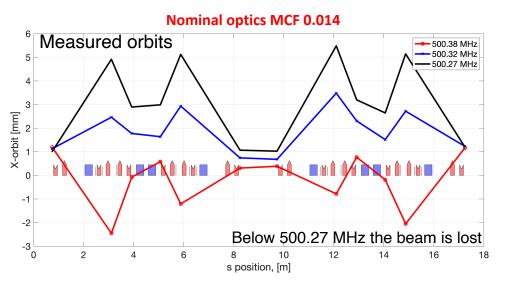
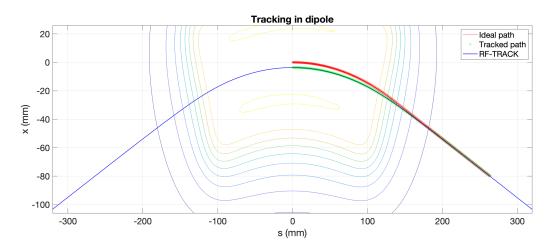
Ring circumference

I. Chaikovska, V. Kubytskyi, V. Mytrochenko A. Loulergue

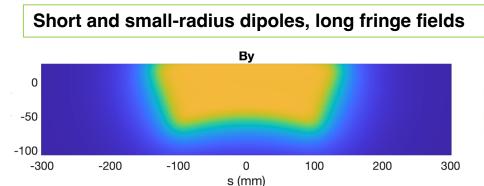
Experimental attempts to measure the ring frequency

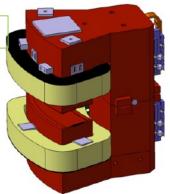


Result of screenshot processing. Bunch circulating frequency vs time.

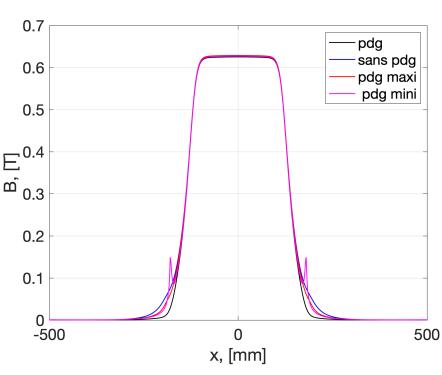

Screenshot from 02/08/2023 16:50:56. Beating frequency between F_{LO} =500.32 MHz and turning frequency of the bunch freely circulating around the ring.

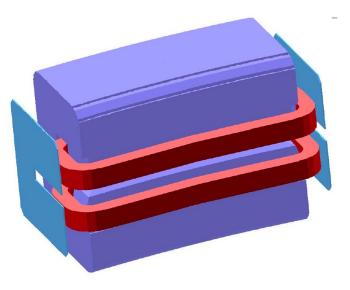
Shorter circumference understanding


The RF frequency is found experimentally to be 0.3 - 0.4 MHz higher than the nominal.


Need explicit simulation!

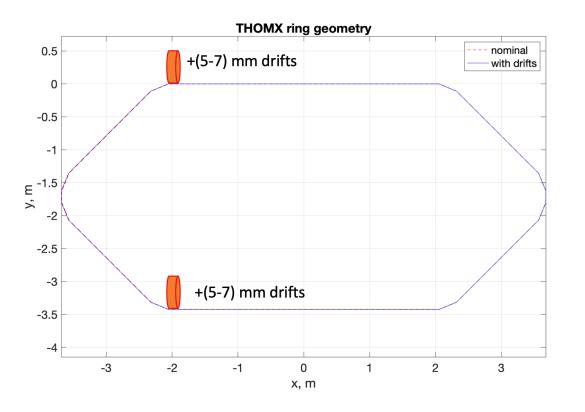
R_{eff} = 377 mm (from the measured effective length of the dipoles)

