LFV from the Seesaw

Enrique Fernández-Martínez

ift

Essential Asymmetries of Nature

Evidence for v mass from oscillations

Evidence for v mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

What we already know (1σ)
SNO, Borexino
"Solar sector" $\left\{\begin{array}{c}\Delta m_{21}^{2}=7.4_{-0.2}^{+0.2} \cdot 10^{-5} \mathrm{eV}^{2} \\ \sin ^{2} \theta_{12}=0.303_{-0.011}^{+0.012}\end{array}\right.$
SK, T2K, IC
MINOS, NOvA
"Atm. sector" $\left\{\begin{array}{c}\left|\Delta m_{31}^{2}\right|=2.50_{-0.03}^{+0.03} \cdot 10^{-3} \mathrm{eV}^{2} \\ \sin ^{2} \theta_{23}=0.57_{-0.02}^{+0.02}\end{array}\right.$
Daya Bay
RENO, T2K, NOvA
$\sin ^{2} \theta_{13}=0.0203 \pm 0.0006$
I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou 2007.14792

The simplest SM extension

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_{f} \bar{f}_{R} \phi f_{L} \xrightarrow[{\langle\phi\rangle=\frac{Y_{f} v}{\sqrt{2}}}]{\langle\mathrm{SSB}} \frac{Y_{f} v}{\sqrt{2}} \bar{f}_{R} f_{L} \quad m_{D}=\frac{Y_{f} v}{\sqrt{2}}
$$

v mass from right-handed neutrinos

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_{f} \bar{f}_{R} \phi f_{L} \xrightarrow[{\langle\phi\rangle=\frac{Y_{f} v}{\sqrt{2}}}]{\stackrel{\mathrm{SSB}}{\sqrt{2}}} \frac{Y_{f} v}{\sqrt{2}} \bar{f}_{R} f_{L} \quad m_{D}=\frac{Y_{f} v}{\sqrt{2}}
$$

Simplest option add N_{R} : a Majorana mass is also allowed

$$
M_{N} \bar{N}_{R} N_{R}^{c}
$$

v mass from right-handed neutrinos

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_{f} \bar{f}_{R} \phi f_{L} \xrightarrow[{\langle\phi\rangle=\frac{Y_{f} v}{\sqrt{2}}}]{\mathrm{SSB}} \frac{Y_{f} v}{\sqrt{2}} \bar{f}_{R} f_{L} \quad m_{D}=\frac{Y_{f} v}{\sqrt{2}}
$$

Simplest option add N_{R} : a Majorana mass is also allowed

$$
m_{v}=\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & M_{N}
\end{array}\right) \xrightarrow{M_{N} \bar{N}_{R} N_{R}^{c}}
$$

v mass from right-handed neutrinos

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_{f} \bar{f}_{R} \phi f_{L} \xrightarrow[{\langle\phi\rangle=\frac{Y_{f} v}{\sqrt{2}}}]{\mathrm{SSB}} \frac{Y_{f} v}{\sqrt{2}} \bar{f}_{R} f_{L} \quad m_{D}=\frac{Y_{f} v}{\sqrt{2}}
$$

Simplest option add N_{R} : a Majorana mass is also allowed

$$
m_{v}=\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & M_{N}
\end{array}\right) \xrightarrow[\text { Seesaw }]{M_{N} \bar{N}_{R} N_{R}^{c}} U^{t}\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & M_{N}
\end{array}\right) U=\left(\begin{array}{cc}
m & 0 \\
0 & M
\end{array}\right)
$$

If $M_{N} \gg m_{D}$ then $M_{\uparrow} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$

v mass from right-handed neutrinos

$$
m_{v}=\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & M_{N}
\end{array}\right) \underset{\text { Seesaw }}{\longrightarrow} U^{t}\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & M_{N}
\end{array}\right) U=\left(\begin{array}{cc}
m & 0 \\
0 & M
\end{array}\right)
$$

If $M_{N} \gg m_{D}$ then $M_{\perp} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$

v mass from right-handed neutrinos

$m_{v}=\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) \xrightarrow[\text { Seesaw }]{ } U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$

If $M_{N} \gg m_{D}$ then $M_{A} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$
Or in EFT language integrating out the heavy neutrinos gives:

v mass from right-handed neutrinos

$m_{v}=\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) \xrightarrow[\text { Seesaw }]{ } U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$

