# Effective field theory description of τ LFV decays

### Topical workshop on LFV decays of the tau Orsay, 11/04/2024 Marco Ardu







in the state of the state of the second state of the second state of the second state of the second state of the

Univ. Valencia & IFIC



## Charged Lepton Flavour Violation (cLFV)

- $cLFV \equiv contact$  interaction among the charged leptons that violates flavour
- Neutrino masses and oscillations imply lepton flavour violation
- Unambiguous signals of New Physics
- Accidental symmetries of the SM can be easily violated (cLFV is expected in many models)
- Can probe Beyond SM scenarios above the reach of colliders

### **Experimental searches**

| Process                           | Current bound on BR            | Future Sensitivity                         |
|-----------------------------------|--------------------------------|--------------------------------------------|
| $\mu  ightarrow e \gamma$         | $>4.2	imes10^{-13}$ Meg        | $10^{-14}$ Megii                           |
| $\mu  ightarrow ar{	extbf{e}} ee$ | $< 1.0 	imes 10^{-12}$ sindrum | 10 <sup>-16</sup> Mu3e                     |
| $\mu A  ightarrow e A$            | $< 7 	imes 10^{-13}$ sindrumii | $10^{-16}  ightarrow 10^{-18}$ comet, Mu2e |

#### • $\mu \rightarrow e$ transitions

| $K^0  ightarrow \mu^\pm e^\mp$              | $< 4.7 	imes 10^{-12}$      |                       |
|---------------------------------------------|-----------------------------|-----------------------|
| $B^0_d \to \tau^{\pm} \mu^{\mp}$            | $< 1.2 	imes 10^{-5}$ LHCb  | $\sim 10^{-6}$ ?      |
|                                             | • • •                       | •••                   |
| $\mid h  ightarrow e^{\pm} \mu^{\mp}$       | $< 6.1 	imes 10^{-5}$ Atlas | $2.1 	imes 10^{-5}$   |
| $\mid h  ightarrow e^{\pm} 	au^{\mp}$       | $< 2.2 	imes 10^{-3}$ cms   | $2.4 	imes 10^{-4}$   |
| $\mid h  ightarrow 	au^{\pm} \mu^{\mp}$     | $< 1.5 	imes 10^{-3}$ cms   | $2.3	imes10^{-4}$ ilc |
| $\mid {\it Z}  ightarrow e^{\pm} \mu^{\mp}$ | $< 7.5 	imes 10^{-7}$ Atlas |                       |
| $Z \rightarrow I^{\pm} \tau^{\mp}$          | $< 10^{-7}$ Atlas           |                       |

Heavy particles decaying into LFV final states



•  $\tau \rightarrow l$  decays

- The sensitivities of  $\tau \to l$  processes are  $Br(\tau \to l) \leq 10^{-8} \to 10^{-10}$  (LHC(b), BaBar, Belle, Belle-II)
- If we see  $\tau \rightarrow l$ , it should be relatively large
- The big phase available means there is a plethora of different channels (possible to overconstrain models = distinguish them)
- High energy probes (like the decay of heavy particles into final states with  $\tau$ -s) are sometimes competitive with the decays

### $\tau \rightarrow l$ transitions



### **Effective Field Theories**

• If LFV New Physics is heavy ( $\Lambda \gtrsim \text{few TeV}$ ), it can be parametrised in terms of non-renormalizable operators



### **Effective Field Theories**

• If LFV New Physics is heavy ( $\Lambda \gtrsim \text{few TeV}$ ), it can be parametrised in terms of non-renormalizable operators



![](_page_5_Picture_4.jpeg)

and calculate observables...

• Add to the Lagrangian the relevant contact interactions (non-renormalizable operators) compatible with the symmetries

$$\mathcal{P}_{d\leq 4} + \sum_{n>4} \frac{C_n \mathcal{O}_n}{\Lambda^{n-4}}$$

• The sensitivities  $Br(\tau \rightarrow l) \leq 10^{-8} \rightarrow 10^{-10}$  translates into an interesting New Physics scale reach  $\Lambda \gtrsim \text{few} \times (1 - 10)$  TeV

- Sensitive only to some one-loop RGE effects and dimension six operators MA, Davidson21

• The sensitivities  $Br(\tau \rightarrow l) \leq 10^{-8} \rightarrow 10^{-10}$  translates into an interesting New Physics scale reach  $\Lambda \geq \text{few} \times (1 - 10)$  TeV

- The sensitivities  $Br(\tau \rightarrow l) \leq 10^{-8} \rightarrow 10^{-10}$  translates into an interesting New Physics scale reach  $\Lambda \geq \text{few} \times (1 10)$  TeV
- Sensitive only to some one-loop RGE effects and dimension six operators <u>MA, Davidson21</u>
- Many channels = many operators can be probed (few flat directions in the EFT)

- The sensitivities  $Br(\tau \rightarrow l) \leq 10^{-8} \rightarrow 10^{-10}$  translates into an interesting New Physics scale reach  $\Lambda \geq \text{few} \times (1 10)$  TeV
- Sensitive only to some one-loop RGE effects and dimension six operators <u>MA, Davidson21</u>
- Many channels = many operators can be probed (few flat directions in the EFT)
- Decays and high-energy probes sensitive to the same operators at a competitive level

### • Leptonic decays ( $\tau \rightarrow l_i \gamma, \ \tau \rightarrow l_i \overline{l}_k l_k, \ \tau \rightarrow \overline{l}_i l_k l_k$ )

• Semi-leptonic decays (ex:  $\tau \rightarrow \pi l_i$ )

#### • Other processes

Conclusion

### Outline

### • Leptonic decays ( $\tau \rightarrow l_i \gamma, \ \tau \rightarrow l_i \overline{l}_k l_k, \ \tau \rightarrow \overline{l}_i l_k l_k$ )

### • Semi-leptonic decays (ex: $\tau \rightarrow \pi l_i$ )

#### • Other processes

![](_page_12_Picture_4.jpeg)

### Outline

![](_page_13_Figure_1.jpeg)

 $\Lambda \gtrsim 4 \times 10^2 v$  (if  $C_D \sim 1$ )

![](_page_14_Figure_1.jpeg)

• Simple two-body decay

 $\Lambda \gtrsim 4 \times 10^2 v$  (if  $C_D \sim 1$ )

$$\delta \mathscr{L}_{\tau \to l\gamma} = \frac{m_{\tau}}{\Lambda^2} (C_{D,R}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_R \tau + C_{D,L}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_L \tau + \frac{Br(\tau \to l\gamma)}{Br(\tau \to l\bar{\nu}\nu)} = 384\pi^2 \left(\frac{\nu}{\Lambda}\right)^4 (|C_{D,R}^{l\tau}|^2 + |C_{D,L}^{l\tau}|^2 + \frac{\nu}{V})^2$$
$$\nu^2 = (2\sqrt{2}G_F)^{-1} \sim (174 \text{ GeV})^2$$

- Simple two-body decay
- Belle-II expects to push the limit up to  $\sim 1$  order of magnitude

