g o

®Cub

Iréne Joliot-Curie
Laboratoire de Physique
2lnfinis

Floating point accuracy

Vincent LAFAGE

1JCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France

[]
universite

PARIS-SACLAY

Laboratoire
de Physique
des 2 infinis

Iréne Joliot-Curie

Wednesday March 27 2024

V. Lafage (University Pari_ o @ H© Wednesday March 27 2024

BY SA

mailto:vincent.lafage@in2p3.fr

l'h Floating Wor

Revisiting “What Every Computer Scientist Should Know About Floating-point Arithmetic”

@ Numbers: real, algebraic, constructibles, decimal, binary, floating point..

@ <« Primitive» types: float, double, long double, quad, half..
When computations don’t turn out as expected...(why, how)
P rounding errors
conversion errors

P propagating errors

P composing errors
@ Heuristics for accuracy:

how a rough estimate can save epsilons

@ Nondimensionalisation and formula entropy reduction
@ How to reconcile nondimensionalisation and performance
@ How to reconcile abstraction and accuracy: functions of a complex variable
@ Why are geometrical computations so hard
@ The hidden side of functional programming: towards total functions

dnesday March 27 2024

https://arxiv.org/abs/2012.02492

(J

e Patriot Missiles, first Gulf War, 1991:
600 m error for interception : 28 killed, a hundred injured

@ Vancouver Stock Exchange, 1982 :
error cumulated over two years on the value of a stock market index

52 % error : 524.811$ instead 1098.892 $

V. Lafage (University Paris—Sa_ o Wednesday March 27 2024

(J
t “What Every Computer Scientist Should

https://doi.org/10.1145/103162.103163
https://www.validlab.com/goldberg/paper.pdf (avec annexe)

“Floating-point arithmetic is considered an esoteric subject by many people”

What Every Computer Scientist Should Know About
Floating-Point Arithmetic

DAVID GOLDBERG
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

Floating-point arithmetic is considered an esotoric subject by many people. This is
rather surprising, because floating-point is ubiquitous in computer systems: Almost
every language has a floating-point datatype; computers from PCs to supercomputers
have floating-point accelerators; most compilers will be called upon to compile
floating-point algorithms from time to time; and virtually every operating system must
respond to floating-point exceptions such as overflow This paper presents a tutorial on
the aspects of floating-point that have a direct impact on designers of computer
systems. It begins with background on floating-point representation and rounding

https://doi.org/10.1145/103162.103163
https://www.validlab.com/goldberg/paper.pdf

l'b Form

Scientific notation:

significand x base®Ponent

mantissa x base®Ponent

ats

«computing is about representation »

significand € Z, exponent € Z
Standard form: mantissa, alias normalized significand

Trick, for base

2: the most significant digit is always 1..

mantisse (23 bits)

sigllﬁ exposant (8 bits |
LTI
3130 25322 (bit index) 0
exposant mantisse
signe (11 bits) (52 bits)

E

63 52

exposant

signe (15 bits) (1 bit)
T

mantisse
(63 bits)

exposant mantisse
signe (5 bits) (10 bits)
| T
] o]
15 10 0

Wednesday March 27 2024

@
ib Example float32

313029282726252423222120191817161514131211109 8 76 543210

float= (—1)% x 2B-127 (14 M), Me[0,1]

S E M

0 0111 1111 000 0000 0000 0000 0000 0000
0 1000 0000 000 0000 0000 0000 0000 0000
0 1000 0000 100 0000 0000 0000 0000 0000
0 1000 0000 110 0000 0000 0000 0000 0000
0 1000 0000 111 0000 0000 0000 0000 0000
1 0111 1111 000 0000 0000 0000 0000 0000
0 0111 1110 000 0000 0000 0000 0000 0000
0 0111 1100 100 1100 1100 1100 1100 1101
0 0111 1101 010 1010 1010 1010 1010 1011
0 0111 1111 011 0101 0000 0100 1111 0011
0 1000 0000 100 1001 0000 1111 1101 1011
0 0000 0000 000 0000 0000 0000 0000 0000
1 0000 0000 000 0000 0000 0000 0000 0000
0 1111 1110 111 1111 1111 1111 1111 1111
0 1111 1111 000 0000 0000 0000 0000 0000
0 1111 1111 LXX XXXX XXX XXXX XXXX XXXX
0 1111 1111 LXX XXXX XXXX XXXX XXXX XXXX
0 1111 1111 01X XXXX XXXX XXXX XXXX XXXX
0 0000 0001 000 0000 0000 0000 0000 0000
0 0000 0000 000 0000 0000 0000 0000 0001
0 0000 0000 111 1111 1111 1111 1111 1111

= using the link below, represent your favorite numbers:

https:

} float= (—1)° x 2B-127 » (1 4 M)
}1=29x(1+0)

y2=21x(1+0)

}3=21x(1+1/2)
y3.5=21x(1+1/2+1/4)

}8.75 =21 x(1+1/2+1/4+1/8)
}-1=-20x(1+0)

y1/2=2"1x(1+0)

10.2=2"3x (1+1/2)x ¥, 1/16™
11/3=2"2x(1+1/4)x ¥, 1/16™

yvV2

yr=2lx(141/24+1/16+1/128 +)
}O special representation

}O_ special representation

} largest float 3.402823466 x 1038

} +oo = Inf special representation

} NaN special representation

}qNaN quiet special representation

} sNaN signaling special representation

} smallest positive float 1.17549435 x 1038
}smallest denormal positive float 1.401 x 1045
} largest denormal positive float 1.175493 79 x 1038

