9.0 \pm 1.5) \cdot 10^{-2}$	PDG [10]
$B^0 \to D_s X$	$(10.3 \pm 2.1) \cdot 10^{-2}$	PDG [10]
$B_s^0 \to D_s X$	$(93 \pm 25) \cdot 10^{-2}$	PDG [10]

HL-LHC ATLAS Projections

ATL-PHYS-PUB-2018-032

Upper limits on BR($\tau \rightarrow 3\mu$) for different scenarios for an assumed luminosity of 3 ab⁻¹ of pp collisions at $\sqrt{s} = 14$ TeV

<u>W channel</u>				
Scenario	$\mathcal{A} imes \epsilon$ [%]	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]	
Run 1 result	2.31	0.19	276	
Non-improved	2.31	50.71	13.52	
[1] Intermediate	5.01	50.71	6.23	
[2] Improved	5.01	40.06	5.36	
[1] Increased acceptance (trigger, reco) [2] Better S/B separation				
HF channel				
Scenario	$\mathcal{A} \times \epsilon$ [%	$N_{\rm bkg}^{\rm exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]	
High background	0.88	507.0	5 6.40	
Medium backgroun	d 0.88	152.1	2 2.31	
Low background	0.88	50.71	1.03	

1650

1700

1750

1800

1850

1900

m_{3μ} [MeV]

F. Simone - $au
ightarrow 3\ell$ at hadron colliders

HL-LHC CMS Projections

CMS-TDR-016

0.2 0.3

78.69 731

n 0.1 0°

84.3

0.4

0.5 0.6

62 5

57.5°

0.7

52.8

0.8

48.4

0.9

44.3°

1.0

40.4°

1.1

36.8

η θ°

1.2 33.5°

F. Simone - $\tau \rightarrow 3\ell$ at hadron colliders

Model independent analysis of LFV tau decays

https://doi.org/10.1088/1126-6708/2007/10/039

A model-independent study on $\tau \to 3\ell$ decays based on EFT methods:

- different operators possibly contributing to $\tau \to 3\ell$
- coupling constants are related to the lepton masses and PMNS matrix terms
- Dalitz distributions for the individual chirality structures appearing in the effective Hamiltonian → evaluate how different operators can impact the decay phenomenology

Figure 2: Dalitz plot for $d^2 \Gamma_{rad}^{(LR)}$ in $\tau^- \to \mu^- \mu^- \mu^+$.

Model independent analysis of LFV tau decays

https://doi.org/10.1088/1126-6708/2007/10/039

A model-independent study on $\tau \to 3\ell$ decays based on EFT methods:

- different operators possibly contributing to $\tau \to 3\ell$
- coupling constants are related to the lepton masses and PMNS matrix terms
- Dalitz distributions for the individual chirality structures appearing in the effective Hamiltonian → evaluate how different operators can impact the decay phenomenology

CMS: what about electrons?

- Electron energy resolution ranges from 3 to 5%
- No suitable electron triggers in Run 2
- Higher background expected

In Run3 → included a low-pT dielectron trigger potentially allowing for LFV searches

Feasibility studies needed

CMS: Phase 2 Muon system

F. Simone - $\tau \rightarrow 3\ell$ at hadron colliders

CMS Experiment at the LHC, CERN Data recorded: 2018-May-23 18:28:20.730112 GMT Run / Event / LS: 316766 / 2775245984 / 2002