 $(\tau)F^{\alpha\beta}$ 

 $(2^{2}) < 2 \times 10^{-7} \longrightarrow \left(\frac{v}{\Lambda}\right)^{2} |C_{D,X}^{l\tau}| \leq 7 \times 10^{-6}$  $\Lambda \gtrsim 4 \times 10^2 v$  (if  $C_D \sim 1$ )

$$\delta \mathscr{L}_{\tau \to l\gamma} = \frac{m_{\tau}}{\Lambda^2} (C_{D,R}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_R \tau + C_{D,L}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_L$$

$$\frac{Br(\tau \to l\gamma)}{Br(\tau \to l\bar{\nu}\nu)} = 384\pi^2 \left(\frac{\nu}{\Lambda}\right)^4 (|C_{D,R}^{l\tau}|^2 + |C_{D,L}^{l\tau}|^2$$

$$\nu^2 = (2\sqrt{2}G_F)^{-1} \sim (174 \text{ GeV})^2$$

- Simple two-body decay
- Belle-II expects to push the limit up to  $\sim 1$  order of magnitude
- Sensitive to large sources of chiral symmetry breaking (ex: heavy fermion)

 $(\tau)F^{\alpha\beta}$ 

 $(2^{2}) < 2 \times 10^{-7} \longrightarrow \left(\frac{v}{\Lambda}\right)^{2} |C_{D,X}^{l\tau}| \leq 7 \times 10^{-6}$  $\Lambda \gtrsim 4 \times 10^2 v$  (if  $C_D \sim 1$ )

$$\delta \mathscr{L}_{\tau \to l\gamma} = \frac{m_{\tau}}{\Lambda^2} (C_{D,R}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_R \tau + C_{D,L}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_L$$

$$\frac{Br(\tau \to l\gamma)}{Br(\tau \to l\bar{\nu}\nu)} = 384\pi^2 \left(\frac{\nu}{\Lambda}\right)^4 (|C_{D,R}^{l\tau}|^2 + |C_{D,L}^{l\tau}|^2$$

$$\nu^2 = (2\sqrt{2}G_F)^{-1} \sim (174 \text{ GeV})^2$$

- Simple two-body decay
- Belle-II expects to push the limit up to  $\sim 1$  order of magnitude
- Sensitive to large sources of chiral symmetry breaking (ex: heavy fermion)
- Sensitive to the mixing of tensor with heavy up-type quarks

 $(\tau)F^{\alpha\beta}$ 

 $^{2}) < 2 \times 10^{-7} \longrightarrow \left(\frac{v}{\Lambda}\right)^{2} |C_{D,X}^{l\tau}| \leq 7 \times 10^{-6}$  $\Lambda \gtrsim 4 \times 10^2 v$  (if  $C_D \sim 1$ )

$$\delta \mathscr{L}_{\tau \to l\gamma} = \frac{m_{\tau}}{\Lambda^2} (C_{D,R}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_R \tau + C_{D,L}^{l\tau} \bar{l} \sigma_{\alpha\beta} P_L$$

$$\frac{Br(\tau \to l\gamma)}{Br(\tau \to l\bar{\nu}\nu)} = 384\pi^2 \left(\frac{\nu}{\Lambda}\right)^4 (|C_{D,R}^{l\tau}|^2 + |C_{D,L}^{l\tau}|^2$$

$$\nu^2 = (2\sqrt{2}G_F)^{-1} \sim (174 \text{ GeV})^2$$

- Simple two-body decay
- Belle-II expects to push the limit up to  $\sim 1$  order of magnitude
- Sensitive to large sources of chiral symmetry breaking (ex: heavy fermion)
- Sensitive to the mixing of tensor with heavy up-type quarks

 $(\tau)F^{\alpha\beta}$ 

### $^{2}) < 2 \times 10^{-7} \longrightarrow \left(\frac{v}{\Lambda}\right)^{2} |C_{D,X}^{l\tau}| \leq 7 \times 10^{-6}$ $\Lambda \gtrsim 4 \times 10^2 v$ (if $C_D \sim 1$ )

![](_page_18_Picture_11.jpeg)

![](_page_19_Figure_1.jpeg)

Kitano, Okada hep-ph

$$e^{l^{+}\gamma} = \frac{d\Omega_{l}}{4\pi} \frac{1}{\Gamma} \frac{2}{\pi} G_{\mathrm{F}}^{2} m_{\tau}^{5} \left( \left\| C_{D,L}^{l\tau} \right\|^{2} - \left\| C_{D,R}^{l\tau} \right\|^{2} \right) \begin{pmatrix} \sin \theta_{l^{+}} \cos \phi_{l^{+}} \\ \sin \theta_{l^{+}} \sin \phi_{l^{+}} \\ \cos \theta_{l^{+}} \end{pmatrix}$$

• Angles in Frame 2, and taking the normalization  $\Lambda = v$  for the dipoles

$$dR_{a}^{\tau^{-} \to l^{-} \bar{\nu}\nu} = \frac{d\Omega_{l}}{4\pi} dx \frac{1}{\Gamma} \frac{G_{F}^{2} m_{\tau}^{5}}{192\pi^{3}} 2x^{2} (1 - 2x) \begin{pmatrix} \sin \theta_{l} - \cos \phi_{l} - \sin \phi_{l} - \cos \theta_{l} - \cos \theta_{l}$$

• Angles in Frame 3 and  $x = (2E_{l})/m_{\tau}$ 

| ו | / | 0 | 0 | 1 | 2 | 0 | 4 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
| - | _ |   |   |   |   |   |   |   | 1 |

![](_page_20_Figure_1.jpeg)

• The lepton angular distribution (P asymmetry) can distinguish between left-handed and right-handed dipoles

$$d\sigma \left(e^+e^- \to \tau^+\tau^- \to l^+\gamma + l^-\bar{\nu}\nu\right)$$

$$= \sigma \left(e^+e^- \to \tau^+\tau^-\right) B \left(\tau^+ \to l^+\gamma\right) B \left(\tau^- \to l^-\bar{\nu}\nu\right) \frac{d\cos\theta_{l^+}}{2} \frac{d\cos\theta_{l^-}}{2} dx 2x^2$$

$$\times \left\{ 3 - 2x - \frac{s - 2m_\tau^2}{s + 2m_\tau^2} (1 - 2x) A_P \cos\theta_{l^+} \cos\theta_{l^-} \right\}$$

Kitano, Okada hep-ph

$${}^{l+\gamma} = \frac{d\Omega_l}{4\pi} \frac{1}{\Gamma} \frac{2}{\pi} G_F^2 m_\tau^5 \left( \left\| C_{D,L}^{l\tau} \right\|^2 - \left\| C_{D,R}^{l\tau} \right\|^2 \right) \begin{pmatrix} \sin\theta_{l+} \cos\phi_{l+} \\ \sin\theta_{l+} \sin\phi_{l+} \\ \cos\theta_{l+} \end{pmatrix}$$