If $M_{N} \gg m_{D}$ then $M_{A} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$
Or in EFT language integrating out the heavy neutrinos gives:

$$
d=5 \text { Weinberg } 1979
$$

$$
Y_{v}^{t} M_{N}^{-1} Y_{v}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right)
$$

v mass from right-handed neutrinos

$m_{v}=\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) \xrightarrow[\text { Seesaw }]{ } U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$

If $M_{N} \gg m_{D}$ then $M_{A} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$
Or in EFT language integrating out the heavy neutrinos gives:

$$
d=5 \text { Weinberg } 1979
$$

$$
\begin{gathered}
Y_{v}^{t} M_{N}^{-1} Y_{v}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
\downarrow\langle\phi\rangle=\frac{v}{\sqrt{2}} \\
m_{D}^{t} M_{N}^{-1} m_{D} \overline{v_{L}^{c}} v_{L}
\end{gathered}
$$

v mass from right-handed neutrinos

$m_{v}=\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) \xrightarrow[\text { Seesaw }]{ } U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$

If $M_{N} \gg m_{D}$ then $M_{A} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$
Or in EFT language integrating out the heavy neutrinos gives:

$$
\left.\begin{array}{cc}
\mathrm{d}=5 \text { Weinberg } 1979 & \mathrm{~d}=6 \text { A. Broncano, B. Gavela and E. Jenkins } \\
\text { hep-ph/0210271 }
\end{array}\right] \begin{array}{cc}
Y_{v}^{t} M_{N}^{-1} Y_{v}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) & Y_{v}^{\dagger} M_{N}^{-2} Y_{v}\left(\overline{L_{L}} \tilde{\phi}\right) \nsupseteq\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
\downarrow\langle\phi\rangle=\frac{v}{\sqrt{2}} & \\
m_{D}^{t} M_{N}^{-1} m_{D} \overline{v_{L}^{c}} v_{L} &
\end{array}
$$

v mass from right-handed neutrinos

$m_{v}=\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) \xrightarrow[\text { Seesaw }]{ } U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$

If $M_{N} \gg m_{D}$ then $M_{t} \approx M_{N}$ and $m \approx m_{D}^{t} M_{N}^{-1} m_{D} \rightarrow$ lightness of v small mixing $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$
Or in EFT language integrating out the heavy neutrinos gives:

$$
\begin{array}{cc}
\mathrm{d}=5 \text { Weinberg } 1979 & \mathrm{~d}=6 \text { A. Broncano, B. Gavela and E. Jenkins } \\
\text { hep-ph/0210271 } \\
Y_{v}^{t} M_{N}^{-1} Y_{v}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) & Y_{v}^{\dagger} M_{N}^{-2} Y_{v}\left(\overline{L_{L}} \tilde{\phi}\right) \nsupseteq\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
\left\lvert\,\langle\phi\rangle=\frac{v}{\sqrt{2}}\right. & \left\lfloor\langle\phi\rangle=\frac{v}{\sqrt{2}}\right. \\
m_{D}^{t} M_{N}^{-1} m_{D} \overline{v_{L}^{c}} v_{L} & \Theta \Theta^{\dagger} \overline{v_{L}} \not \partial v_{L}
\end{array}
$$

A lower seesaw scale

But a very high M_{N} leads to the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

A lower seesaw scale

But a very high M_{N} leads to the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

$$
\begin{aligned}
& m_{D} \bar{N}_{R} v_{L}+M_{N} \bar{N}_{R} N_{L} \\
& \left(\begin{array}{ccc}
0 & m_{D}^{t} & 0 \\
m_{D} & 0 & M_{N} \\
0 & M_{N} & 0
\end{array}\right)
\end{aligned}
$$

G. C. Branco, W. Grimus, and L. Lavoura 1988
J. Kersten and
A. Y. Smirnov 0705.3221

Low $\quad M \approx M_{N}$ and large $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$ even if vanishing $m_{v}=0$

A lower seesaw scale

But a very high M_{N} leads to the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

$$
m_{D} \bar{N}_{R} v_{L}+M_{N} \bar{N}_{R} N_{L}+\mu \bar{N}_{L}^{c} N_{L}
$$

$$
\left(\begin{array}{ccc}
0 & m_{D}^{t} & 0 \\
m_{D} & 0 & M_{N} \\
0 & M_{N} & \mu
\end{array}\right)
$$

