New Physics models giving rise to LFV

Shaikh Saad

Topical workshop on Tau LFV decays, 11-12 April 2024 IJCLab, Orsay, France

Outline

- LFV in minimally extended SM
- \bullet What to expect from observation of LFV
- LFV in BSM models and its connections to other phenomena

(LFV= lepton flavor violation) (cLFV= charged lepton flavor violation)

Standard Model (SM)

Global Symmetries in the SM

$$egin{aligned} \mathcal{G}_{ ext{SM}} &= \mathcal{SU}(3)_C imes \mathcal{SU}(2)_L imes \mathcal{U}(1)_Y \ Q_{L_i} &\sim (3,2)_{+1/6}, \quad u_{R_i} \sim (3,1)_{+2/3}, \quad d_{R_i} \sim (3,1)_{-1/3} \ L_{L_i} &\sim (1,2)_{-1/2}, \quad \ell_{R_i} \sim (1,1)_{-1} \end{aligned}$$

$$egin{aligned} \mathcal{L}_{\mathrm{SM}} &= \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{Yuk}} + \mathcal{L}_{\mathrm{Hig}} \ \mathcal{L}_{\mathrm{Yuk}} &
ightarrow 0: \quad \mathcal{G}_{\mathrm{flavor}} = U(3)_q^3 imes U(3)_{\mathrm{lep}}^2 \end{aligned}$$

 $m_{
m fermions}^{
m charged}
eq 0: \quad {\cal G}_{
m flavor}^{
m (global)} o U(1)_B imes U(1)_e imes U(1)_\mu imes U(1)_ au$

• individual lepton-flavor numbers are conserved by the SM Lagrangian

B + L broken at quantum level; 't Hooft 1976

Saad

NP giving rise to LFV

Discovery of Neutrino Oscillations: $m_{\nu} \neq 0$

$$\begin{split} Y_{\ell} \not \propto 1 : U(3)_{L} \times U(3)_{\ell} &\to U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau} \\ Y_{u} \not \propto 1 : U(3)_{Q} \times U(3)_{u} \to U(1)_{u} \times U(1)_{c} \times U(1)_{t} \\ Y_{d} \not \propto 1 : U(3)_{Q} \times U(3)_{d} \to U(1)_{d} \times U(1)_{s} \times U(1)_{b} \\ [Y_{u}, Y_{d}] &\neq 0 : U(1)_{q}^{6} \to U(1)_{B} \qquad (V_{\rm CKM}) \\ [Y_{\ell}, Y_{\nu}] &\neq 0 : U(1)_{\ell}^{3} \to U(1)_{L} \qquad (V_{\rm PMNS}) \end{split}$$

Neutrino oscillations: Consequences

- Individual lepton flavor no longer conserved (Transition between flavors)
- $\bullet \ \, \text{Direct consequence} \rightarrow \mathsf{cLFV}$
- Total *L* could still be conserved

$$egin{aligned} m^{
u}_{ ext{Dirac}}
eq 0: & \mathcal{G}^{(ext{global})}_{ ext{flavor}} o U(1)_B imes U(1)_L \ m^{
u}_{ ext{Majorana}}
eq 0: & \mathcal{G}^{(ext{global})}_{ ext{flavor}} o U(1)_B \end{aligned}$$

cLFV with SM Particles

• $\mathcal{G}^{(\mathrm{global})}_{\mathrm{flavor}} \supset \sim U(1)_e imes U(1)_\mu imes U(1)_ au$

Saad

NP giving rise to LFV

Neutrino mass & cLFV

- $m_{\nu} \neq 0 \Rightarrow \nu FV$ processes
- $\nu FV \Rightarrow cLFV$ (at some order in perturbation theory)
- m_{ν} mechanism depends on new physics (NP) scenario
- cLFV depends completely on NP model
- NP can lead to cLFV \gg the ones in the SM (with $m_{
 u}
 eq 0$)
- observation of cLFV \Rightarrow direct implication of NP
- Standard convention: processes with $\Delta L = 0$
- Two U(1) factors: $U(1)_e imes U(1)_\mu imes U(1)_ au o U(1)_{\mu- au} imes U(1)_{\mu+ au-2e}$

cLFV Grouping

• Model independent expectations from observations?

