

Constraints on Tau LFV decays from high- p_T studies at LHC

Felix Wilsch

Institute for Theoretical Particle Physics and Cosmology RWTH Aachen University

Topical workshop on LFV decays of the tau — IJCLab — Orsay

Lepton Flavor as an accidental symmetry of the SM

- Lepton flavor conservation is an accidental symmetry of the SM Lagrangian at d = 4
 - Only a single LFV gauge invariant d = 4 operator: $[Y_e]_{pr}(\overline{\ell}_p e_r)H + H.c.$
 - Can always be diagonalized
 - No longer possible if further fields are included or for d > 4
 - Multiple operators allowed → no simultaneous diagonalization possible without extra symmetry assumptions (flavor symmetries)

Lepton Flavor as an accidental symmetry of the SM

- Lepton flavor conservation is an accidental symmetry of the SM Lagrangian at d = 4
 - Only a single LFV gauge invariant d = 4 operator: $[Y_e]_{pr}(\overline{\ell}_p e_r)H + H.c.$
 - Can always be diagonalized
 - No longer possible if further fields are included or for d > 4
 - Multiple operators allowed → no simultaneous diagonalization possible without extra symmetry assumptions (flavor symmetries)
- Many NP models introduce LFV (even required for neutrino masses)
- Many low-energy precision measurements indicate that lepton flavor must be conserved also beyond the SM to very high accuracy \rightarrow approximate symmetry for NP models

Lepton Flavor as an accidental symmetry of the SM

- Lepton flavor conservation is an accidental symmetry of the SM Lagrangian at d = 4
 - Only a single LFV gauge invariant d = 4 operator: $[Y_e]_{pr}(\overline{\ell}_p e_r)H + H.c.$
 - Can always be diagonalized
 - No longer possible if further fields are included or for d > 4
 - Multiple operators allowed → no simultaneous diagonalization possible without extra symmetry assumptions (flavor symmetries)
- Many NP models introduce LFV (even required for neutrino masses)
- Many low-energy precision measurements indicate that lepton flavor must be conserved also beyond the SM to very high accuracy \rightarrow approximate symmetry for NP models
- We can probe heavy BSM particles with masses $1 \text{ TeV} \leq M$ with LFV couplings at
 - Low-energy experiments (high precision)
 - LHC in high- p_T tails (higher energies)
- LHC particularly relevant for NP in 3^{rd} generation \rightarrow LFV τ transitions

complementarity

Tau LFV: from low energies to high- p_T at LHC

- Many BSM models predict NP dominantly coupled to the 3rd generation
 - Largest LFV contributions in the au sector
- Many precision measurements from low-energy flavor experiments

- High- p_T LHC measurements of LFV transitions involving τ leptons:
 - Z boson decays
 - Higgs boson decays
 - Drell-Yan

Felix Wilsch (RWTH Aachen)

LFV Z boson decays involving taus

- ATLAS constraints on $\mathscr{B}(Z \to \tau \ell)$ with $\ell \in \{\mu, e\}$ with $\sim 140 \,\text{fb}^{-1}$ for [2010.02566], [2105.12491]
 - Hadronic τ decays ($\tau \rightarrow$ hadrons) and leptonic τ decays ($\tau e \rightarrow \mu e$ and $\tau \mu \rightarrow e \mu$)

LFV Z boson decays involving taus

- ATLAS constraints on $\mathscr{B}(Z \to \tau \ell)$ with $\ell \in \{\mu, e\}$ with $\sim 140 \,\text{fb}^{-1}$ for [2010.02566], [2105.12491]
 - Hadronic τ decays ($\tau \rightarrow$ hadrons) and leptonic τ decays ($\tau e \rightarrow \mu e$ and $\tau \mu \rightarrow e \mu$)

- $\mathscr{B}(Z \to \tau \mu) < 6.5 \times 10^{-6}$ and $\mathscr{B}(Z \to \tau e) < 5.0 \times 10^{-6}$ at 95 % CL (superseding LEP limits)
 - SMEFT: tree-level contributions by: $C_{Hl}^{(1+3)}$, C_{He} , C_{eW} , C_{eB}

LFV Higgs boson decays involving taus

• CMS constraints on $\mathscr{B}(H \to \tau \ell)$ with $\ell \in \{\mu, e\}$ with $\sim 140 \, \text{fb}^{-1}$ for