• Angles in Frame 2, and taking the normalization  $\Lambda = v$  for the dipoles

$$dR_{a}^{\tau^{-} \to l^{-} \bar{\nu}\nu} = \frac{d\Omega_{l}}{4\pi} dx \frac{1}{\Gamma} \frac{G_{F}^{2} m_{\tau}^{5}}{192\pi^{3}} 2x^{2} (1 - 2x) \begin{pmatrix} \sin \theta_{l} - \cos \phi_{l} - \sin \phi_{l} - \cos \theta_{l} - \cos \theta_{l}$$

• Angles in Frame 3 and  $x = (2E_{I^-})/m_{\tau}$ 

| ו | / | 0 | 0 | 1 | 2 | 0 | 4 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
| - | _ |   |   |   |   |   |   |   | 1 |

![](_page_21_Figure_1.jpeg)

• The lepton angular distribution (P asymmetry) can distinguish between left-handed and right-handed dipoles

$$d\sigma \left(e^+e^- \to \tau^+\tau^- \to l^+\gamma + l^-\bar{\nu}\nu\right)$$
  
=  $\sigma \left(e^+e^- \to \tau^+\tau^-\right) B\left(\tau^+ \to l^+\gamma\right) B\left(\tau^- \to l^-\bar{\nu}\nu\right) \frac{d\cos\theta_{l^+}}{2} \frac{d\cos\theta_{l^-}}{2} dx 2x^2$   
 $\times \left\{3 - 2x - \frac{s - 2m_{\tau}^2}{s + 2m_{\tau}^2} (1 - 2x) A_P \cos\theta_{l^+} \cos\theta_{l^-}\right\}$ 

Kitano, Okada hep-ph

$${}^{l+\gamma} = \frac{d\Omega_l}{4\pi} \frac{1}{\Gamma} \frac{2}{\pi} G_F^2 m_\tau^5 \left( \left\| C_{D,L}^{l\tau} \right\|^2 - \left\| C_{D,R}^{l\tau} \right\|^2 \right) \begin{pmatrix} \sin\theta_{l+} \cos\phi_{l+} \\ \sin\theta_{l+} \sin\phi_{l+} \\ \cos\theta_{l+} \end{pmatrix}$$

• Angles in Frame 2, and taking the normalization  $\Lambda = v$  for the dipoles

$$dR_{a}^{\tau^{-} \to l^{-} \bar{\nu}\nu} = \frac{d\Omega_{l}}{4\pi} dx \frac{1}{\Gamma} \frac{G_{F}^{2} m_{\tau}^{5}}{192\pi^{3}} 2x^{2} (1 - 2x) \begin{pmatrix} \sin \theta_{l} - \cos \phi_{l} - \sin \phi_{l} - \cos \theta_{l} - \cos \theta_{l}$$

• Angles in Frame 3 and  $x = (2E_{I^-})/m_{\tau}$ 

| ו | / | 0 | 0 | 1 | 2 | 0 | 4 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
| - | _ |   |   |   |   |   |   |   | 1 |

![](_page_22_Figure_1.jpeg)

• The lepton angular distribution (P asymmetry) can distinguish between left-handed and right-handed dipoles

Kitano, Okada hep-ph

$${}^{l+\gamma} = \frac{d\Omega_l}{4\pi} \frac{1}{\Gamma} \frac{2}{\pi} G_F^2 m_\tau^5 \left( \left\| C_{D,L}^{l\tau} \right\|^2 - \left\| C_{D,R}^{l\tau} \right\|^2 \right) \begin{pmatrix} \sin\theta_{l+}\cos\phi_{l+} \\ \sin\theta_{l+}\sin\phi_{l+} \\ \cos\theta_{l+} \end{pmatrix}$$

• Angles in Frame 2, and taking the normalization  $\Lambda = v$  for the dipoles

$$dR_a^{\tau^- \to l^- \bar{\nu}\nu} = \frac{d\Omega_l}{4\pi} dx \frac{1}{\Gamma} \frac{G_F^2 m_\tau^5}{192\pi^3} 2x^2 (1-2x) \begin{pmatrix} \sin\theta_{l^-} \cos\phi_{l^-} \\ \sin\theta_{l^-} \sin\phi_{l^-} \\ \cos\theta_{l^-} \end{pmatrix}$$

• Angles in Frame 3 and  $x = (2E_{I^-})/m_{\tau}$ 

| ו | / | 0 | 0 | 1 | 2 | 0 | 4 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
| - | _ |   |   |   |   |   |   |   | 1 |

• All decays with only one flavour changing current:  $\tau \rightarrow \mu \bar{\mu} \mu$ ,  $\tau \rightarrow \mu \bar{e} e$ ,  $\tau \rightarrow e \bar{e} e$ ,  $\tau \rightarrow e \bar{\mu} \mu$ 

![](_page_23_Figure_2.jpeg)

• All decays with only one flavour changing current:  $\tau \rightarrow \mu \bar{\mu} \mu$ ,  $\tau \rightarrow \mu \bar{e} e$ ,  $\tau \rightarrow e \bar{e} e$ ,  $\tau \rightarrow e \bar{\mu} \mu$ 

+

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

Can be neglected because of  $\tau \rightarrow l\gamma$ 

**Can include four-lepton scalars, vectors and tensors**\*

• All decays with only one flavour changing current:  $\tau \rightarrow \mu \bar{\mu} \mu$ ,  $\tau \rightarrow \mu \bar{e} e$ ,  $\tau \rightarrow e \bar{e} e$ ,  $\tau \rightarrow e \bar{\mu} \mu$ 

+

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

Can be neglected because of  $\tau \rightarrow l\gamma$ 

**Can include four-lepton scalars, vectors and tensors**\*

four-lepton tensors are at dimension eight in SMEFT \* four-lepton scalars are Yukawa suppressed or at dimension eight

![](_page_25_Figure_10.jpeg)

• All decays with only one flavour changing current:  $\tau \to \mu \bar{\mu} \mu$ ,  $\tau \to \mu \bar{e} e$ ,  $\tau \to e \bar{e} e$ ,  $\tau \to e \bar{\mu} \mu$ 

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

Can be neglected because of  $\tau \rightarrow l\gamma$ 

**Can include four-lepton scalars, vectors and tensors**\*

$$\delta \mathscr{L}_{\tau \to l_i \bar{l}_k l_k} = \frac{1}{\Lambda^2} \sum_{X, Y = L, R} \left[ C_{V, XY} (\bar{l}_i \gamma^{\alpha} P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_k) + C_{S, X} (\bar{l}_i P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_k) \right]$$

 $\frac{Br(\tau \to \mu\mu\mu)}{Br(\tau \to \mu\bar{\nu}_{\mu}\nu_{\tau})} = \left(\frac{v}{\Lambda}\right)^{4} \left[2\left|C_{V,LL} + 4eC_{D,R}\right|^{2} + \left|C_{V,LR} + 4eC_{D,R}\right|^{2} + \left|C_{S,R}\right|^{2}/8 + (64\log(m_{\tau}/m_{\mu}) - 136)\left|eC_{D,R}\right|^{2} + L \leftrightarrow R\right]$ 

four-lepton tensors are at dimension eight in SMEFT four-lepton scalars are Yukawa suppressed or at dimension eight

 $P_X \tau (\bar{l}_k P_X l_k) + C_{T,X} (\bar{l}_i \sigma P_X \tau) (\bar{l}_k \sigma P_X l_k)]$ 