Grouping	Process	Current bound	Future sensitivity
	$\mu ightarrow e \gamma$	4.2×10^{-13}	$4 imes 10^{-14}$
	$\mu ightarrow ear{e}e$	$1.0 imes 10^{-12}$	10 ⁻¹⁶
	$\mu ightarrow e$ conv.	$O(10^{-12})$	10-17
$\Delta(L_e - L_\mu) = 2$	$h ightarrow e ar{\mu}$	$3.5 imes 10^{-4}$	$2 imes 10^{-4}$
	$Z ightarrow e ar \mu$	$7.5 imes 10^{-7}$	-
	$had ightarrow ear\mu(had)$	$4.7 imes 10^{-12}$	10 ⁻¹²
	$ au ightarrow e \gamma$	$3.3 imes 10^{-8}$	10 ⁻⁹
	au ightarrow e ar e e	$2.7 imes 10^{-8}$	10 ⁻⁹
	$ au o e ar{\mu} \mu$	2.7×10^{-8}	10-9
$\wedge (I = I) = 2$	au ightarrow ehad	$O(10^{-8})$	10-9
$\Delta(L_e-L_\tau)=2$	$h ightarrow e ar{ au}$	6.9×10^{-3}	$5 imes 10^{-3}$
	$Z ightarrow e ar{ au}$	9.8×10^{-6}	-
	$had ightarrow ear{ au}(had)$	$O(10^{-6})$	-
	$\tau \rightarrow \mu \gamma$	4.4×10^{-8}	10 ⁻⁹
	$\tau ightarrow \mu \bar{e} e$	1.8×10^{-8}	10 ⁻⁹
	$\tau \rightarrow \mu \bar{\mu} \mu$	2.1×10^{-8}	10 ⁻⁹
$\wedge (I - I) = 2$	$ au ightarrow \mu$ had	$O(10^{-8})$	10-9
$\Delta(L_{\mu} L_{\tau}) = 2$	$h \rightarrow \mu \bar{\tau}$	1.2×10^{-2}	$5 imes 10^{-3}$
	$Z \rightarrow \mu \bar{\tau}$	1.2×10^{-5}	-
	$had ightarrow \mu ar{ au}(had)$	$O(10^{-6})$	-
$\Delta(L_{\mu}+L_{\tau}-2L_{e})=6$	$ au ightarrow e e ar{\mu}$	$1.5 imes 10^{-8}$	10 ⁻⁹
$\Delta(L_{\tau}+L_{e}-2L_{\mu})=6$	$ au o \mu \mu ar{ extbf{e}}$	$1.7 imes 10^{-8}$	10 ⁻⁹
$\Delta(L_e + L_\mu - 2L_\tau) = 6$	$\mu e ightarrow au au$	-	-

Heeck 2016

Saad

cLFV grouping: $U(1)_e imes U(1)_\mu imes U(1)_ au$

- observation of 1 process (1 linear combination is violated) \Rightarrow all other processes within that group (rates: model dependent)
- it does not violate the other groups
- two unequal vectors [quantum number] need to be observed to know that all cLFV (typically)

Representative	$\Delta(e, \mu, \tau)$	Vector ($e + \mu + \tau = 0$)
$\mu ightarrow e \gamma$	(1,-1,0)	minimal
$ au o e\gamma$	(1,0,-1)	minimal
$\tau \to \mu \gamma$	(0,1,-1)	minimal
$ au o {\it ee}\overline{\mu}$	(2,-1,-1)	next to minimal
$ au o \mu \mu \overline{e}$	(-1,2,-1)	next to minimal
$\mu e \rightarrow \tau \tau$	(-1,-1,2)	next to minimal