> "inverse Seesaw"
> R. Mohapatra and J. Valle 1986

Low $M \approx M_{N} \pm \frac{\mu}{2}$ and large $\Theta \approx m_{D}^{\dagger} M_{N}^{-1}$ even if small $m_{v} \approx \mu \frac{m_{D}^{2}}{M_{N}^{2}}$

Looking for N_{R} : Non-Unitarity

$U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U \approx\left(\begin{array}{cc}N^{t} & -\Theta^{*} \\ \Theta^{t} & X^{t}\end{array}\right)\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right)\left(\begin{array}{cc}N & \Theta \\ -\Theta^{\dagger} & X\end{array}\right)=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$
The 3×3 submatrix N of active neutrinos will not be unitary

Effects in weak interactions...

Looking for N_{R} : Non-Unitarity

$U^{t}\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right) U \approx\left(\begin{array}{cc}N^{t} & -\Theta^{*} \\ \Theta^{t} & X^{t}\end{array}\right)\left(\begin{array}{cc}0 & m_{D}^{t} \\ m_{D} & M_{N}\end{array}\right)\left(\begin{array}{cc}N & \Theta \\ -\Theta^{\dagger} & X\end{array}\right)=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$
The 3×3 submatrix N of active neutrinos will not be unitary

Effects in weak interactions...
When the W and Z are integrated out to obtain the Fermi theory neutrino NSI are recovered
see e.g. M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637 for the dictionary

Looking for N_{R} : Non-Unitarity

G_{F} from μ decay is affected!

Looking for N_{R} : Non-Unitarity

G_{F} from μ decay is affected!

But this agrees at $\sim 10^{-3}$ with G_{F} from M_{W} (modulo CDF), measurents of $\sin \theta_{W}$ from LEP, Tevatron and LHC and β and K decays (modulo Cabibbo)

Looking for N_{R} : Non-Unitarity

G_{F} from μ decay is affected!

$$
G_{\mu}=G_{F}\left(N N^{\dagger}\right)_{e e}\left(N N^{\dagger}\right)_{\mu \mu}
$$ ratios:

From ratios of π, K, and lepton decays

But this agrees at $\sim 10^{-3}$ with G_{F} from M_{W} (modulo CDF), measurents of $\sin \theta_{W}$ from LEP, Tevatron and LHC and β and K decays (modulo Cabibbo)

Looking for N_{R} : Non-Unitarity

G_{F} from μ decay is affected!

$$
G_{\mu}=G_{F}\left(N N^{\dagger}\right)_{e e}\left(N N^{\dagger}\right)_{\mu \mu}
$$

But this agrees at $\sim 10^{-3}$ with

LFU also strong bounds on ratios:

From ratios of $\pi_{,} K$, and lepton decays

Also the invisible width of the Z since NC are also affected G_{F} from M_{W} (modulo CDF), measurents of $\sin \theta_{W}$ from LEP, Tevatron and LHC and β and K decays (modulo Cabibbo)

Looking for N_{R} : Non-Unitarity

G_{F} from μ decay is affected!

$$
G_{\mu}=G_{F}\left(N N^{\dagger}\right)_{e e}\left(N N^{\dagger}\right)_{\mu \mu}
$$

But this agrees at $\sim 10^{-3}$ with

LFU also strong bounds on ratios:

From ratios of $\pi_{r} K_{\text {, }}$ and lepton decays

Also the invisible width of the Z since NC are also affected G_{F} from M_{W} (modulo CDF), measurents of $\sin \theta_{w}$ from LEP, And LFV processes such as Tevatron and LHC and β and $K \mu e \gamma$ or $\tau \rightarrow e \gamma$ since the decays (modulo Cabibbo) GIM cancellation is lost

Looking for N_{R} : Non-Unitarity

Bounds from a global fit to flavour and Electroweak precision 95\% CL LFC LFV

$\eta_{e e}=\frac{1}{2} \sum_{k}\left\|\Theta_{e k}\right\|^{2}$	$[0.081,1.4] \cdot 10^{-3}$	-
$\eta_{\mu \mu}$	$1.4 \cdot 10^{-4}$	-
$\eta_{\tau \tau}$	$8.9 \cdot 10^{-4}$	-
$\operatorname{Tr}[\eta]$	$2.1 \cdot 10^{-3}$	-
$\left\|\eta_{e \mu}\right\|$	$3.4 \cdot 10^{-4}$	$\mathbf{1 . 2} \cdot \mathbf{1 0} 0^{-\mathbf{5}}$
$\left\|\eta_{e \tau}\right\|$	$\mathbf{8 . 8} \cdot \mathbf{1 0} \mathbf{0}^{-\mathbf{4}}$	$8.1 \cdot 10^{-3}$
$\left\|\eta_{\mu \tau}\right\|$	$\mathbf{1 . 8} \cdot \mathbf{1 0} \mathbf{0}^{-\mathbf{4}}$	$9.4 \cdot 10^{-3}$