![](_page_26_Picture_14.jpeg)

• All decays with only one flavour changing current:  $\tau \rightarrow \mu \bar{\mu} \mu$ ,  $\tau \rightarrow \mu \bar{e} e$ ,  $\tau \rightarrow e \bar{e} e$ ,  $\tau \rightarrow e \bar{\mu} \mu$ 

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

Can be neglected because of  $\tau \rightarrow l\gamma$ 

**Can include four-lepton scalars, vectors and tensors**\*

$$\delta \mathscr{L}_{\tau \to l_i \bar{l}_k l_k} = \frac{1}{\Lambda^2} \sum_{X, Y=L, R} \left[ C_{V, XY}(\bar{l}_i \gamma^{\alpha} P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_k) + C_{S, X}(\bar{l}_i P_X \tau) (\bar{l}_k P_X l_k) + C_{T, X}(\bar{l}_i \sigma P_X \tau) (\bar{l}_k \sigma P_X l_k) \right]$$

 $\frac{Br(\tau \to \mu\mu\mu)}{Br(\tau \to \mu\bar{\nu}_{\mu}\nu_{\tau})} = \left(\frac{v}{\Lambda}\right)^{4} \left[2\left|C_{V,LL} + 4eC_{D,R}\right|^{2} + \left|C_{V,LR} + 4eC_{D,R}\right|^{2} + \left|C_{S,R}\right|^{2}/8 + (64\log(m_{\tau}/m_{\mu}) - 136)\left|eC_{D,R}\right|^{2} + L \leftrightarrow R\right]$ 

$$\frac{Br(\tau \to \mu \mu \mu)}{Br(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau})} \lesssim 1.5 \times 10^{-7} \quad \to \quad \frac{\nu^2}{\Lambda^2} \begin{pmatrix} C_{D,X} & C_{V,X} \end{pmatrix}$$

four-lepton tensors are at dimension eight in SMEFT four-lepton scalars are Yukawa suppressed or at dimension eight

 $_{XX} C_{V,XY} C_{S,X} \lesssim (8.3 \times 10^{-5} \ 2.4 \times 10^{-4} \ 3.4 \times 10^{-4} \ 9.7 \times 10^{-4})$ 

![](_page_27_Picture_14.jpeg)

![](_page_27_Picture_15.jpeg)

• All decays with two flavour changing currents:  $\tau \rightarrow \bar{\mu}ee, \tau \rightarrow \bar{e}\mu\mu$ ,

![](_page_28_Picture_2.jpeg)

**Can include four-lepton vectors, scalars and tensors**\*

four-lepton tensors are at dimension eight in SMEFT \* four-lepton scalars are Yukawa suppressed or at dimension eight

![](_page_28_Figure_7.jpeg)

• All decays with two flavour changing currents:  $\tau \rightarrow \bar{\mu}ee, \tau \rightarrow \bar{e}\mu\mu$ ,

![](_page_29_Picture_2.jpeg)

**Can include four-lepton vectors, scalars and tensors**\*

 $\delta \mathscr{L}_{\tau \to \bar{l}_i l_k l_k} = \frac{1}{\Lambda^2} \sum_{X, Y = L, R} \left[ C_{V, XY}(\bar{l}_k \gamma^{\alpha} P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_i) + C_{S, X}(\bar{l}_k P_X \tau) (\bar{l}_k P_X l_i) + C_{T, X}(\bar{l}_k \sigma P_X \tau) (\bar{l}_k \sigma P_X l_i) \right]$ 

four-lepton tensors are at dimension eight in SMEFT \* four-lepton scalars are Yukawa suppressed or at dimension eight

![](_page_29_Figure_9.jpeg)

• All decays with two flavour changing currents:  $\tau \rightarrow \bar{\mu}ee, \tau \rightarrow \bar{e}\mu\mu$ ,

![](_page_30_Picture_2.jpeg)

**Can include four-lepton vectors, scalars and tensors**\*

$$\delta \mathscr{L}_{\tau \to \bar{l}_i l_k l_k} = \frac{1}{\Lambda^2} \sum_{X, Y = L, R} \left[ C_{V, XY} (\bar{l}_k \gamma^{\alpha} P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_i) + C_{S, X} (\bar{l}_k P_X \tau) (\bar{l}_k \gamma_{\alpha} P_Y l_i) \right]$$

$$\frac{Br(\tau \to \bar{\mu}ee)}{Br(\tau \to \mu\bar{\nu}_{\mu}\nu_{\tau})} = \left(\frac{\nu}{\Lambda}\right)^{4} \left[ |C_{V,LL}|^{2} + |C_{V}|^{2} \right]$$

four-lepton tensors are at dimension eight in SMEFT four-lepton scalars are Yukawa suppressed or at dimension eight

 $P_X \tau (\bar{l}_k P_X l_i) + C_{T,X} (\bar{l}_k \sigma P_X \tau) (\bar{l}_k \sigma P_X l_i)$ 

 $|V_{V,LR}|^2 + c1 |C_{S,R} + c2C_{T,R}|^2 + L \leftrightarrow R$ 

![](_page_30_Figure_11.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

Kitano, Okada hep-ph/0012040

![](_page_31_Picture_5.jpeg)

![](_page_32_Figure_1.jpeg)

$$d\sigma \left(e^+e^- \to \tau^+\tau^- \to \mu^+\mu^+\mu^- + \pi^-\nu\right)$$
  
=  $\sigma \left(e^+e^- \to \tau^+\tau^-\right) B \left(\tau^- \to \pi^-\nu\right) \left(\frac{m_\tau^5 G_F^2}{128\pi^4}/\Gamma\right) \frac{d\cos\theta_\pi}{2} dx_1 dx_2 d\cos\theta d\phi$   
 $\times \left[X - \frac{s - 2m_\tau^2}{s + 2m_\tau^2} \{Y\cos\theta + Z\sin\theta\cos\phi + W\sin\theta\sin\phi\}\cos\theta_\pi\right]$ 

Kitano, Okada hep-ph/0012040

![](_page_32_Picture_5.jpeg)

![](_page_33_Figure_1.jpeg)

a

$$d\sigma \left(e^+e^- \to \tau^+\tau^- \to \mu^+\mu^+\mu^- + \pi^-\nu\right)$$
  
=  $\sigma \left(e^+e^- \to \tau^+\tau^-\right) B\left(\tau^- \to \pi^-\nu\right) \left(\frac{m_\tau^5 G_F^2}{128\pi^4}/\Gamma\right) \frac{d\cos\theta_\pi}{2} dx_1 dx_2 d\cos\theta d\phi$   
 $\times \left[X - \frac{s - 2m_\tau^2}{s + 2m_\tau^2} \{Y\cos\theta + Z\sin\theta\cos\phi + W\sin\theta\sin\phi\}\cos\theta_\pi\right]$ 

![](_page_33_Figure_4.jpeg)

Can distinguish  $C_{V,LX}$ ,  $C_{V,LX}$ ,  $C_{S,R}$  from  $C_{V,RX}$ ,  $C_{V,RX}$ ,  $C_{S,L}$  but not scalars from vectors