Representative	$\Delta(e, \mu, \tau)$	Vector $(e + \mu + \tau = 0)$
$\mu ightarrow e \gamma$	(1,-1,0)	minimal
$\tau \to e\gamma$	(1,0,-1)	minimal
$\tau \to \mu \gamma$	(0,1,-1)	minimal

Representative	$\Delta(e, \mu, \tau)$	Vector $(e + \mu + \tau = 0)$
$ au o ee\overline{\mu}$	(2,-1,-1)	next to minimal
$ au o \mu \mu \overline{e}$	(-1,2,-1)	next to minimal
$\mu e ightarrow au au$	(-1,-1,2)	next to minimal

dim=6 τ->μμē <u>μ</u>e->μ<u>ē</u> <u>τ</u>->ēēēμμ</u> $\overline{e}\overline{e} - > \overline{\tau}\overline{\tau}\overline{\tau}\mu$ $\overline{\mu}\overline{e} - > \overline{\tau}\overline{\tau}$ -3, 1, 2} ee->TT τ->ee<u>μ</u> μe->ττ ee->τττμ $\tau \rightarrow eee\overline{\mu}\overline{\mu}$ $\mu\overline{e} \rightarrow \overline{\mu}e$ $\overline{\tau} \rightarrow \overline{\mu}\overline{\mu}e$ *μμ->ττ* ₹->₩₩₩

examples: $(1,-1,0):\sqrt{2};$ $(2,-1,-1):\sqrt{6};$ $(2,-2,0):2\sqrt{2};$ $(3,-2,-1):\sqrt{14};$

Saad

Beyond Next to Minimal Vectors

(similar for muon, tau)

• If $\mu \to e\gamma$ and $\tau \to \mu\gamma$ are observed: all other cLFV must occur

- Any other cLFV= x(1,-1,0)+y(0,1,-1); $x,y\in\mathbb{Z}$
- $x = -2, y = 1 \Rightarrow cLFV = (-2, 3, -1) \Rightarrow \tau \rightarrow \mu\mu\mu\overline{ee}$

cLFV: Orthogonal

Representative	$\Delta(e, \mu, \tau)$	Vector ($e + \mu + \tau = 0$)
$\mu ightarrow e \gamma$	(1,-1,0)	minimal
$\tau \to e\gamma$	(1,0,-1)	minimal
$\tau \to \mu \gamma$	(0,1,-1)	minimal
$\tau \to e e \overline{\mu}$	(2,-1,-1)	next to minimal
$ au o \mu \mu \overline{e}$	(-1,2,-1)	next to minimal
$\mu e ightarrow au au$	(-1,-1,2)	next to minimal

 $\vec{a}.\vec{b}=0$:

$$\begin{aligned} (\mu \to e\gamma) \perp (\mu e \to \tau\tau) \\ (\tau \to e\gamma) \perp (\tau \to \mu \mu \overline{e}) \\ (\tau \to \mu \gamma) \perp (\tau \to e e \overline{\mu}) \end{aligned}$$

 $(\tau \to \mu \gamma) \perp (\tau \to e e \overline{\mu})$

 $(\mu \to e\gamma) \perp (\mu e \to \tau \tau)$

Leftover Z_2^{τ} (further observation required ...)