$$
\begin{aligned}
& N=(\mathbb{I}-\eta) U \\
& \eta=\frac{\Theta \Theta^{\dagger}}{2} \Theta \approx m_{D}^{\dagger} \\
& \text { J. Hernandez-Garcia, } \\
& \text { J. Lopez-Pavon } \\
& \text { X. Marcano and } \\
& \text { D. Naredo-Tuero } \\
& 2306.01040
\end{aligned}
$$

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hepph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823...

Looking for N_{R} : Non-Unitarity

Bounds from a global fit to flavour and Electroweak precision

$95 \% \mathrm{CL}$	LFC	LFV
$\eta_{e e}=\frac{1}{2} \sum_{k}\left\|\Theta_{e k}\right\|^{2}$	$[0.081,1.4] \cdot 10^{-3}$	-
$\eta_{\mu \mu}$	$1.4 \cdot 10^{-4}$	-
$\eta_{\tau \tau}$	$8.9 \cdot 10^{-4}$	-
$\operatorname{Tr}[\eta]$	$2.1 \cdot 10^{-3}$	-
$\left\|\eta_{e \mu}\right\|$	$3.4 \cdot 10^{-4}$	$\mathbf{1 . 2} \cdot \mathbf{1 0}^{-\mathbf{5}}$
$\left\|\eta_{e \tau}\right\|$	$\mathbf{8 . 8 \cdot 1 0 ^ { - \mathbf { 4 } }}$	$8.1 \cdot 10^{-3}$
$\left\|\eta_{\mu \tau}\right\|$	$\mathbf{1 . 8} \cdot \mathbf{1 0}^{-\mathbf{4}}$	$9.4 \cdot 10^{-3}$

$$
\eta=\frac{\infty}{2}
$$

LFC constraints dominate over LFV in τ sector since η is positive definite
M. Blennow, EFM, J. Hernandez-Garcia, J. Lopez-Pavon X. Marcano and
D. Naredo-Tuero 2306.01040

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hepph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823...

Looking for N_{R} : Non-Unitarity

Bounds from a global fit to flavour and Electroweak precision

2σ preference
for mixing with electrons ~ 0.03
M. Blennow, EFM,
J. Hernandez-Garcia, J. Lopez-Pavon X. Marcano and
D. Naredo-Tuero 2306.01040

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hepph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823...

v mass from type III Seesaw

Add heavy fermion triplets $\overrightarrow{\Sigma_{R}}$ with $\quad Y_{\Sigma} \overrightarrow{L_{L}} \vec{\tau} \tilde{\phi} \overrightarrow{\Sigma_{R}}$
Integrating out the heavy triplets gives:

```
d=5 Weinberg 1979
```

$$
\begin{gathered}
Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}
\end{gathered}
$$

v mass from type III Seesaw

Add heavy fermion triplets $\overrightarrow{\Sigma_{R}}$ with $\quad Y_{\Sigma} \overrightarrow{L_{L}} \vec{\tau} \tilde{\phi} \overrightarrow{\Sigma_{R}}$
Integrating out the heavy triplets gives:

$$
\begin{array}{cc}
\mathrm{d}=5 \text { Weinberg } 1979 & \begin{array}{c}
\text { d=6 A. Abada, C. Biggio, F. Bonnet, } \\
\text { B. Gavela and T. Hambye 0707.4058 } \\
Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{L_{L}} \vec{\tau} \tilde{\phi}\right) \not D\left(\tilde{\phi}^{\dagger} \vec{\tau} L_{L}\right) \\
m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}
\end{array} \\
\langle\phi\rangle=\frac{v}{\sqrt{2}} &
\end{array}
$$

v mass from type III Seesaw

Add heavy fermion triplets $\overrightarrow{\Sigma_{R}}$ with $\quad Y_{\Sigma} \overrightarrow{L_{L}} \vec{\tau} \tilde{\phi} \overrightarrow{\Sigma_{R}}$
Integrating out the heavy triplets gives:
d=5 Weinberg 1979
$Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right)$
$\downarrow\langle\phi\rangle=\frac{v}{\sqrt{2}}$
$m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}$
d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{L_{L}} \vec{\tau} \tilde{\phi}\right) \not D\left(\tilde{\phi}^{\dagger} \vec{\tau} L_{L}\right)
$$