Kitano, Okada hep-ph/0012040

![](_page_33_Picture_9.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_4.jpeg)

Can distinguish  $C_{V,LX}$ ,  $C_{V,LX}$ ,  $C_{S,R}$  from  $C_{V,RX}$ ,  $C_{V,RX}$ ,  $C_{S,L}$  but not scalars from vectors

Kitano, Okada hep-ph/0012040

![](_page_34_Picture_8.jpeg)

![](_page_34_Figure_9.jpeg)

### Three body decay: Dalitz plots

• Dalitz plots could also assist in distinguishing operators

![](_page_35_Figure_2.jpeg)

**Scalars** 

Celis, Passemar, Cirigliano 1403.5781

![](_page_35_Figure_5.jpeg)

**Vectors** 

![](_page_35_Picture_8.jpeg)

### Leptonic three body decay: one-loop RGEs

sensitivity to all vectors for NP scales  $\Lambda \sim \text{few TeV}$  and  $\mathcal{O}(1)$  coefficients

![](_page_36_Picture_2.jpeg)

• QED penguin can mix any  $\tau \to l$  vector with the  $\Delta F = 1$  four-lepton vector involved in the tree-level process, leading to a

$$C_{V,XY}^{l_i \tau l_k l_k} \sim q_f \frac{\alpha}{\pi} \log\left(\frac{\Lambda}{m_{\tau}}\right) C_{V,XZ}^{l_i \tau ff}$$

![](_page_37_Picture_0.jpeg)

### • Leptonic decays ( $\tau \rightarrow l_i \gamma, \tau \rightarrow l_i \bar{l}_k l_k, \tau \rightarrow \bar{l}_i l_k l_k$ )

### • Semi-leptonic decays (ex: $\tau \rightarrow \pi l_i$ )

#### • Other processes

![](_page_37_Picture_4.jpeg)

### Outline

• Various decay channels probing LFV interactions between au flavoured currents and quarks

![](_page_38_Figure_3.jpeg)

• Various decay channels probing LFV interactions between  $\tau$  flavoured currents and quarks

•  $\tau \rightarrow lP$  where  $P = \pi^0, \eta, \eta', K$ 

![](_page_39_Figure_4.jpeg)

• Various decay channels probing LFV interactions between  $\tau$  flavoured currents and quarks

•  $\tau \rightarrow lP$  where  $P = \pi^0, \eta, \eta', K$ 

•  $\tau \rightarrow lV$  where  $V = \rho, \omega, K^*, \phi$ 

![](_page_40_Figure_5.jpeg)

• Various decay channels probing LFV interactions between  $\tau$  flavoured currents and quarks

- $\tau \rightarrow lP$  where  $P = \pi^0, \eta, \eta', K$
- $\tau \rightarrow lV$  where  $V = \rho, \omega, K^*, \phi$

•  $\tau \rightarrow l\pi\pi$ , *lKK*, *lK* $\pi$ ...

![](_page_41_Figure_6.jpeg)

• Various decay channels probing LFV interactions between  $\tau$  flavoured currents and quarks

- $\tau \rightarrow lP$  where  $P = \pi^0, \eta, \eta', K$
- $\tau \rightarrow lV$  where  $V = \rho, \omega, K^*, \phi$

•  $\tau \rightarrow l\pi\pi$ , *lKK*, *lK* $\pi$ ...

For a recent EFT analysis see Plakias, Sumensari 2312.14070

![](_page_42_Figure_7.jpeg)

• Rate predictions depend on the hadronic matrix elements

$$\left\langle 0 \left| \frac{1}{2} \left( \bar{u} \gamma^{\alpha} \gamma_{5} u - \bar{d} \gamma^{\alpha} \gamma_{5} d \right) \right| \pi^{0}(P) \right\rangle = i P^{\alpha} f_{\pi}$$

Black et al. hep-ph/0206056

Davidson 2010.00317

 $\left\langle 0 \left| 1/2 \left( \bar{u} \gamma_5 u - \bar{d} \gamma_5 d \right) \right| \pi^0 \right\rangle = \frac{f_\pi m_\pi^2}{(m_u + m_d)}$ 

![](_page_43_Picture_7.jpeg)

• Rate predictions depend on the hadronic matrix elements

$$\left\langle 0 \left| \frac{1}{2} \left( \bar{u} \gamma^{\alpha} \gamma_{5} u - \bar{d} \gamma^{\alpha} \gamma_{5} d \right) \right| \pi^{0}(P) \right\rangle = i P^{\alpha} f_{\pi}$$

$$\frac{Br\left(\tau \to l\pi_{0}\right)}{Br(\tau \to l\bar{\nu}\nu)} = \frac{3\pi^{2}f_{\pi}^{2}}{m_{\tau}^{2}} \frac{\nu^{4}}{\Lambda^{4}} \left| C_{V,XR}^{l\tau uu} - C_{V,XL}^{l\tau uu} - C_{V,XR}^{l\tau dd} + C_{V,XL}^{l\tau dd} \right|^{2} + 24\pi^{2} \left(\frac{m_{\pi_{0}}}{m_{\tau}}\right)^{4} \left(\frac{f_{\pi}}{m_{u} + m_{d}}\right)^{2} \frac{\nu^{4}}{\Lambda^{4}} \left| C_{S,XR}^{l\tau uu} - C_{S,XL}^{l\tau uu} - C_{S,XR}^{l\tau dd} + C_{S,XL}^{l\tau dd} \right|^{2}$$

Black et al. hep-ph/0206056

Davidson 2010.00317

$$\left\langle 0 \left| \frac{1}{2} \left( \bar{u} \gamma_5 u - \bar{d} \gamma_5 d \right) \right| \pi^0 \right\rangle = \frac{f_\pi m_\pi^2}{(m_u + m_d)}$$

![](_page_44_Picture_8.jpeg)

• Rate predictions depend on the hadronic matrix elements

$$\left\langle 0 \left| \frac{1}{2} \left( \bar{u} \gamma^{\alpha} \gamma_{5} u - \bar{d} \gamma^{\alpha} \gamma_{5} d \right) \right| \pi^{0}(P) \right\rangle = i P^{\alpha} f_{\pi}$$

$$\frac{Br\left(\tau \to l\pi_{0}\right)}{Br(\tau \to l\bar{\nu}\nu)} = \frac{3\pi^{2}f_{\pi}^{2}}{m_{\tau}^{2}} \frac{v^{4}}{\Lambda^{4}} \left| C_{V,XR}^{l\tau uu} - C_{V,XL}^{l\tau uu} - C_{V,XR}^{l\tau dd} + C_{V,XL}^{l\tau dd} \right|^{2} + 24\pi^{2} \left(\frac{m_{\pi_{0}}}{m_{\tau}}\right)^{4} \left(\frac{f_{\pi}}{m_{u} + m_{d}}\right)^{2} \frac{v^{4}}{\Lambda^{4}} \left| C_{S,XR}^{l\tau uu} - C_{S,XL}^{l\tau uu} - C_{S,XR}^{l\tau dd} + C_{S,XL}^{l\tau dd} \right|^{2}$$

pseudoscalar current. QCD running is relevant to get numbers right!