Saad

New Physics Models for Neutrino Mass

cLFV in BSM: Simplest Dirac Scenario

- NP states: singlets ν_{R_i} , L = +1
- $\mathcal{L} \supset Y_{\nu}\overline{L}H\nu_R$
- $m_
 u \Rightarrow Y_
 u \sim 10^{-12}$
- cLFV highly suppressed

In the presence of other BSM states, one can achieve unsuppressed cLFV with Dirac neutrinos (next page)

Radiative Dirac schemes

Topology	$SU(2)_L \times U(1)_Y \times U(1)_{B-L}$	7	Topology	$SU(2)_L \times U(1)_Y \times U(1)_{B-L}$	
T-I-F-i	$ \begin{array}{c c} \sigma^0(1,0,3) \\ S^+(1,1,5) \\ \xi^+(1,1,2) \end{array} \\ \end{array} \\ $		T-II-S-i	$\sigma^{0}(1,0,3)$ $S^{+}(1,1,5)$ $\chi^{++}(1,2,2)$ $\eta(2,\frac{1}{2},0)$	
Ę	ο + 	ν_R	,H ^H	$\begin{array}{c c} \Omega^+(1,1,-3) \\ 0 & \sigma^0 \\ \Omega^+ \\ \ell_B & \ell_B \end{array}$	
		1	H ⁰ H ⁰	σ ⁰	
Topology T-III-F-i	$\begin{array}{c} SU(2)_L \times U(1)_Y \times U(1)_{B-L} \\ \hline \sigma^0(1,0,3) \\ S^+(1,1,5) \\ \chi^{++}(1,2,2) \\ \zeta(2,-\frac{3}{2},0) \\ x^+(1,1,0) \end{array}$	ν _L η ℓ _L	ζ++	x^+ $x^ S^+$ ℓ_R ℓ_R ν_R	
L	· · · · · · · · · ·		H ⁰		

Saad 2019

Tree Level Majorana Scheme

Minkowski 1977; ...

(see talk by Enrique Fernandez Martinez)

cLFV in Type-II Seesaw

- $\Delta \sim (1,3,1)^{\mathrm{S}}_{-2} \supset (\Delta^{++},\Delta^{+},\Delta^{0})$
- tree-level $\mu \rightarrow eee, \dots$
- loop-level $\mu \to e\gamma, \dots$

$$\begin{split} \mathcal{L} \supset \mu \widetilde{H}^{T} \epsilon \Delta \widetilde{H} + \overline{L^{c}} \epsilon Y_{\Delta} \Delta L \\ \mathcal{L}_{5} \rightarrow m_{\nu} \sim Y_{\Delta} \mu \frac{v^{2}}{m_{\Delta}^{2}} \sim 0.1 eV \rightarrow Y_{\Delta} \sim 10^{-2.5} \Rightarrow \frac{\mu}{m_{\Delta}(TeV)} \sim 10^{-9} \\ \mathcal{L}_{6} \supset \frac{Y_{\Delta}^{\dagger} Y_{\Delta}}{2m_{\Delta}^{2}} \left(\overline{L} \gamma_{\mu} L \right) \left(\overline{L} \gamma^{\mu} L \right) \rightarrow Br(\mu \rightarrow eee) \sim \frac{Y_{\Delta}^{4}}{m_{\Delta}^{4} G_{F}^{2}} \rightarrow \text{saturates}_{expt} \end{split}$$

Abada et. al. 2007; Dinh et. al. 2012; UV completion- Antusch, Hinze, Saad 2023
Saad NP giving rise to LFV 24/46

Radiative Majorana Scheme

Zee 1980

cLFV and its connection to other phenomena

m_W , $(g-2)_\mu$, cLFV in the Zee model

 $\sim 5\sigma$

Phys. Rev. Lett. 131, 161802

 $\sim 7\sigma$

Science 376 no. 6589, (2022) 170-176

m_W , $(g-2)_\mu$, cLFV in the Zee model

Asadi et. al. 2022

$$M_{W}^{2} = M_{W,\rm SM}^{2} \left[1 + \frac{\alpha_{em} \left(c_{W}^{2} T - \frac{1}{2} S + \frac{c_{W}^{2} - s_{W}^{2}}{4s_{W}^{2}} U \right)}{c_{W}^{2} - s_{W}^{2}} \right]$$