Modifies

$$
\langle\phi\rangle=\frac{v}{\sqrt{2}}
$$ kinnetic terms

v mass from type III Seesaw

Add heavy fermion triplets $\overrightarrow{\Sigma_{R}}$ with $\quad Y_{\Sigma} \overrightarrow{L_{L}} \vec{\tau} \tilde{\phi} \overrightarrow{\Sigma_{R}}$
Integrating out the heavy triplets gives:

$$
\begin{gathered}
\text { d=5 Weinberg } 1979 \\
Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) \\
\left\lvert\,\langle\phi\rangle=\frac{v}{\sqrt{2}}\right. \\
m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}
\end{gathered}
$$ d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{L_{L}} \vec{\tau} \tilde{\phi}\right) \not D\left(\tilde{\phi}^{\dagger} \vec{\tau} L_{L}\right)
$$

Modifies v kinnetic terms

Modifies l kinnetic terms

v mass from type III Seesaw

Add heavy fermion triplets $\overrightarrow{\Sigma_{R}}$ with $\quad Y_{\Sigma} \overrightarrow{L_{L}} \vec{\tau} \tilde{\phi} \overrightarrow{\Sigma_{R}}$
Integrating out the heavy triplets gives:
d=5 Weinberg 1979

$$
Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right)
$$

$$
\left\lvert\,\langle\phi\rangle=\frac{v}{\sqrt{2}}\right.
$$

$$
m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}
$$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{L_{L}} \vec{\tau} \tilde{\phi}\right) \not D\left(\tilde{\phi}^{\dagger} \vec{\tau} L_{L}\right)
$$

Modifies couplings to the W

Non-unitarity in type I vs type III Seesaw

Type I

$Y_{v}^{\dagger} M_{N}^{-2} Y_{v}\left(\overline{L_{L}} \tilde{\phi}\right) \nexists\left(\tilde{\phi}^{\dagger} L_{L}\right)$

Non-unitarity in type I vs type III Seesaw

Type I

$Y_{v}^{\dagger} M_{N}^{-2} Y_{v}\left(\overline{L_{L}} \tilde{\phi}\right) \not \partial\left(\tilde{\phi}^{\dagger} L_{L}\right)$

Type III

$$
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{\left.L_{L} \vec{\tau} \tilde{\phi}\right) \dot{ }} \dot{\phi^{\dagger} \vec{\tau} L_{L}}\right)
$$

$$
\varepsilon=\frac{m_{\Sigma}^{\dagger} M_{\Sigma}^{-2} m_{\Sigma}}{2}
$$

Non-unitarity in type I vs type III Seesaw

Type I

$Y_{v}^{\dagger} M_{N}^{-2} Y_{v}\left(\overline{L_{L}} \tilde{\phi}\right) \not\left(\tilde{\phi}^{\dagger} L_{L}\right)$

$$
Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma}\left(\overline{L_{L}} \vec{\tau} \tilde{\phi}\right) \not D\left(\tilde{\phi}^{\dagger} \vec{\tau} L_{L}\right)
$$

Type III

$$
\varepsilon=\frac{m_{\Sigma}^{\dagger} M_{\Sigma}^{-2} m_{\Sigma}}{2}
$$

Non-unitarity in type I vs type III Seesaw

Non-unitarity in type I + type III Seesaw

If contributions from both Type I and III are present the nonunitary contribution is no longer definite

With extra freedom is a posible solution to the Cabibbo anomaly A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823

And LFV becomes independent of LFC constraints

GUV	LFC Bound			LFV Bound	
	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$		$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$
$\eta_{e e}$	$[0.56,1.29] \cdot 10^{-3}$	$[0.20,1.65] \cdot 10^{-3}$	$\left\|\eta_{e \mu}\right\|$	$5.0 \cdot 10^{-6}$	$7.2 \cdot 10^{-6}$
$\eta_{\mu \mu}$	$[-8.2,-3.3] \cdot 10^{-4}$	$[-1.1,-0.088] \cdot 10^{-3}$	$\left\|\eta_{e \tau}\right\|$	$3.4 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$
$\eta_{\tau \tau}$	$[-2.2,-0.38] \cdot 10^{-3}$	$[-3.1,0.56] \cdot 10^{-3}$	$\left\|\eta_{\mu \tau}\right\|$	$4.0 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$