Black et al. hep-ph/0206056

Davidson 2010.00317

$$\left\langle 0 \left| 1/2 \left( \bar{u} \gamma_5 u - \bar{d} \gamma_5 d \right) \right| \pi^0 \right\rangle = \frac{f_\pi m_\pi^2}{(m_u + m_d)}$$

• Sensitive to all vector that can mix with the axial current at one-loop, and also marginally to tensors that can mix with the

![](_page_45_Picture_10.jpeg)

• New Physics scale probed by  $\tau$  LFV decays (dimension six SMEFT operators)

![](_page_46_Figure_2.jpeg)

Husek, Monsalvez, Portoles 2009.10428

![](_page_46_Picture_6.jpeg)

• In the process  $\tau \to l \pi \pi$  can distinguish effective operator by looking at the pions invariant mass distribution

• In the process  $\tau \to l \pi \pi$  can distinguish effective operator by looking at the pions invariant mass distribution

$$\mathcal{O}_G = (\bar{\mu} P_X \tau) G^a_{\alpha\beta} G^{a\alpha\beta} *$$

 $\mathcal{O}_S = (\bar{\mu}P_X\tau)(\bar{q}P_Yq)$ 

• In the process  $\tau \to l\pi\pi$  can distinguish effective operator by looking at the pions invariant mass distribution

$$\mathcal{O}_G = (\bar{\mu} P_X \tau) G^a_{\alpha\beta} G^{a\alpha\beta} *$$

\* 
$$\left\langle \pi \pi \left| G^{a}_{\alpha\beta} G^{a\alpha\beta} \right| 0 \right\rangle \neq 0$$
, can receive matching contribution

 $\mathcal{O}_S = (\bar{\mu}P_X\tau)(\bar{q}P_Yq)$ 

ons from Higgs LFV interactions via heavy quark loops

![](_page_49_Figure_7.jpeg)

• In the process  $\tau \to l\pi\pi$  can distinguish effective operator by looking at the pions invariant mass distribution

$$\int_{e_{1}}^{e_{2}} \int_{e_{1}}^{e_{1}} \int_{e_{1}}^{e_{2}} \int_{e_{1}}^{e_{1}} \int_{e_{1}}^$$

$$\mathcal{O}_G = (\bar{\mu} P_X \tau) G^a_{\alpha\beta} G^{a\alpha\beta} *$$

\*  $\left\langle \pi \pi \left| G^a_{\alpha\beta} G^{\alpha\alpha\beta} \right| 0 \right\rangle \neq 0$ , can receive matching contributions from Higgs LFV interactions via heavy quark loops

$$\mathcal{O}_S = (\bar{\mu}P_X\tau)(\bar{q}P_Yq)$$

![](_page_50_Figure_7.jpeg)

![](_page_50_Figure_9.jpeg)

![](_page_51_Picture_0.jpeg)

### • Leptonic decays ( $\tau \rightarrow l_i \gamma, \tau \rightarrow l_i \bar{l}_k l_k, \tau \rightarrow \bar{l}_i l_k l_k$ )

### • Semi-leptonic decays (ex: $\tau \rightarrow \pi l_i$ )

#### • Other processes

![](_page_51_Picture_4.jpeg)

### Outline

![](_page_52_Picture_0.jpeg)

### **Complementarity: Z decays**

- If the  $\tau$  decays happen via Z LFV couplings, they could be probed by  $Z \to \tau l_i$  searches

![](_page_53_Picture_0.jpeg)

### **Complementarity: Z decays**

• If the  $\tau$  decays happen via Z LFV couplings, they could be probed by  $Z \to \tau l_i$  searches

![](_page_54_Picture_0.jpeg)

 $BR(Z \to \tau e) < 5.0 \times 10^{-6}$  $BR(Z \to \tau \mu) < 6.5 \times 10^{-6}$ 

### **Complementarity: Z decays**

LHC current bounds

• If the  $\tau$  decays happen via Z LFV couplings, they could be probed by  $Z \to \tau l_i$  searches

![](_page_55_Figure_0.jpeg)

### **Complementarity: Z decays**

 $BR(Z \to \tau e) < 5.0 \times 10^{-6}$  $BR(Z \to \tau \mu) < 6.5 \times 10^{-6}$ 

- LHC current bounds
- Expect a huge number of Z at the FCC-ee = can compete/outperform the sensitivities of Belle-II for the LFV decays

![](_page_55_Figure_6.jpeg)

• If the  $\tau$  decays happen via Z LFV couplings, they could be probed by  $Z \rightarrow \tau l_i$  searches

## **Complementarity: Higgs decays**

![](_page_56_Figure_1.jpeg)

• If the  $\tau$  decays happen via Higgs LFV couplings, they could be probed by  $h \to \tau l_i$  searches

VS

![](_page_56_Figure_4.jpeg)

 $BR(h \to \tau e) < 0.20\%$  $BR(h \to \tau \mu) < 0.15\%$ 

### **Complementarity: Higgs decays**

![](_page_57_Figure_1.jpeg)

VS

![](_page_57_Figure_3.jpeg)

 $BR(h \to \tau e) < 0.20\%$  $BR(h \to \tau \mu) < 0.15\%$ 

![](_page_57_Figure_6.jpeg)

• If the  $\tau$  decays happen via Higgs LFV couplings, they could be probed by  $h \to \tau l_i$  searches

#### Atlmannshofer et al. 2205.10576

![](_page_58_Picture_0.jpeg)

- the corner
- $\tau$  LFV is interesting because:
  - A. If observed, the new interactions should be relatively large
- are sensitive to  $\tau \rightarrow l_i$  Wilson coefficients if the New Physics scale is around  $\Lambda \sim 10$  TeV
- ulletpossible UV realization

### Conclusion

• LFV is New Physics that must exist because we see it in neutrino oscillations, and could be just around

B. There are numerous processes that one can look for in  $\tau$  decays because of the large phase space

• We can investigate  $\tau$  LFV in the EFT framework by assuming heavy new states. Generally, experiments

• The multitude of processes, together with Dalitz plots, angular and kinematical distributions, allow for a detailed knowledge of the EFT coefficients, with a promising potential to pinpoint particular models

There is an interesting complementarity between high-energy probes that further restrict the space of