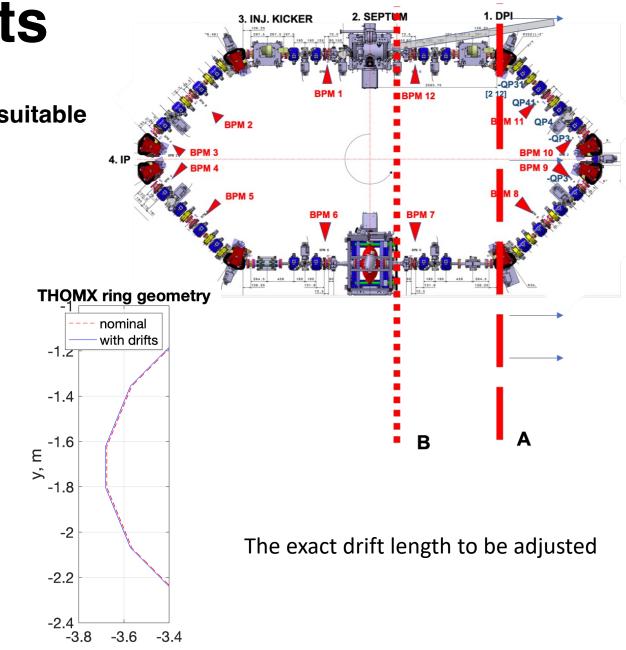

Features of dipoles			
Quantity	14 + 1 (pre-serie)		
Radius of curvature	352 mm		
Main field B ₀	0.7 Tesla		
Gap	42 mm		
Good field region	+/- 20mm		
Integral of field	184.59 mT.m		
Current max.	275 Amp		
Beam energy	from 50 to 70 MeV		



Solution 1: surround dipoles with metallic plates

- Goal: install the metallic plates for each of the dipole in the ring
- Limitation of the fringe field will allow to increase the pathlength in the dipole.
- First "ideal" configuration with correct scaling of magnetic field allows to reduce the ring RF frequency by ~200 kHz.
- After iteration with Rodolphe ???, the OPERA simulations are performed for more realistic configuration (pdg mini/maxi configuration).
- According to the received fieldmaps, the expected effect is quite small (not sufficient in our case).

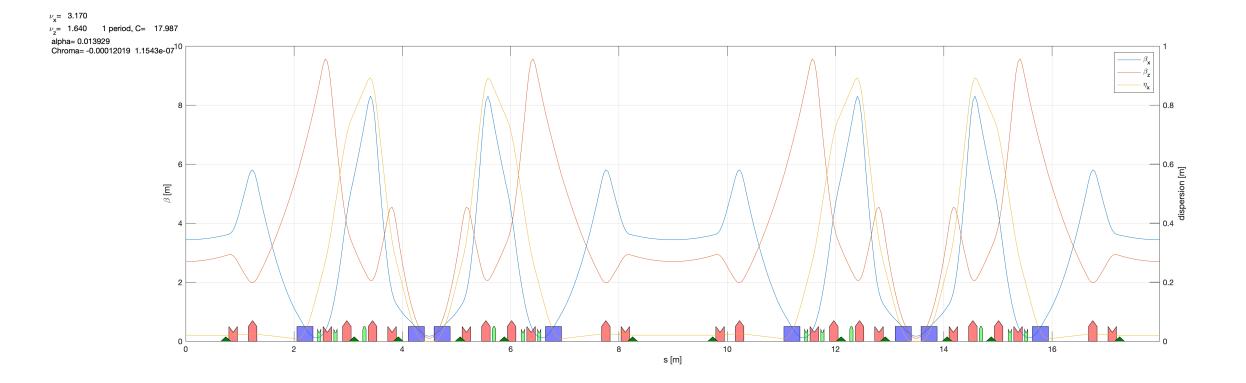




Example: le dipole de l'anneau de soleil. Etude magnetostatique 3d n/ref. : dsm/dapnia/sacm/soleil-2002

Solution 2: insert drifts

Goal: bring the ring frequency to the nominal (or suitable for timing and FPC systems) one by making the insertions/adding drifts



x, m

Nominal optics

Injection:

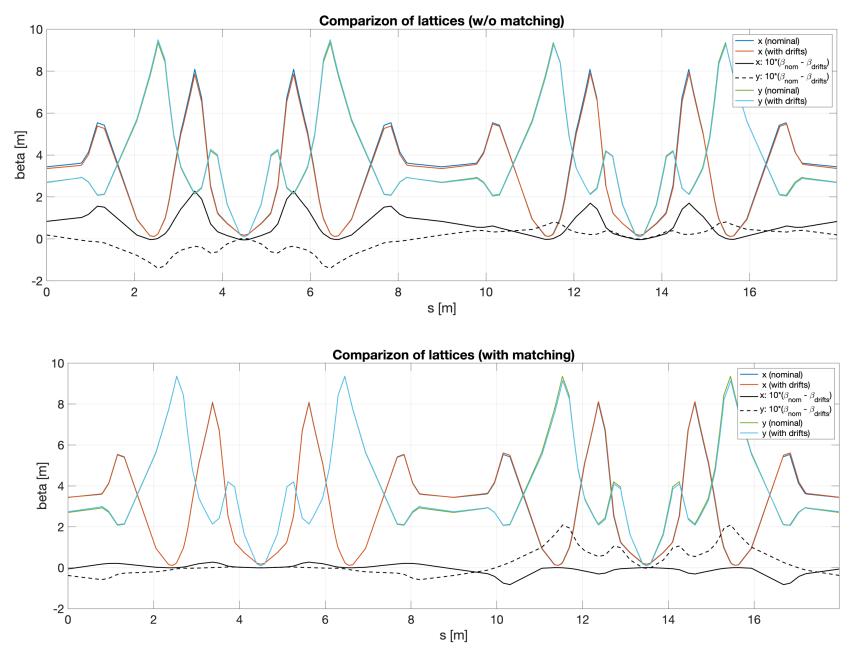
H: beta = 03.437 [m] alpha = -1.6e-10 eta = +0.020 [m] eta' = -3.0e-09 V: beta = 02.700 [m] alpha = -7.7e-08 eta = +0.000 [m] eta' = -3.7e-17

Simulation/matching results (dL = 14 mm)

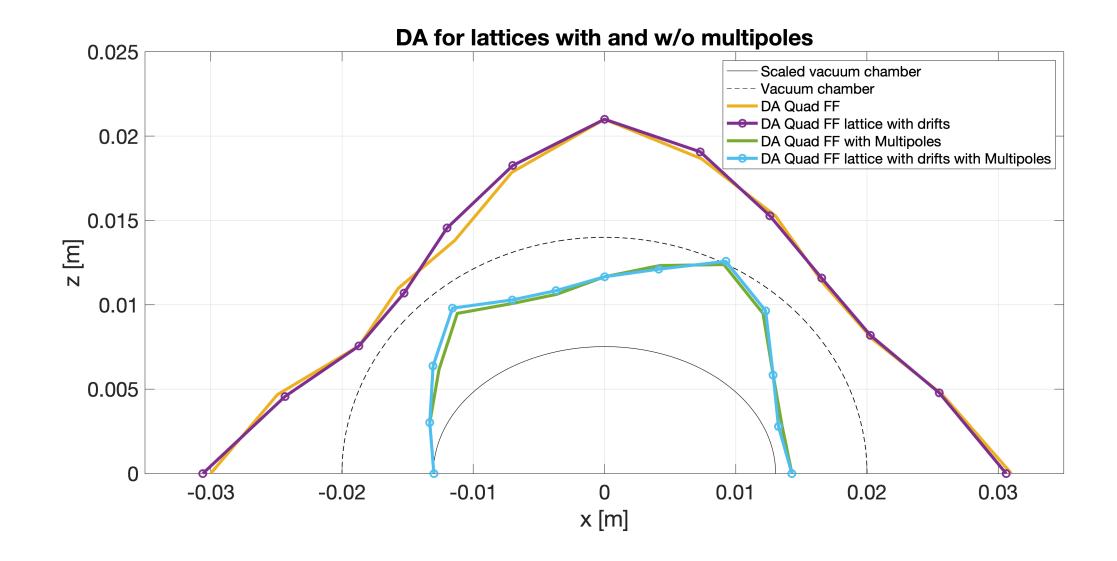
************ Summary for 'NOMINAL' ***********		************* Summary for 'LATTICE WITH DRIFTS' ************	
Energy:	0.05000 [GeV]	Energy:	0.05000 [GeV]
Gamma:	97.84756	Gamma:	97.84756
Circumference:	17.98668 [m]	Circumference:	18.00068 [m] ^{L_{nom} + 14 mm}
Revolution time:	59.99711 [ns] (16.66747 [MHz])	Revolution time:	60.04381 [ns] (16.65451 [MHz])
Betatron tune H:	0.16999 (2833.35119 [kHz])	Betatron tune H:	0.17000 (2831.24491 [kHz])
V: 0.63999 (10667.06832 [kHz])	V: 0.64000 (2	10658.87618 [kHz])
Momentum Compaction Factor:	1.39842e-02	Momentum Compaction Factor:	1.41915e-02
Chromaticity H:	+0.00000	Chromaticity H:	+0.00000
V:	+0.00000	V:	+0.00000
***********		******	******