Grimus et. al. 2008

Coupling of the 2nd Higgs Doublet:

$$\begin{pmatrix} 0 & y_{e\mu} & 0 \\ * & 0 & * \\ 0 & * & * \end{pmatrix}, \begin{pmatrix} * & 0 & * \\ 0 & y_{\mu\mu} & 0 \\ 0 & * & 0 \end{pmatrix}, \begin{pmatrix} 0 & * & 0 \\ * & 0 & y_{\mu\tau} \\ 0 & y_{\tau\mu} & * \end{pmatrix}$$

Heeck, Saad et. al. 2022

Saad

Heeck, Saad et. al. 2022

cLFV in Zee Model + sub-GeV Singlet DM

- Light mediator from two-Higgs-doublet model
- DM mass \sim lepton mass
- Natural resolution to $(g-2)_{\mu}$
- MEG-II will fully test $\mu \rightarrow e\gamma$

Herms, Jana, Vishnu, Saad 2022

sub-GeV DM & cLFV in Scotogenic Framework

Herms, Jana, Vishnu, Saad 2023

Saad

sub-GeV DM & cLFV in Scotogenic Framework

Herms, Jana, Vishnu, Saad 2023

Zee-Babu States at the Muon Collider

ϕ^+ ϕ^+ ϕ^+					
_	ν_L	$\ell_L \ell_R \ell_I$	ℓ_L	ν_L	
Benchmark point	BP1	BP2	BP3	BP4	BP5
		Parameters			
m_{κ} (GeV)	1250	1250	2500	1250	3750
$m_{\phi} (\text{GeV})$	1250	2500	1250	3750	1250
$\mu (\text{GeV})$	1903.01	1957.01	1994.75	1730.09	2067.06
$f_{e\mu}$	-0.03809	-0.06687	-0.02157	-0.1026	-0.03558
$f_{e\tau}$	0.02037	0.03577	0.02918	0.05487	0.01925
$f_{\mu\tau}$	0.06297	0.11052	0.05291	0.16973	0.05893
g_{ee}	-0.19669	-0.02474	-0.02499	-0.01731	-0.00269
$g_{e\mu}$	9.89×10^{-6}	-5.05×10^{-4}	-0.00237	-0.00160	0.00132
$g_{e\tau}$	0.00462	0.00289	0.04409	0.02005	-0.00699
$g_{\mu\mu}$	0.48	0.487	0.99	0.488	1.0
$g_{\mu\tau}$	0.02542	0.02579	0.05029	0.02582	0.05270
$g_{\tau\tau}$	0.00222	0.00225	0.00420	0.00225	0.00457

Saad et. al. 2023

-			
5	2	2	0
0		а	v

Unsuppressed cLFV

	µ+	/	, 2		
	τ- k	μ- μ-	h+, k++	e ⁻	
Benchmark point	BP1	BP2	BP3	BP4	BP5
		$\mathrm{BR}(\ell_i \to$	$\ell_j \gamma$)		
$BR(\mu \rightarrow e\gamma)$	$(2.93 imes10^{-13}$	$2.15 imes10^{-13}$	$3.73 imes10^{-13}$	$3.06 imes10^{-13}$	$2.29 imes10^{-13}$
$BR(\tau \to e\gamma)$	5.19×10^{-13}	9.77×10^{-14}	6.62×10^{-14}	1.56×10^{-13}	1.22×10^{-13}
${\rm BR}(\tau \to \mu \gamma)$	6.51×10^{-11}	6.90×10^{-11}	6.74×10^{-11}	6.91×10^{-11}	1.50×10^{-11}
		$BR(\ell_i \to \ell)$	$_{j}\ell_{k}\ell_{k})$		
$\boxed{\text{BR}(\mu^- \to e^+ e^- e^-)}$	$\left(2.85 imes 10^{-15} ight)$	$1.17 imes10^{-13}$	$1.65 imes10^{-13}$	$5.78 imes10^{-13}$	$1.18 imes 10^{-16}$
$\mathrm{BR}(\tau^- \to e^+ e^- e^-)$	1.11×10^{-10}	6.88×10^{-13}	1.02×10^{-11}	1.62×10^{-11}	5.87×10^{-16}
${\rm BR}(\tau^- \to e^+ e^- \mu^-)$	5.06×10^{-19}	5.74×10^{-16}	1.84×10^{-13}	2.67×10^{-13}	2.84×10^{-16}
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-)$	6.59×10^{-10}	2.66×10^{-10}	$(1.59 imes10^{-8}$	$1.28 imes10^{-8}$	8.11×10^{-11}
$BR(\tau^- \rightarrow \mu^+ e^- e^-)$	$3.26 imes10^{-9}$	5.32×10^{-11}	1.29×10^{-11}	2.61×10^{-11}	3.24×10^{-14}
$\overline{{\rm BR}(\tau^- \to \mu^+ e^- \mu^-)}$	1.65×10^{-17}	4.44×10^{-14}	2.32×10^{-13}	4.46×10^{-13}	1.57×10^{-14}
$\boxed{\mathrm{BR}(\tau^- \to \mu^+ \mu^- \mu^-)}$	$1.94 imes10^{-8}$	$2.06 imes10^{-8}$	$2.02 imes10^{-8}$	$2.07 imes10^{-8}$	$4.48 imes10^{-9}$