### Back-up

### **SMEFT** basis dimension six

|                                                                                                              | $1: X^3$                                                                                                                                           |                                                                                                                                   |          |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| $\begin{array}{ccc} Q_G & J \\ Q_{\widetilde{G}} & J \\ Q_W & \epsilon \\ Q_{\infty} & \epsilon \end{array}$ | $ABC G^{A\nu}_{\mu} G^{\mu}_{\nu}$<br>$ABC \tilde{G}^{A\nu}_{\mu} G^{\mu}_{\nu}$<br>$IJK W^{I\nu}_{\mu} W^{J}_{\nu}$<br>$IJK W^{I\nu} W^{J}_{\nu}$ | $F^{\rho}G^{C\mu}_{\rho}$ $G^{\rho}G^{C\mu}_{\rho}$ $F^{\rho}G^{C\mu}_{\rho}$ $F^{\rho}W^{K\mu}_{\rho}$ $F^{\rho}W^{K\mu}_{\rho}$ | $Q_H$ (H |  |  |  |
| <i>≪w</i>   °                                                                                                | $4: X^2$                                                                                                                                           | Н <sup>2</sup>                                                                                                                    | 6        |  |  |  |
| Q                                                                                                            | $HG = H^{\dagger}H$                                                                                                                                | $G^A_{\mu u}G^{A\mu u}$                                                                                                           | $Q_{eW}$ |  |  |  |
| Q                                                                                                            | $_{H\widetilde{G}}$ $H^{\dagger}H$                                                                                                                 | $\widetilde{G}^A_{\mu \nu} G^{A \mu \nu}$                                                                                         | $Q_{eB}$ |  |  |  |
| $Q_{i}$                                                                                                      | $H^{\dagger}H$                                                                                                                                     | $W^{I}_{\mu\nu}W^{I\mu\nu}$                                                                                                       | $Q_{uG}$ |  |  |  |
| $Q_{j}$                                                                                                      | $H^{\widetilde{W}}$ $H^{\dagger}H$                                                                                                                 | $\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$                                                                                           | $Q_{uW}$ |  |  |  |
| Q                                                                                                            |                                                                                                                                                    | $I B_{\mu\nu} B^{\mu\nu}$                                                                                                         | $Q_{uB}$ |  |  |  |
| Q                                                                                                            | $H\widetilde{B}$ $H^{\dagger}H$                                                                                                                    | $I  \widetilde{B}_{\mu\nu} B^{\mu\nu}$                                                                                            | $Q_{dG}$ |  |  |  |
| $Q_{H}$                                                                                                      | $WB = H^{\dagger} \tau^{I}$                                                                                                                        | $H W^{I}_{\mu\nu}B^{\mu\nu}$                                                                                                      | $Q_{dW}$ |  |  |  |
| $Q_{II}$                                                                                                     | $\widetilde{W}_B \mid H^{\dagger} \tau^I$                                                                                                          | $H \widetilde{W}^{I}_{\mu u} B^{\mu u}$                                                                                           | $Q_{dB}$ |  |  |  |

#### $8:(\bar{L}L)(\bar{L}L)$

| $Q_{ll}$                   | $(l_p \gamma^\mu l_r)(l_s \gamma_\mu l_t)$                            | $Q_{ee}$       | $(\bar{e}_p \gamma^\mu e_r)(\bar{e}_s \gamma_\mu e_t)$          | $Q_{le}$       | $(l_p \gamma^\mu l_r)(\bar{e}_s \gamma_\mu e_t)$                |
|----------------------------|-----------------------------------------------------------------------|----------------|-----------------------------------------------------------------|----------------|-----------------------------------------------------------------|
| $Q_{qq}^{\left(1 ight)}$   | $(\bar{q}_p \gamma^\mu q_r)(\bar{q}_s \gamma_\mu q_t)$                | $Q_{uu}$       | $(\bar{u}_p \gamma^\mu u_r) (\bar{u}_s \gamma_\mu u_t)$         | $Q_{lu}$       | $(\bar{l}_p \gamma^\mu l_r)(\bar{u}_s \gamma_\mu u_t)$          |
| $Q_{qq}^{\left( 3 ight) }$ | $(\bar{q}_p \gamma^\mu \tau^I q_r) (\bar{q}_s \gamma_\mu \tau^I q_t)$ | $Q_{dd}$       | $(d_p \gamma^\mu d_r)(d_s \gamma_\mu d_t)$                      | $Q_{ld}$       | $(l_p \gamma^\mu l_r) (d_s \gamma_\mu d_t)$                     |
| $Q_{lq}^{\left(1 ight)}$   | $(\bar{l}_p \gamma^\mu l_r)(\bar{q}_s \gamma_\mu q_t)$                | $Q_{eu}$       | $(\bar{e}_p \gamma^\mu e_r)(\bar{u}_s \gamma_\mu u_t)$          | $Q_{qc}$       | $(\bar{q}_p \gamma^\mu q_r) (\bar{e}_s \gamma_\mu e_t)$         |
| $Q_{lq}^{\left(3 ight)}$   | $(l_p \gamma^\mu \tau^I l_r) (\bar{q}_s \gamma_\mu \tau^I q_t)$       | $Q_{ed}$       | $(\bar{e}_p \gamma^\mu e_r) (\bar{d}_s \gamma_\mu d_t)$         | $Q_{qu}^{(1)}$ | $(\bar{q}_p \gamma^\mu q_r)(\bar{u}_s \gamma_\mu u_t)$          |
|                            |                                                                       | $Q_{ud}^{(1)}$ | $(\bar{u}_p \gamma^{\mu} u_r) (\bar{d}_s \gamma_{\mu} d_t)$     | $Q_{qu}^{(8)}$ | $(\bar{q}_p \gamma^\mu T^A q_r) (\bar{u}_s \gamma_\mu T^A u_t)$ |
|                            |                                                                       | $Q_{ud}^{(8)}$ | $(\bar{u}_p \gamma^\mu T^A u_r) (\bar{d}_s \gamma_\mu T^A d_t)$ | $Q_{qd}^{(1)}$ | $(\bar{q}_p \gamma^\mu q_r)(\bar{d}_s \gamma_\mu d_t)$          |
|                            |                                                                       |                | Mit                                                             | $Q_{qd}^{(8)}$ | $(\bar{q}_p \gamma^\mu T^A q_r) (\bar{d}_s \gamma_\mu T^A d_t)$ |

| $8:(\bar{L}R)(\bar{R}L) + h.c.$ |                                       | 8:               | $8:(\bar{L}R)(\bar{L}R)+\mathrm{h.c.}$                                              |            | 8:(B)+h.c.                                                                                                |  |
|---------------------------------|---------------------------------------|------------------|-------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------|--|
| $Q_{ledq}$                      | $(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$ | $Q_{quqd}^{(1)}$ | $(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$                                 | $Q_{duql}$ | $\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(d^{\alpha}_{p}Cu^{\beta}_{r})(q^{j\gamma}_{s}Cl^{k}_{t})$      |  |
|                                 |                                       | $Q_{quqd}^{(8)}$ | $(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$                         | $Q_{qque}$ | $\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(q_p^{j\alpha}Cq_r^{k\beta})(u_s^{\gamma}Ce_t)$                 |  |
|                                 |                                       | $Q_{lequ}^{(1)}$ | $(l_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$                                       | $Q_{qqql}$ | $\epsilon_{\alpha\beta\gamma}\epsilon_{mn}\epsilon_{jk}(q_p^{m\alpha}Cq_r^{j\beta})(q_s^{k\gamma}Cl_t^n)$ |  |
|                                 |                                       | $Q_{lequ}^{(3)}$ | $(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$ | $Q_{duuc}$ | $\epsilon_{\alpha\beta\gamma}(d_p^{\alpha}Cu_r^{\beta})(u_s^{\gamma}Ce_t)$                                |  |

| 5      |                | $3:H^4D^2$                                                             | 5:       | $\psi^2 H^3$ + h.c.                             |
|--------|----------------|------------------------------------------------------------------------|----------|-------------------------------------------------|
| $H)^3$ | $Q_{H\square}$ | $(H^{\dagger}H)\Box(H^{\dagger}H)$                                     | $Q_{eH}$ | $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$             |
|        | $Q_{HD}$       | $\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$ | $Q_{uH}$ | $(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$ |
|        |                |                                                                        | $Q_{dH}$ | $(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$             |