M. Blennow, EFM, J. Hernandez-Garcia, J. Lopez-Pavon X. Marcano and D. Naredo-Tuero 2306.01040

Bound on type III Seesaw

But very strong bounds on type III from FCNC at tree level

		$\begin{aligned} & Z \rightarrow \mu e \\ & Z \rightarrow \tau e \\ & Z \rightarrow \tau \mu \end{aligned}$	$\begin{aligned} & \left\|\eta_{\mu e}\right\|<8.5 \cdot 10^{-4}[45] \\ & \left\|\eta_{\tau e}\right\|<3.1 \cdot 10^{-3}[45] \\ & \left\|\eta_{\tau \mu}\right\|<3.4 \cdot 10^{-3}[45] \end{aligned}$
		$h \rightarrow \mu e$	$\left\|\eta_{\mu e}\right\|<0.54$ [45]
$\mu \rightarrow e(\mathrm{Ti})$	$\left\|\eta_{\mu e}\right\|<\mathbf{3 . 0} \cdot \mathbf{1 0}^{-\mathbf{7}}[53]$	$h \rightarrow \tau e$	$\left\|\eta_{\tau e}\right\|<0.14$ [45]
$\mu \rightarrow$ eee	$\left\|\eta_{\mu e}\right\|<8.7 \cdot 10^{-7}[45]$	$h \rightarrow \tau \mu$	$\left\|\eta_{\tau \mu}\right\|<0.20$ [45]
$\tau \rightarrow e e e$	$\left\|\eta_{\tau e}\right\|<3.4 \cdot 10^{-4}[45]$	$\mu \rightarrow e \gamma$	$\left\|\eta_{\mu e}\right\|<1.1 \cdot 10^{-5}[45]$
$\tau \rightarrow \mu \mu \mu$	$\left\|\eta_{\tau \mu}\right\|<3.0 \cdot 10^{-4}[45]$	$\tau \rightarrow e \gamma$	$\left\|\eta_{\text {Te }}\right\|<7.2 \cdot 10^{-3}[45]$
$\tau \rightarrow e \mu \mu$	$\left\|\eta_{\tau e}\right\|<3.0 \cdot 10^{-4}[45]$	$\tau \rightarrow \mu \gamma$	$\left\|\eta_{\tau \mu}\right\|<8.4 \cdot 10^{-3}[45]$
$\tau \rightarrow \mu e e$	$\left\|\eta_{\tau \mu}\right\|<2.5 \cdot 10^{-4}[45]$	$\begin{aligned} & \text { siggio, EF } \\ & \text { cia, J. Lo } \end{aligned}$	Filaci J. Hernandezavon 1911.11790

The type II Seesaw

Add heavy scalar triplets $\vec{\Delta}$ with $Y_{\Delta} \overline{L_{L}} \vec{\tau} \varepsilon L_{L}^{c} \vec{\Delta}+\mu_{\Delta} \phi^{\dagger} \vec{\tau} \tilde{\phi} \vec{\Delta}$ Integrating out the heavy triplets gives:

$$
\begin{array}{cc}
\mathrm{d}=5 \text { Weinberg } 1979 & \begin{array}{c}
\text { d=6 A. Abada, C. Biggio, F. Bonnet, } \\
\text { B. Gavela and T. Hambye 0707.4058 }
\end{array} \\
4 Y_{\Delta} \mu_{\Delta} M_{\Delta}^{-2}\left(\overline{L_{L}^{c}} \tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger} L_{L}\right) & Y_{\Delta} Y_{\Delta}^{\dagger} M_{\Delta}^{-2}\left(\overline{L_{L}} \gamma_{\mu} L_{L}\right)\left(\overline{L_{L}} \gamma^{\mu} L_{L}\right)
\end{array}
$$

If μ_{Δ} is small L is approximately conserved and the $L N V d=5$ is suppressed but the LFV d=6 operator may be sizable