Saad et. al. 2023

Muon Collider Probes

Saad et. al. 2023

Muon Collider Probes

Saad et. al. 2023

Zee-Babu Model: Colored version

Leptoquark: $S_1 \sim (\overline{3}, 1, 1/3)$ Di-quark: $\omega \sim (\overline{6}, 1, 2/3)$

• Cannot escape to high energies: reach collider prospect

- Expected large rates for cLFV
- Flavor anomalies ...

Babu, Leung 2001; Khoda et. al. 2012; Saad 2020 (see talk by Nejc Košnik)

Saad

SU(5) grand Unification

Georgi-Glashow Model

• Fermions

$$\overline{\mathbf{5}}_{\boldsymbol{F}} = \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e \\ -\nu \end{pmatrix}, \quad \mathbf{10}_{\boldsymbol{F}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_2^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^c \\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{pmatrix}$$

Scalars

$$\begin{array}{lll} \mathbf{24}_{\boldsymbol{H}} : & SU(5) \rightarrow SU(3)_{\mathcal{C}} \times SU(2)_{\mathcal{L}} \times U(1)_{Y} \\ \mathbf{5}_{\boldsymbol{H}} : & SU(3)_{\mathcal{C}} \times SU(2)_{\mathcal{L}} \times U(1)_{Y} \rightarrow SU(3)_{\mathcal{C}} \times U(1)_{em} \end{array}$$

Georgi, Glashow 1974

.

Limitations & Resolutions

Georgi, Glashow 1974

•
$$\overline{\bf 5}_{\it F}^{\it i}+{\bf 10}_{\it F}^{\it i}+{\bf 5}_{\it H}+{\bf 24}_{\it H}$$

- $M_d = M_e^T$
- $X M_{\nu} = 0$
- X Gauge coupling unification

Georgi, Jarlskog 1979

•
$$\overline{\mathbf{5}}_{F}^{i} + \mathbf{10}_{F}^{i} + \mathbf{5}_{H} + \mathbf{24}_{H} + \mathbf{45}_{H}$$

 $\checkmark M_{d} \neq M_{e}^{T}$

- $M_{\nu} = 0$
- ✓ Gauge coupling unification
- ✓ Proton decay (safe)

