NEW PHYSICS MODELS GIVING RISE TO LFV (INVOLVING LEPTOQUARKS)

Nejc Košnik

||.4.2024

OUTLINE

- Leptoquarks and flavour symmetries
- Radiative vs. leptonic vs. semileptonic LFV decays
- Examples: $\tau \rightarrow \mu$ transitions Vs. Higgs LFV decays / flavour anomalies
- Relation to lepton number violation
- Conclusions

Nejc Košnik, τ LFV workshop, 11.4.2024

LEPTOQUARKS

New scalar or vector states with renormalizable coupling to lepton and quark

	-		
(SU(3),SU(2),U(1))	Spin	Symbol	Type
$(\overline{3},3,1/3)$	0	S_3	$LL\left(S_{1}^{L} ight)$
$({f 3},{f 2},7/6)$	0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$	$RL(ilde{S}_{1/2}^L),\overline{LR}(ilde{S}_{1/2}^{\overline{L}})$
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$	$\hat{R}R\left(ilde{S}_{0}^{R} ight)$,
$(\overline{3},1,1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RI}$
$(\overline{3},1,-2/3)$	0	$ar{S}_1$	$\overline{RR}(ar{S}_0^{\overline{R}})$
(3, 3, 2/3)	1	U_3	$LL(V_1^L)$
$(\overline{3},2,5/6)$	1	V_2	$RL(V_{1/2}^L),LR(V_{1/2}^R)$
$(\overline{3},2,-1/6)$	1	$ ilde{V}_2$	$RL(ilde{V}_{1/2}^{L}),\overline{LR}(ilde{V}_{1/2}^{\overline{R}})$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$	$\hat{R}R\left(ilde{V}_{0}^{R} ight)$,
$({f 3},{f 1},2/3)$	1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RI}$
$({f 3},{f 1},-1/3)$	1	$ar{U}_1$	$\overline{RR}(ar{V}_0^{\overline{R}})$

[Dorsner et al, 1603.04993]

Main features

- LQs are color triplets produced in pairs at the LHC
- F = 3B+L is a fermion number of LQ
- LQs with F=2 can couple also to two quarks and break baryon and lepton number, B and L

diquark coupling should be suppressed

• F = 0 states have well defined B and L - proton is stable*

*in scenarios with several LQ states B and/or L can be broken by scalar potential terms

Nejc Košnik, τ LFV workshop, 11.4.2024

LEPTOQUARKS AND THEIR NUMBERS

Scalar LQ Yukawa couplings

$$\mathscr{L}_{R_2-\mathrm{Yuk}} = y_R^{ij} \bar{Q}_i^a e_j R_2^a + y_L^{ij} \bar{u}_{Ri} R_2^{T,a} \epsilon^{ab} L_j^b$$

F = 0

baryon num. = 1/3, lepton num. = -1

baryon num. =
$$1/3$$
, lepton num. = 1
or
baryon num. = $2/3$, lepton num. = 0 ?

 \Rightarrow *B* and *L* are broken, B-L still conserved*

Nejc Košnik, au LFV workshop, 11.4.2024

* Since $q\ell$ and $\bar{q}\bar{q}$ both have equal B-L=-2/3

LEPTOQUARKS AND FLAVOR

Lepton flavour:kinetic and scalar parts enjoy $U(3)_q$

Lepton fla the ``textu

Lepton flav

$$\begin{aligned} \mathcal{L}_{\mathrm{SM}} &= \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{scalar}} + \mathcal{L}_{\mathrm{Yuk}} \\ \mathcal{L}_{\mathrm{SM}} &= \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{scalar}} + \mathcal{L}_{\mathrm{Yuk}} \\ \mathcal{U}_{(3)_{d}} \times \mathcal{U}_{(1)_{L_{q}}} \times$$

... since for R_2 we can set $L_e = 0, L_\mu = 0, L_\tau(R_2) = -1$ and keep lepton flavour conserved. Common (ad-hoc) choice when in addressing flavour anomalies.