- Hadronic τ decays ($\tau \rightarrow$ hadrons) and leptonic τ decays ($\tau e \rightarrow \mu e$ and $\tau \mu \rightarrow e \mu$)

Felix Wilsch (RWTH Aachen)

LFV Higgs boson decays involving taus

- CMS constraints on $\mathscr{B}(H \to \tau \ell)$ with $\ell \in \{\mu, e\}$ with $\sim 140 \, \text{fb}^{-1}$ for
 - Hadronic τ decays ($\tau \rightarrow$ hadrons) and leptonic τ decays ($\tau e \rightarrow \mu e$ and $\tau \mu \rightarrow e \mu$)
- $\mathscr{B}(H \to \tau \mu) < 1.5 \times 10^{-3}$ and $\mathscr{B}(H \to \tau e) < 2.2 \times 10^{-3}$ at 95 % CL

CMS [2105.03007]

LFV Higgs boson decays involving taus

- CMS constraints on $\mathscr{B}(H \to \tau \ell)$ with $\ell \in \{\mu, e\}$ with $\sim 140 \, \text{fb}^{-1}$ for
 - Hadronic τ decays ($\tau \rightarrow$ hadrons) and leptonic τ decays ($\tau e \rightarrow \mu e$ and $\tau \mu \rightarrow e \mu$)
- $\mathscr{B}(H \to \tau \mu) < 1.5 \times 10^{-3}$ and $\mathscr{B}(H \to \tau e) < 2.2 \times 10^{-3}$ at 95 % CL

Felix Wilsch (RWTH Aachen)

CMS [2105.03007]

• Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha}\ell_{\beta}) = \mathscr{L}_{ij} \otimes [\hat{\sigma}]_{ij}^{\alpha\beta}$$

Hadronic cross-section:

$$\sigma_{\mathrm{had}}(pp \to \ell_{\alpha} \ell_{\beta}) = \mathcal{L}_{ij} \otimes [\hat{\sigma}]_{ij}^{\alpha\beta}$$

- \mathscr{L}_{ij} parton luminosities/PDFs \rightarrow 5 quark flavors contribute

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

Angelescu, Faroughy, Sumensari [2002.05684]

• Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha}\ell_{\beta}) = \mathscr{L}_{ij} \otimes \left[\hat{\sigma}\right]_{ij}^{\alpha\beta}$$

 \mathscr{L}_{ij} parton luminosities/PDFs \rightarrow 5 quark flavors contribute

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}\left(x,\mu\right) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

 $[\hat{\sigma}]_{ij}^{\alpha\beta}$ partonic cross section \rightarrow energy enhanced in EFT $[\hat{\sigma}]_{ij}^{\alpha\beta}$

$$\hat{\sigma}]_{ij}^{\alpha\beta} \propto \frac{\hat{s}}{\Lambda^4} \left| C \right|^2$$

Angelescu, Faroughy, Sumensari [2002.05684]

 ℓ_{lpha}

 $\bar{\ell}_{\beta}$

Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha}\ell_{\beta}) = \mathscr{L}_{ij} \otimes \left[\hat{\sigma}\right]_{ij}^{\alpha\beta}$$

 \mathscr{L}_{ij} parton luminosities/PDFs \rightarrow 5 quark flavors contribute

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}\left(x,\mu\right) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + \left(\bar{q}_i \leftrightarrow q_j\right) \right]$$

 $[\hat{\sigma}]_{ii}^{\alpha\beta}$ partonic cross section \rightarrow energy enhanced in EFT

$$\left[\hat{\sigma}\right]_{ij}^{\alpha\beta} \propto \frac{\hat{s}}{\Lambda^4} \left|C\right|^2$$

Angelescu, Faroughy, Sumensari [2002.05684]

• τ -tails particularly relevant for models with large 3^{rd} generation couplings

Faroughy, Greljo, Kamenik [1609.07138]

 ℓ_{α}

 $\bar{\ell}_{\beta}$

LFV in high- p_T Drell-Yan tails

Types of LFV probed in high- p_T Drell-Yan tails:

- Explicit LFV BSM mediators coupling to both quarks and leptons
 - s-channel: neutral vector bosons Z', heavy scalars Φ , ...