Neutrino Mass: Leptoquark option

Hinze, Saad 2024

$$\begin{aligned} \mathbf{5}_{H} &\equiv \phi = \phi_{1}(1,2,\frac{1}{2}) \oplus \phi_{2}(3,1,-\frac{1}{3}), \\ \mathbf{45}_{H} &\equiv \Sigma = \Sigma_{1}(1,2,\frac{1}{2}) \oplus \Sigma_{2}(3,1,-\frac{1}{3}) \oplus \Sigma_{3}(\overline{3},1,\frac{4}{3}) \\ &\oplus \Sigma_{4}(\overline{3},2,-\frac{7}{6}) \oplus \Sigma_{5}(3,3,-\frac{1}{3}) \\ &\oplus \Sigma_{6}(\overline{6},1,-\frac{1}{3}) \oplus \Sigma_{7}(8,2,\frac{1}{2}). \\ \mathbf{40}_{H} &\equiv \eta = \eta_{1}(1,2,-\frac{3}{2}) \oplus \eta_{2}(\overline{3},1,-\frac{2}{3}) \oplus \eta_{3}(3,2,\frac{1}{6}) \\ &\oplus \eta_{4}(\overline{3},3,-\frac{2}{3}) \oplus \eta_{5}(\overline{6},2,\frac{1}{6}) \oplus \eta_{6}(8,1,1). \end{aligned}$$

cf. Saad 2019; Ilja, Saad 2019; Ilja, Saad 2021; Julio, Saad, Thapa 2022

Neutrino Mass: Leptoquark option

Hinze, Saad 2024

Saad

NP giving rise to LFV

41 / 46

Fermion masses

$$\begin{split} -\mathcal{L}_{Y} &= Y_{A} 10_{F} \overline{5}_{F} 5_{H}^{*} + Y_{B} 10_{F} 10_{F} 5_{H} \\ &+ Y_{C} 10_{F} \overline{5}_{F} 45_{H}^{*} + Y_{D} 10_{F} 10_{F} 45_{H} \; . \end{split}$$

$$\begin{split} M_D &= \frac{v_5}{2} \, Y_A - \frac{v_{45}}{2\sqrt{6}} \, Y_C \ , \\ M_E &= \frac{v_5}{2} \, Y_A^T + \frac{\sqrt{3} v_{45}}{2\sqrt{2}} \, Y_C^T \ , \\ M_U &= \sqrt{2} v_5 \left(Y_B + Y_B^T \right) + \frac{v_{45}}{\sqrt{3}} \left(Y_D - Y_D^T \right) \ , \end{split}$$

$$\begin{split} M_N &= -\frac{3g^2}{\sqrt{2}\left(16\pi^2\right)^2} \bigg\{ 2Y_L^T M_U^{\rm diag} F_L + M_E^{\rm diag} Y_R^\dagger F_L \\ &+ M_E^{\rm diag} Y_L^T F_R^* \bigg\} J_0 + ({\rm transpose}) \; . \end{split}$$

Hinze, Saad 2024

Saad

Neutrino Mass in SU(5)

- $m_{
 u}$: masses of the leptoquarks $\phi_2, \Sigma_4, \eta_4 \Rightarrow M_{
 m LQ} \lesssim 10^8 \; {
 m GeV}$
- Proton decay: $\phi_2 \Rightarrow M_{
 m LQ} \gtrsim 10^{12} \; {
 m GeV}$
- Suppression: $(U_L^{\dagger}(Y_B + Y_B^{T})D_L^*)_{1\beta} = (D_R^{\dagger}Y_A^{\dagger}U_R^*)_{\beta 1} = 0$ for $\beta = 1, 2$

Hinze, Saad 2024

Neutrino Mass in SU(5)

• Fermion mass+PD suppression determine the couplings

• LFV: typically
$$M_{
m LQ}\gtrsim 10^5$$
 GeV

Hinze, Saad 2024

Neutrino Mass in SU(5)

Hinze, Saad 2024

Summary

- * Neutrino oscillations \implies cLFV
- * Origin of neutrino mass \implies New Physics
- * New Physics \implies unsuppressed cLFV
- * Observation of cLFV \implies Direct signature of New Physics
- * cLFV rates \implies Model dependent
- * NP models: cLFV \iff Complementary probes

THANK YOU!