Leading constraints from d=6 4-lepton LFV operators

Type II Seesaw LFV

$\left(\begin{array}{l}c_{e \mu L}^{e e L V} \\ c_{e \tau L}^{e e L V} \\ c_{\mu \tau L}^{\mu \mu L V} \\ c_{e \tau L}^{\mu \mu L V} \\ c_{\mu \tau L}^{e e L V} \\ c_{e \tau L}^{e \mu L V} \\ c_{\mu \tau L}^{\mu e L V}\end{array}\right)<\left(\begin{array}{l}6.2 \times 10^{-6} \\ 2.4 \times 10^{-3} \\ 2.1 \times 10^{-3} \\ 2.0 \times 10^{-3} \\ 2.0 \times 10^{-3} \\ 1.8 \times 10^{-3} \\ 1.9 \times 10^{-3}\end{array}\right)$

Bounds from LFV τ decays probing close to 10 TeV and $\mu \rightarrow 3 \mathrm{e}$ close to 100 TeV
EFM, X. Marcano, D. Naredo-Tuero 2403.09772 bounds and correlations available at https://github.com/dnaredo/cLFV GlobalBounds

Type II Seesaw LFV

 scenario (no flat directions) EFM, X. Marcano, D. Naredo-Tuero 2403.09772 bounds and correlations available at https://github.com/dnaredo/cLFV GlobalBounds

LFV semileptonic operators

LFV semileptonic operators

```
                |C|\frac{\mp@subsup{v}{}{2}}{\mp@subsup{\Lambda}{}{2}}
For 4-fermion semileptonic operators many posible flat directions may be present in general prevent to set fully global constraints
EFM, X. Marcano,
D. Naredo-Tuero 2403.09772
```



``` available at
```


LFV semileptonic operators

SMEFT global bounds with u, d, s quarks
Situation
improves if
only operators
from low
energy d=6
SMEFT are
considered

EFM, X. Marcano, D. Naredo-Tuero 2403.09772

LFV semileptonic operators

SMEFT global bounds with u, d, s quarks
Situation
improves if
only operators
from low
energy d=6
SMEFT are
considered

EFM, X. Marcano,
D. Naredo-Tuero 2403.09772 bounds and correlations ${ }^{c_{d}^{\prime \prime}}$ available at

LFV semileptonic operators

SMEFT global bounds with u, d quarks Situation improves if only operators from low energy $d=6$ SMEFT are considered and for only couplings with u and d

EFM, X. Marcano,
D. Naredo-Tuero
2403.09772
bounds and correlations ${ }^{c^{u \beta L}}$ available at
10^{-2}
10^{-4}
10^{-6}
10^{-8}

Conclusions

- Neutrino oscillations require neutrino masses and LFV
- The simplest extension, right-handed neutrinos, induces LFV but LFC constraints presently dominate in the τ sector
- Together with type III may solve the Cabibbo anomaly but strong bounds from LFV leptonic decays need to be avoided
- Type II and type III both induce d=6 ops with LFV leptonic decays at tree level and LFV constraints are very relevant
- In a global EFT perspective semileptonic decays suffer from flat directions and additional information would be useful

Non-unitarity and M_{W} from CDF

M. Blennow, P. Coloma, EFM, M-González-Lopez Phys.Rev.D 106 (2022) 7

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in:
D.V. Forero, S. Morisi,
M. Tortola, J.W.F. Valle 1107.6009

$$
\Gamma \propto \sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger} f\left(\frac{M_{i}^{2}}{M_{W}^{2}}\right)
$$

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in:
D.V. Forero, S. Morisi,
M. Tortola, J.W.F. Valle 1107.6009

$$
\Gamma \propto \sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger} f\left(\frac{M_{i}^{2}}{M_{W}^{2}}\right)=2 \eta_{e \mu} f(\infty)+\sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger}\left(f\left(\frac{M_{i}^{2}}{M_{W}^{2}}\right)-f(\infty)\right)
$$

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

LNV at colliders

If the HNLs are pseudoDirac, LNV signals should be very supressed

LNV at colliders

If the HNLs are pseudoDirac, LNV signals should be very supressed
But, if $\Delta \mathrm{M} \gg \Gamma$ they will oscillate many times between the two states before decaying, breaking the coherence and the supression of LNV S. Antusch, E. Cazzato, and O. Fischer 1709.03797; M. Drewes, J. Klarić, and P. Klose 1907.13034; J. Gluza and T. Jeliński 1504.05568; P. S. Bhupal Dev and R. N. Mohapatra 1508.02277; G. Anamiati, M. Hirsch, and E. Nardi 1607.05641; A. Das, P. S. B. Dev, and R. N. Mohapatra 1709.06553