Nejc Košnik, τ LFV workshop, 11.4.2024

LEPTOQUARKS AND FLAVOR

Lepton flavour violating (LFV) example:

Natural processes for LFV and quark flavour violation are semileptonic operators

$$y_{R}^{ij}\bar{Q}_{i}^{a}e_{j}R_{2}^{a} = (\bar{d},\bar{s},\bar{b})\begin{pmatrix} 0 & 0 & 0\\ y_{R}^{d\mu} & y_{R}^{s\mu} & y_{R}^{b\mu}\\ y_{R}^{d\tau} & y_{R}^{s\tau} & y_{R}^{b\tau} \end{pmatrix} \begin{pmatrix} e\\ \mu\\ \tau \end{pmatrix} R_{2}^{2/3}$$

 $L_e = 0$ and L_e conserved \checkmark

However, there is a conflict between $L_{\mu} = 0, L_{\tau} = -1$ and $L_{\mu} = -1, L_{\tau} = 0$ $\Rightarrow L_{\mu}, L_{\tau}$ are broken X

Nejc Košnik, au LFV workshop, 11.4.2024

LEPTOQUARKS AND FLAVOR

Hadronic and leptonic processes with flavor violation are always loop-suppressed.

One of the reasons LQs have been so successful in targeting precisely semileptonic processes without usurping (too much) neutral meson mixing or LFV observables.

If we want to modify a single lepton flavor, LFV can be avoided with suitable choice of LQ couplings.

LFV

Nejc Košnik, au LFV workshop, 11.4.2024

7

AYS

Short-distance penguins and/or boxes

$$\mathcal{A}_{\tau \to \ell' \gamma} \sim \frac{\sum_{q} y_{q\tau} y_{q\ell'}^*}{(4\pi)^2 m_{\mathrm{LQ}}^2} \qquad \qquad \mathcal{A}_{\tau \to \ell' \ell^+}$$

Radiative mode scales as $\frac{y}{m_{LQ}}$, opposed to scaling of leptonic mode: $\frac{y}{\sqrt{m_{LQ}}}$. Leptonic decays is more sensitive to larger leptoquark masses. However there are additional long-distance LFV effects + additional semileptonic constraints.

Nejc Košnik, au LFV workshop, 11.4.2024

L F/. LEPTONIC DECAYS

Short-distance penguins and/or boxes

$$Q_{eW} \quad (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$$
$$Q_{eB} \quad (\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$$

Both decay modes should be interpreted together with related tree-level processes

 $\tau \rightarrow \text{hadrons}(q\bar{q}')\ell'$

$$B \to \tau \ell'(H)$$

Nejc Košnik, au LFV workshop, 11.4.2024

 $\tau \to \ell' \ell^+ \ell^-$

$$pp \rightarrow \tau \ell' \text{ at LHC}$$
 [L. Allwicher et

• [Plakias, Sumensari, 2312.14070]

SENSITIVITIES OF LFV PROCESSES

Tree-level contributions of effective operators at low energies

In LQ models semileptonic operators come at tree-level, while 4-lepton interaction are loop suppressed.

$ ightarrow 3\mu$	$ au o \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$ au o \mu \pi$	$ au o \mu \eta$
\checkmark	_				_
\checkmark	_		_	_	_
\checkmark	_		_		_
\checkmark	\checkmark	\checkmark	\checkmark	_	_
_	_	✓ (I=1)	$\checkmark(\mathrm{I=}0,\!1)$	_	_
_	_	✓ (I=0)	$\checkmark(\mathrm{I=}0,1)$	—	_
_	_	\checkmark	\checkmark	_	
_	—	—	—	✓ (I=1)	✓ (I=0
_	_	_	_	✓ (I=1)	✓ (I=0
_	_				✓

LEPTOQUARKS AND LFV IN LEPTONIC DECAYS

How to disentangle the information that's hidden in $\tau \rightarrow \ell' \ell^+ \ell^-$ Dalitz plot?