Matching with all families of QP

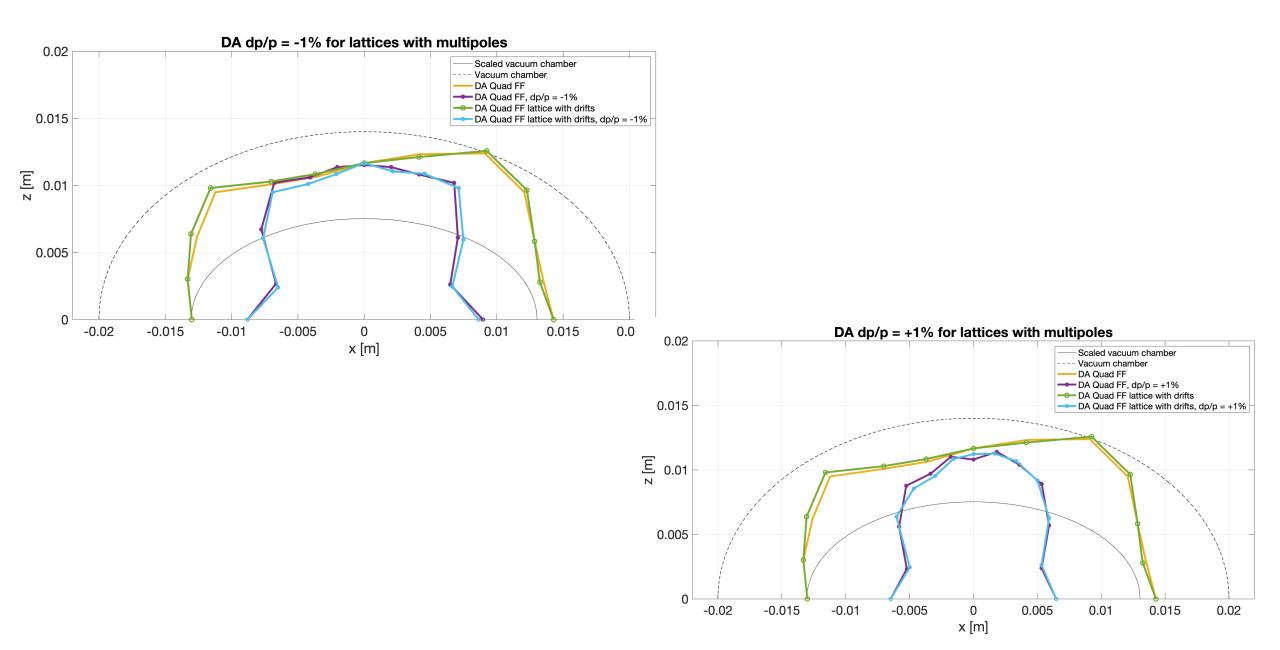
Matching w/o QP1 & QP2 (injection area)


-----O00000----O00000-----Final variable values:

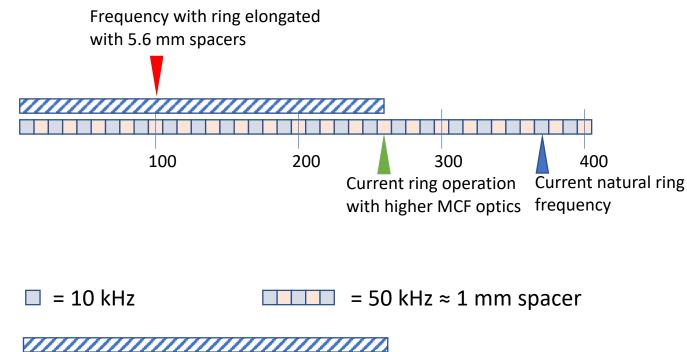
Name	field	before	after	variation
QP1	PolynomB	-4.63186	-4.67797	-0.0461089
QP2	PolynomB	9.32456	9.34028	0.0157197
QP3	PolynomB	-17.2633	-17.2605	0.00279447
QP4	PolynomB	15.3651	15.3685	0.00345879
QP31	PolynomB	-10.2947	-10.2773	0.0173877
QP41	PolynomB	6.86566	6.85603	-0.00963218


-----O00000----O00000----O00000----Final variable values:

Name	field	before	after	variation
QP3	PolynomB	-17.2633	-17.1371	0.126169
QP4	PolynomB	15.3651	15.2624	-0.102735
QP31	PolynomB	-10.2947	-10.3805	-0.0858206
QP41	PolynomB	6.86566	6.99468	0.129015


Simulation/matching results (dL = 14 mm)

DA comparison: nominal lattice vs. lattice with drifts (dL = 14 mm)



$DA \pm 1\% dp/p$: lattice with drifts (dL = 14 mm)

Roadmap

Frequency choice strategy

Acceptable frequency range by FPC, Synchro

Table 2: Comparison Chart of Long-Term Ring Frequency Correction Solutions.

PROS	CONS
 Elongation of the ring Not many dependencies. Can be done by our mechanical team (in-house). Requirements: infra team , 4 mechanical engineers, 2-3 weeks. Studied, understood and explained with simulations with existing models/tools. Flexible frequency choice. Frequency to be decided before installation of insertions. 	 Elongation of the ring Vacuum break-up in the sector of intervention. Slight change in symmetry (<~6 mm max from each side). Main ring properties are conserved. Symplectic simulation of strong short dipoles is not fully understood and not implemented in the available tracking codes. Mechanics: adding new alignment points in the 3D model of the ring. Need for realignment of displaced elements. Risk: Break of the RF bellows, costly and very time consuming in case of refabrication. Risk: vacuum leakage. Exact ring frequency will be retrieved experimentally with the beam (modelling and installation errors).
 Dipole field modification Non-invasive. Vacuum is not affected. Ring elements stay at their actual place. No realignment needed. With available data, tracking in a realistic dipole magnetic field (OPERA) with and w/o plates show ~200 kHz frequency decrease with rescaling of the fieldmap. Simulation model for dipoles becomes more correct (accurate). Correct physics and survey in the ring model. Nominal ring optics. Easily reversible solution. 	 Dipole field modification Uncertainty on the final frequency. Q: Thickness of the plates? Fabrication and installation of the plates. Need to be done in exactly the same way on all 8 dipoles. Need to be validated by a magnet expert And preferably measured at the magnetic test bench (ThomX spare dipole is taken by another experiment). Require 3D preliminary studies by magnet(?) and mechanical groups. Spacing available for the plates is still not confirmed. Strong dependency on magnetic expertise (both simulations and measurements). Time schedule and planning is undefined and difficult to estimate.

- Currently, the potential solution seems to be "Elongation of the ring".
- This is a purely geometrical solution.
- Supervision by mechanical engineer team
 - Ordering the spacers + planning of the intervention
 - > 3D modelling
 - Installation and alignment

We will provide all the necessary inputs to mechanical team

Summary

- We developed the methods to simulate the ThomX ring in AT / MadX / ASTRA / RF-track. We studied the solutions to elongate the ring. The studies are accomplished. Next: after intervention, we will recommissioning the ring (injection, first turns, searching for the frequency...)
- The solution with the metallic plates seems very promising. BUT allowed spacing and realistic geometry studies showed that the expected effect is not sufficient: < 100 kHz.</p>
- Solution 2 ("Elongation of the ring"):
 - > The physics studies now are done.
 - The choice of the drift length should be driven by the inputs from synchromization and FPC teams. From beam dynamics studies, the range (1-14) mm seems OK.
- Once again: the current ring configuration allows the studies/characterization of the X-rays. The elongation of the ring is not a showstopper for the project.