LNV at colliders

If the HNLs are pseudoDirac, LNV signals should be very supressed
But, if $\Delta \mathrm{M} \gg \Gamma$ they will oscillate many times between the two states before decaying, breaking the coherence and the supression of LNV

Could allow to distinguish between low scale Seesaw models!

v oscillations

Interaction

Basis

Mass Basis

$$
\begin{aligned}
& \left|v_{e}\right\rangle \\
& \left|v_{\mu}\right\rangle \\
& \left|v_{\tau}\right\rangle \\
& U_{P M N S} \\
& \left|v_{1}\right\rangle \mathrm{m}_{1} \\
& \left|v_{2}\right\rangle \quad \mathrm{m}_{2} \\
& \left|v_{3}\right\rangle \mathrm{m}_{3} \\
& \left|v_{\alpha}\right\rangle=U_{\alpha i}^{*}\left|v_{i}\right\rangle \quad \text { with } \alpha=e, \mu, \tau \quad i=1,2,3
\end{aligned}
$$

Atmospheric
Solar Majorana Phases

$$
\begin{gathered}
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{2} / 2} & 0 \\
0 & 0 & e^{i \alpha_{3} / 2}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j} \quad P_{\alpha \beta}=\sin ^{2} 2 \theta_{i j} \sin ^{2} \frac{\Delta m_{i j}^{2}}{4 L}
\end{gathered}
$$

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

What we already know (1σ)
SNO, Borexino KamLAND

$$
\text { "Solar sector" }\left\{\begin{array}{c}
\Delta m_{21}^{2}=7.4_{-0.2}^{+0.2} \cdot 10^{-5} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{12}=0.303_{-0.011}^{+0.012}
\end{array}\right.
$$

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou 2007.14792

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou 2007.14792

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

What we already know (1σ)
SNO, Borexino KamLAND
"Solar sector" $\left\{\begin{array}{c}\Delta m_{21}^{2}=7.4_{-0.2}^{+0.2} \cdot 10^{-5} \mathrm{eV}^{2} \\ \sin ^{2} \theta_{12}=0.303_{-0.011}^{+0.012}\end{array}\right.$
SK, T2K, IC MINOS, NOvA

$$
\text { "Atm. sector" }\left\{\begin{array}{c}
\left|\Delta m_{31}^{2}\right|=2.50_{0-0.03}^{+0.03} \cdot 10^{-3} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{23}=0.57_{-0.02}^{+0.02}
\end{array}\right.
$$

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou 2007.14792

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

SNO, Borexir KamLAND SK, T2K, IC MINOS, NOv
I. Esteban, M. C.

$$
\begin{aligned}
& 10^{-5} \mathrm{eV}^{2} \\
& 3_{-0.011}^{+0.012} \\
& 03 \cdot 10^{-3} \mathrm{eV}^{2} \\
& 03 \cdot 57_{-0.02}^{+0.02}
\end{aligned}
$$

Zhou 2007.14792

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

What we already know (1σ)
SNO, Borexino
"Solar sector" $\left\{\begin{array}{c}\Delta m_{21}^{2}=7.4_{-0.2}^{+0.2} \cdot 10^{-5} \mathrm{eV}^{2} \\ \sin ^{2} \theta_{12}=0.303_{-0.011}^{+0.012}\end{array}\right.$
SK, T2K, IC
MINOS, NOvA
"Atm. sector" $\left\{\begin{array}{c}\left|\Delta m_{31}^{2}\right|=2.50_{-0.03}^{+0.03} \cdot 10^{-3} \mathrm{eV}^{2} \\ \sin ^{2} \theta_{23}=0.57_{-0.02}^{+0.02}\end{array}\right.$
Daya Bay
RENO, T2K, NOvA
$\sin ^{2} \theta_{13}=0.0203 \pm 0.0006$
I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou 2007.14792

Evidence for v mass from oscillations

Evidence for v mass and mixing from oscillation phenomenon in many experiments with great agreement

Funding

This work was supported by: PID2019-108892RB-100 PID2022-137127NB-100 CEX2020-001007-S 860881-HiDDeN 101086085-ASYMMETRY

HIDDe 1
Hunting Invisibles: Dark sectors, Dark matter and Neutrinos As Yymmetry
Essential Asymmetries of Nature

EXCELENCIA SEVERO OCHOA