- t-/u-channel: leptoquarks

LFV in high- p_T Drell-Yan tails

Types of LFV probed in high- p_T Drell-Yan tails:

- Explicit LFV BSM mediators coupling to both quarks and leptons
 - s-channel: neutral vector bosons Z', heavy scalars Φ , ...

- t-/u-channel: leptoquarks

- LFV high-dimensional SMEFT operators
 - LFV semileptonic 4-fermion operators
 - LFV dipole operators Q_{eW} , Q_{eB} & modifications $\bar{q}' \sim \ell$ of Z boson couplings $Q_{HI}^{(1,3)}$, $Q_{He} \rightarrow$ better probed by Z decays

Experimental searches for LFV in high- p_T Drell-Yan tails

Felix Wilsch (RWTH Aachen)

Constraining New Physics with Drell-Yan tails

HighPT: a Mathematica package for high- p_T Drell-Yan Tails Beyond the Standard Model Allwicher, Faroughy, Jaffredo, Sumensari, FW [2207.10756]

Computation of:

- Drell-Yan cross sections
- Experimental observables
- Likelihoods

Implemented BSM models:

- SMEFT (d = 6 and d = 8)
- BSM mediators (leptoquarks)

Recasted searches available:

Full LHC run-II datasets

https://highpt.github.io/

Process	Experiment	Luminosity	EXPERIMENT
$pp \rightarrow \tau \tau$	ATLAS	$139{\rm fb}^{-1}$	[2002.1222
$pp \rightarrow \mu \mu$	CMS	$140{\rm fb}^{-1}$	[2103.0270
$pp \rightarrow ee$	CMS	$137{ m fb}^{-1}$	[2103.0270
$pp \rightarrow \tau \nu$	ATLAS	$139{\rm fb}^{-1}$	[ATLAS-CONF-20
$pp \rightarrow \mu \nu$	ATLAS	$139{ m fb}^{-1}$	[1906.0560
$pp \rightarrow e\nu$	ATLAS	$139{ m fb}^{-1}$	[1906.0560
$pp \rightarrow \tau \mu$	CMS	$138{\rm fb}^{-1}$	[2205.0670
$pp \rightarrow \tau e$	CMS	$138{\rm fb}^{-1}$	[2205.0670
$pp \rightarrow \mu e$	CMS	$138{\rm fb}^{-1}$	[2205.0670

[2002.12223]
[2103.02708]
[2103.02708]
[ATLAS-CONF-2021-025]
[1906.05609]
[1906.05609]
[2205.06709]
[2205.06709]
[2205.06709]

Observables and likelihoods

- High- p_T tail distributions:
 - **Computed**: particle-level distribution $\frac{d\sigma}{dx}$ built from final state particles e, μ, τ, ν
 - Measured: detector-level distribution $\frac{d\sigma}{dx_{obs}}$ built from reconstructed objects (isolated leptons, tagged jets, missing energy, ...)

detector response, object reconstruction efficiencies, phase-space mismatch, ...

Observables and likelihoods

- High- p_T tail distributions:
 - **Computed**: particle-level distribution $\frac{d\sigma}{dx}$ built from final state particles e, μ, τ, ν
 - Measured: detector-level distribution $\frac{d\sigma}{dx_{obs}}$ built from reconstructed objects (isolated leptons, tagged jets, missing energy, ...)

detector response, object reconstruction efficiencies, phase-space mismatch, ...

• Extract likelihood (χ^2) :

HighPT

$$\chi^2 \sim \frac{(N_{\rm NP} + N_{\rm SM} - N_{\rm data})^2}{\sigma^2}$$
 provided by experiment

Mapping of computed to experimental bins:

LFV Drell-Yan tails: single SMEFT Wilson coefficients

Constraints on single LFV Wilson coefficients: 2 examples

 $O^{(3)} = (\overline{\ell} \ \tau^{I} \chi \ \ell) (\overline{\alpha} \ \tau^{I} \chi^{\mu} \alpha)$

Allwicher, Faroughy, Jaffredo, Sumensari, FW [2207.10714]

Reference scale

$$A = 1 \text{ TeV}$$

$$pp \rightarrow \tau \mu$$

$$pp \rightarrow \tau \mu$$

$$pp \rightarrow \tau e$$

Felix Wilsch (RWTH Aachen)