#### $\psi^2 XH + \text{h.c.}$

| $\psi^2 X H$ + h.c.                                                 | 7                     | $V:\psi^2H^2D$                                                                          |
|---------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|
| $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$             | $Q_{Hl}^{(1)}$        | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$             |
| $(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$                      | $Q_{Hl}^{(3)}$        | $(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ |
| $(\bar{q}_p \sigma^{\mu \nu} T^A u_r) \widetilde{H} G^A_{\mu \nu}$  | $Q_{He}$              | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$             |
| $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$ | $Q_{Hq}^{(1)}$        | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$             |
| $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$          | $Q_{Hq}^{(3)}$        | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ |
| $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$                | $Q_{Hu}$              | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$             |
| $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$             | $Q_{Hd}$              | $(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$                  |
| $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$                      | $Q_{Hud} + { m h.c.}$ | $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$                      |

#### $8:(\bar{R}R)(\bar{R}R)$

#### $8:(\bar{L}L)(\bar{R}R)$

### Should we expect large(r) $\tau \rightarrow l$ ?

- We know that  $\mu \to e$  is very suppressed  $Br(\mu \to e) \leq 10^{-13} \to 10^{-18}$
- If we see  $\tau \to l$ , then it should be orders of magnitude bigger than  $\mu \to e$

#### Lepton Flavour Triality

![](_page_61_Figure_5.jpeg)

• But also new states that dominantly couple with third generation fermions may lead to larger LFV involving taus

• Perhaps large  $\tau \to l$  is connected to the Flavour Puzzle and residual flavour symmetries at the low energy may favor  $\tau$  LFV

1006.3524

![](_page_61_Figure_11.jpeg)

### Hadronic matrix elements

$$\begin{split} \left[i\,\bar{q}_{i}\,\gamma_{5}\,q_{j}\,\rightarrow\,P\right] &\simeq 2\,B_{0}\,F\,\Omega_{P}^{(1)}(ij) + 2\,\frac{B_{0}}{F}\,\frac{d_{m}^{2}}{M_{P}^{2}}\,m_{K}^{2}\,\Omega_{P}^{(2)}(ij)\,, \\ \left[\bar{q}_{i}\,\gamma_{\mu}\,\gamma_{5}\,q_{j}\,\rightarrow\,P\right] &\simeq -i2\,F\,\Omega_{A}^{(1)}(ij)\,p_{\mu}\,, \\ \left[\bar{q}_{i}\,\gamma_{\mu}\,q_{j}\,\rightarrow\,V\right] &\simeq -2\,F_{V}\,M_{V}\,\Omega_{V}^{(1)}(ij)\,\varepsilon_{\mu}\,, \\ \left[\bar{q}_{i}\,\sigma_{\mu\nu}\,q_{j}\,\rightarrow\,V\right] &\simeq i2\,\frac{T_{V}}{M_{V}}\,\Omega_{T}^{(1)}(ij)\,\left[p_{\mu}\,\varepsilon_{\nu}\,-p_{\nu}\,\varepsilon_{\mu}\,\right)\,, \\ \left[\bar{q}_{i}\,q_{j}\,\rightarrow\,P_{1}\,P_{2}\,\right] &\simeq 2\,B_{0}\,\Omega_{S}^{(1)}(ij)\,\left[1+4\,\frac{L_{5}^{\rm SD}}{F^{2}}\,\left(s\,-m_{1}^{2}-m_{2}^{2}\right)\right] + 2\,\frac{B_{0}}{F^{2}}\,\frac{d_{m}^{2}}{M_{P}^{2}}\,m_{K}^{2}\,\Omega_{S}^{(2)}(ij) \\ &\quad + \frac{B_{0}}{F^{2}}\,c_{m}\,\sum_{S}\,\frac{\Omega_{S}^{(3)}(ij)}{s\,-M_{S}^{2}}\,\left[c_{d}\,\Omega_{S}^{(4)}\,\left(s\,-m_{1}^{2}-m_{2}^{2}\right) + 2\,c_{m}\,m_{K}^{2}\,\Omega_{S}^{(5)}\,\right] \\ &\quad + \frac{3}{F^{2}}\,c_{m}\,\sum_{S}\,\frac{\Omega_{S}^{(2)}(ij)}{M_{T}^{4}}\,\left\{g_{T}\,\Omega_{T}^{(3)}\,\left[(m_{1}^{2}-m_{2}^{2})^{2}\,+M_{T}^{2}\,(m_{1}^{2}+m_{2}^{2})\right. \\ &\quad - s\,(M_{T}^{2}+s)\,\right] + 2\,(2M_{T}^{2}+s)\,\left[\beta\,\Omega_{T}^{(4)}(m_{1}^{2}+m_{2}^{2}-s)\,-2\,\gamma\,m_{K}^{2}\,\Omega_{T}^{(5)}\,\right]\right\}, \\ \left[\bar{q}_{i}\,\gamma_{\mu}\,q_{j}\,\rightarrow\,P_{1}\,P_{2}\,\right] &\simeq \left[2\,\Omega_{V}^{(2)}(ij)\,+\sqrt{2}\,\frac{F_{V}\,G_{V}}{F^{2}}\,\sum_{V}\,\frac{s}{M_{V}^{2}-s}\,\Omega_{V}^{(1)}(ij)\,\Omega_{V}^{(3)}\,\right]\,(p_{1}\,-p_{2})_{\mu} \\ &\quad + \left[\sqrt{2}\,\frac{F_{V}\,G_{V}}{F^{2}}\,(m_{2}^{2}-m_{1}^{2})\,\sum_{V}\,\frac{\Omega_{V}^{(1)}(ij)\,\Omega_{V}^{(3)}}{M_{V}^{2}-s}\,\right]\,(p_{1}^{\mu}\,p_{2}^{\nu}-p_{1}^{\nu}\,p_{2}^{\mu}\,)\,. \end{array}\right] \\ \left[\bar{q}_{i}\,\sigma^{\mu\nu}\,q_{j}\,\rightarrow\,P_{1}\,P_{2}\,\right] &\simeq \frac{i}{F^{2}}\left[-\Lambda_{2}^{\rm SD}\,\Omega_{T}^{(6)}(ij)\,+2\,\sqrt{2}\,G_{V}\,T_{V}\,\sum_{V}\,\frac{\Omega_{T}^{(1)}(ij)\,\Omega_{V}^{(3)}}{M_{V}^{2}-s}\,\right]\,(p_{1}^{\mu}\,p_{2}^{\nu}-p_{1}^{\nu}\,p_{2}^{\mu}\,)\,. \end{split}$$

Husek, Monsalvez, Portoles 2009.10428