- In LQ model one has to incorporate LFV resonant ``backgrounds'' e.g. $au o (\phi, \rho)\ell'$
- Just a first estimate in a complete picture all operators are correlated

- if $\tau \to \ell' \ell^+ \ell^-$ is observed, dimuon spectrum differentiates between low energy operators
- scalar arises only at dim-8 in SMEFT
- LQs contribute to both vector and dipole ops.

[Giffels et al, 0802.0049] [Matsuzaki, Sanda, 0711.0792] [Kuno,Okada, hep-ph/9909265]

Nejc Košnik, τ LFV workshop, 11.4.2024

SM-EFT ANALYSIS

- SM effective field theory, suited for heavy new physics mediators, defined at energy scale $\gg m_t$
- Streamlined approach of matching and RG evolution to lower energy scales [e.g. Matchete, MatchmakerEFT, wilson, flavio, + many more]
- 2.5 kparameters in full generality
- LFV due to only a small subset of parameters

vsics mediators, defined at energy scale $\gg m_t$ ion to lower energy scales [e.g. Matchete, MatchmakerEFT, wilson,

EXAMPLE: CAN HIGGS DECAY INTO A LEPTON FLAVORED STATE?

Γ_{22}	$e\mu$	LF	$< 6.1 imes 10^{-5}$	CL=95
Γ_{23}	e au	LF	$< 2.2 imes 10^{-3}$	CL=95
Γ_{24}	μau	LF	$< 1.5 imes 10^{-3}$	CL=95

How much Higgs LFV is allowed in a model with a single LQ mediator?

Nejc Košnik, au LFV workshop, 11.4.2024

EXAMPLE: CAN HIGGS HAVE LFV DECAYS?

Current bounds on $h \to \ell \ell'$ by ATLAS & CMS

Γ_{22}	$e\mu$	LF	$< 6.1 imes 10^{-5}$	CL=95
Γ_{23}	e au	LF	$< 2.2 imes 10^{-3}$	CL=95
Γ_{24}	μau	LF	$< 1.5 imes 10^{-3}$	CL=95

Nejc Košnik, au LFV workshop, 11.4.2024

5%

5%

5%

 $\mathcal{B}(h \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$ (CMS anomaly long passed)

In LQ models also $h \to \tau \mu$ should be below $\lesssim 10^{-8}$.

|4

NECESSITY OF LEPTOQUARKS WITH LFV?

If a LQ has to couple to different lepton flavors.

[Gherardi et al, 2008.09548]

- This is a scenario with $S_1 + S_3$ or R_2, S_3 leptoquarks
- When coupling to μ was required by $R_{K}^{(*)}$.
- For illustrative purposes these plots are now <u>outdated</u>.

Nejc Košnik, τ LFV workshop, 11.4.2024

NECESSITY OF LEPTOQUARKS WITH LFV?

Weinberg operator for Majorana neutrino terms can be (partially or fully) accommodated by a 2-LQ loop

Mass of the LQ states Vs. Yukawa texture should be pinned down by neutrino physics, lepton number violating constrants and charged LFV.

... generalizations to 2-loop exist, where mass scale of LQ's could be even lower.

$$\begin{array}{ll} \text{ in the scalar potential} \\ \Lambda_1 \tilde{R}_2^{\dagger \, a} H^a S_1^{\dagger} \\ \end{array} \begin{array}{ll} B(\tilde{R}_2) = 1/3, L(\tilde{R}_2) = -1 \\ B(S_1) = -1/3, L(S_1) = -1 \\ \\ \sum B = 0, \sum L = -2 \end{array} \\ \end{array}$$

$$\begin{array}{ll} \text{[Dorsner et al, 1701.08322]} \end{array}$$

In order to accommodate neutrino masses and mixings, the Yukawa matrices \tilde{y}_2^{RL} and y_1^{LL} violate LFV across all generations.

Nejc Košnik, τ LFV workshop, 11.4.2024

SUMMARY AND CONCLUSIONS

Leptoquarks naturally introduce quark and lepton FV

Leptonic LFV is correlated with semileptonic processes

Possibly rich structure of $\tau \rightarrow 3\ell$ due to semileptonic operators

Relation between LFV and lepton number violation

d'(u')