SMEFT: complementarity of $pp \rightarrow \tau \mu$ and $\tau \rightarrow \mu X$

- Drell-Yan tails provide complementary information to low-energy au decays when considering:
 - NP in semi-leptonic 4-fermion operators
 - Dominant couplings to 3rd generation quarks
 - Tree-level Drell-Yan competes with loop suppressed low-energy bounds
 - Operators with bottom quarks (negligible top quark PDF)

Plakias, Sumensari [2312.14070]

For further cases see also: Descotes-Genon, Faroughy, Plakias, Sumensari [2303.07521]

Tau LFV in Drell-Yan tails: SMEFT (LQ inspired)

- Consider multiple SMEFT Wilson coefficients for realistic NP scenarios
- Example: the $U_1 \sim (3, 1)_{2/3}$ vector leptoquark

$$\mathscr{L}_{U_1} = [x_1^L]_{i\alpha} U_1^{\mu}(\overline{q}_i \gamma_{\mu} \mathscr{C}_{\alpha}) + [x_1^R]_{i\alpha} U_1^{\mu}(\overline{d}_i \gamma_{\mu} e_{\alpha}) + \text{h.c.}$$

$$\begin{split} & [Q_{lq}^{(1)}]_{\alpha\beta ij} = (\overline{\ell}_{\alpha}\gamma_{\mu}\ell_{\beta})(\overline{q}_{i}\gamma^{\mu}q_{j}) \\ & [Q_{lq}^{(3)}]_{\alpha\beta ij} = (\overline{\ell}_{\alpha}\tau^{I}\gamma_{\mu}\ell_{\beta})(\overline{q}_{i}\tau^{I}\gamma^{\mu}q_{j}) \\ & [Q_{ed}]_{\alpha\beta ij} = (\overline{e}_{\alpha}\gamma_{\mu}e_{\beta})(\overline{d}_{i}\gamma^{\mu}d_{j}) \\ & [Q_{ledq}]_{\alpha\beta ij} = (\overline{l}_{\alpha}e_{\beta})(\overline{d}_{i}q_{j}) \end{split}$$

• Matching onto SMEFT:

 $[C_{lq}^{(1,3)}]_{\alpha\beta ij} = -\frac{1}{2} [x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*, \qquad [C_{eq}]_{\alpha\beta ij} = -[x_1^R]_{i\beta} [x_1^R]_{j\alpha}^*, \qquad [C_{ledq}]_{\alpha\beta ij} = 2[x_1^R]_{j\beta} [x_1^L]_{i\alpha}^*$

• Consider U_1 predominantly coupled to 3^{rd} generation quarks (weakest low energy bounds)

Felix Wilsch (RWTH Aachen)

LFV in leptoquark models

- Generic leptoquark coupling: $\lambda_{pr} \chi_{LQ}(\overline{\ell}_p \Gamma q_r)$
 - Need to consider at least two non-vanishing couplings for LFV transitions
 - Any leptoquark that has non-vanishing couplings to more than one lepton generation leads to LFV
- Plot constraints in terms of the two leptoquark couplings instead of Wilson coefficients

Felix Wilsch (RWTH Aachen)

[see also talk by Nejc]

LFV in leptoquark models

- Generic leptoquark coupling: $\lambda_{pr} \chi_{LQ}(\overline{\ell}_p \Gamma q_r)$
 - Need to consider at least two non-vanishing couplings for LFV transitions
 - Any leptoquark that has non-vanishing couplings to more than one lepton generation leads to LFV
- Plot constraints in terms of the two leptoquark couplings instead of Wilson coefficients

[see also talk by Nejc]

Tau LFV in Drell-Yan tails: the U_1 leptoquark

• LFV process $pp \rightarrow \ell \overline{\ell'}$ requires 2 non-vanishing leptoquark couplings

Allwicher, Faroughy, Jaffredo, Sumensari, FW [2207.10714]

- Flavor conserving processes $pp \to \ell \, \overline\ell \,$ and $\, pp \to \ell' \overline\ell'$ generated as well
- Are flavor conserving limits stronger?
- Example: consider again the U_1 with only left-handed couplings to 3^{rd} generation quarks

Tau LFV in Drell-Yan tails: the U_1 leptoquark

• LFV process $pp \to \ell \overline{\ell'}$ requires 2 non-vanishing leptoquark couplings

Allwicher, Faroughy, Jaffredo, Sumensari, FW [2207.10714]

- Flavor conserving processes $pp \to \ell \, \overline\ell \,$ and $\, pp \to \ell' \overline\ell'$ generated as well
- Are flavor conserving limits stronger?
- Example: consider again the U_1 with only left-handed couplings to 3^{rd} generation quarks

 \Rightarrow Complementarity of LFV Drell-Yan searches and flavor conserving searches

$$2 \left| [x_1^L]_{i\alpha} [x_1^L]_{i\beta}^* \right| \le \left| [x_1^L]_{i\alpha} \right|^2 + \left| [x_1^L]_{i\beta}^* \right|^2$$

Felix Wilsch (RWTH Aachen)

Conclusions

• LHC constraints on τ lepton flavor violating transitions

$$- Z \to \tau \ell, \qquad h \to \tau \ell, \qquad pp \to \tau \ell$$

- LFV high- p_T Drell-Yan tails probe LFV at very high energies in semi-leptonic operators
 - Especially relevant for BSM models with NP dominantly affecting the 3rd generation
 - Allows to probe large variety of both SMEFT operators and NP models
- LFV Drell-Yan tails complementary to flavor conserving Drell-Yan tails and low-energy

Jack-knife analysis

• $R_{\text{Jack}} \sim \frac{\text{constraint holding out a single bin from }\chi^2}{\text{constraint from full }\chi^2}$ (for expected limits)

• Measure of sensitivity of search to individual bins

Felix Wilsch (RWTH Aachen)

Clipped limits

- Constraints obtained with sliding upper cut $M_{\rm cut}$ for experimental observables
- Allows assessment of EFT validity range (example $pp \rightarrow \mu\mu$)

Felix Wilsch (RWTH Aachen)

EFT Convergence for the U_1 Leptoquark

• EFT cross sections to different orders in Λ^{-1} normalized to full model cross section

Felix Wilsch (RWTH Aachen)

EFT Convergence for a Z' Boson

• EFT cross sections to different orders in Λ^{-1} normalized to full model cross section

χ^2 Likelihood vs. the CL_s Method

- χ^2 likelihood: combine experimental bins with low event count in the tails to validate the Gaussian approximation (1 σ , 2 σ , 3 σ contours)
- Compare to $CL_s = \frac{p_s}{1 p_0}$ method (1 σ , 2 σ , 3 σ dashed contours)
- CL_s tends to be more conservative, but overall good agreement with χ^2

Quality of Recasts

- Acceptance \times efficiency ($\mathscr{A} \times \epsilon$) of our recast normalized to the experimental values
 - Good agreement apart from $\tau\tau$, $e\tau$, $\mu\tau$
 - Limited simulation of τ reconstruction in Delphes

Search	Experiment	Ref.	$\frac{\left. \mathcal{A} \times \epsilon \right _{\text{recast}}}{\left. \mathcal{A} \times \epsilon \right _{\text{search}}}$	Models
$pp \rightarrow \tau \tau$	ATLAS	[85]	$33\%{-}57\%$	H (0.2, 0.3, 0.4, 0.6, 1.0, 1.5, 2.0 and 2.5 TeV)
$pp ightarrow \mu \mu$	\mathbf{CMS}	[<mark>86</mark>]	93%-96%	Z' (0.4, 0.6, 1.0, 1.5, 2.0 and 2.5 TeV)
$pp \to ee$	\mathbf{CMS}	[<mark>86</mark>]	$58\%{-}69\%$	Z' (0.4, 0.6, 1.0, 1.5, 2.0 and 2.5 TeV)
$pp \rightarrow \tau \nu$	ATLAS	[87]	$93\%{-}167\%$	W' (1, 2, 3, 4 and 5 TeV)
$pp ightarrow \mu u$	ATLAS	[88]	$127\% {-} 145\%$	$W' \ (2 \ { m and} \ 7 \ { m TeV})$
$pp \to e\nu$	ATLAS	[88]	87% - 100%	$W' \ (2 \ { m and} \ 7 \ { m TeV})$
$pp \rightarrow \tau \mu$	\mathbf{CMS}	[89]	180%	$Z' (1.6 \mathrm{TeV})$
$pp \to \tau e$	\mathbf{CMS}	[89]	150%	$Z'~(1.6{ m TeV})$
$pp ightarrow \mu e$	\mathbf{CMS}	[89]	97%	$Z'~(1.6~{ m TeV})$