/www. h-schmidt.net/FloatConverter/IEEE754 . html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

@
” Get HexaDecimal

#include <stdio.h>
int main ()

float x = 1.0f;
printf ("%fu=>%a\n", x, x);

x = 2.0f;
printf ("%fu=%a\n", x, x);
x = 3.0f;

printf ("%fu=%a\n", x, x);
x = 3.141592653589793f;
printf ("%fu="%a\n", x, x);

}

1.000000 = 0x1p+0
2.000000 = Ox1p+1
3.000000 = 0x1.8p+1
3.141593 = 0x1.921fbép+1

@
” Get HexaDecimal d

#include <iostream>

int main ()

{

W W N e

float x = 1.0f;
std ::cout << x <<
x = 2.0f;

std ::cout << x <<
x = 3.0f;

std ::cout << x << " =" <<
x = 3.141592653589793f;
std ::icout << x << "= <<

<<

<<

u=u

= 0x1p+0

= Ox1p+1

= 0x1.8p+1

14159 = 0x1.921fb6p+1

std::

std::

std::

std ::

hexfloat <<
hexfloat <<
hexfloat <<

hexfloat <<

X

X

X

X

<<

<<

<<

<<

std::

std :

std::

std ::

defaultfloat <<

cdefaultfloat <<

defaultfloat <<

defaultfloat <<

o
o
o
-

@
” Get HexaDecimal d

program hexfloat

use, intrinsic :: iso_fortran_env, only: real32
implicit none

real (real32) :: x

x =1

write (*, '(F10.6,A,Z16)') x, 'v=.', x

x =2

write (*, '(F10.6,A,Z16)') x, 'v=u', x

x =3

write (*, '(F10.6,A,Z16)') x, 'u=u', X

x = acos (—1.0_real32)

write (*, '(F10.6,A,Z16)") x, 'u=.', X
end program hexfloat

1.000000 = 3F800000
2.000000 = 40000000
3.000000 = 40400000

3.141593 = 40490FDB

@
” Get HexaDecimal d

#!/usr/bin/python3

x = 1.0

print (x, "u=,", float hex(x))
x = 2.0

print (x, "u=,", float . hex(x))
x = 3.0

print.(x, =u", float . hex(x))
x = 3.141592653589793
print (x, ".=.", float. hex(x))

= 0x1.0000000000000p+0
0x1.0000000000000p+1
= 0x1.8000000000000p+1
41592653589793 = 0x1.921fb54442d18p+1

1.0
2.0
3.0
3.1

@
M Get HexaDecimal dis

with Ada.Text_lo;

procedure Hexfloat is
use Ada.Text_lo;
X : Float := 1.0;

begin
Put_Line (X'lmage & "_=.,2"" & Float ' Exponent
X = 2.0;
Put_Line (X'lmage & "_=.,2"" & Float ' Exponent
X = 3.0;

Put_Line (X'lmage & " =,2"" & Float 'Exponent

X := 3.141592653589793;

Put_Line (X'lmage & " =,2"" & Float 'Exponent
end Hexfloat;

1.00000E+00 = 27 1 x 5.00000E-01
2.00000E+00 = 27 2 x 5.00000E-01
3.00000E+00 = 2~ 2 x 7.50000E-01
3.14159E+00 = 27 2 x 7.85398E-01

(X) "Image & "_xu" & Float'Fraction
(X) "Image & "_xu" & Float'Fraction

(X)'Image & "uxu" & Float'Fraction

(X)'Image & "uxu" & Float'Fraction

(X) " Image);

(X) "Image);
(X) "Image);

(X)'Image);

@
t Get HexaDecimal dis

fn extract_components(x: f32) —> (char, i32, u32) {
let bits = x.to_bits();
let sign = if (bits >> 31) &1 =0 { '+' } else { "= };
let mantissa = (bits & ((1 << 23) — 1)) * 2;
let exponent = (((bits >> 23) & OxFF) as i32) — 127;
(sign, exponent, mantissa)

pub fn main() {
let x: f32 = 1.0;
let (sign, exponent, mantissa) = extract_components(x);
printin! (" {}._._u{}Oxl {:x}p{}”. x, sign, mantissa, exponent);
let x: f32 =
let (sngn. exponent mantlssa) = extract_components(x);
printin! (" {}._._u{}Oxl {:x}p{}", x, sign, mantissa, exponent);
let x: f32 =
let (sign, exponent, mantissa) = extract_components(x);
printin! ("{},=u{}0x1.{:x}p{}", x, sign, mantissa, exponent);
let x: f32 = 3.141592653589793;
let (sign, exponent, mantissa) = extract_components(x);
printin! ("{},=u{}0x1.{:x}p{}", x, sign, mantissa, exponent);
let x: f32 = —0.3141592653589793
let (sign, exponent, mantissa) = extract_components(x);
printin! ("{}.=u{}0x1.{:x}p{}", x, sign, mantissa, exponent);

1 = +0x1.0p0

2 = +0x1.0p1

3 = +0x1.800000p1
3.1415927 = +0x1. 921fb6p1

oo Ui P

Interface

leak

C / C++ (/ Python)

Fortran'90

ieee_arithmetic

Ada

copysign (d x, d y)
frexp (d x, i *exp)

ldexp (d x, i exp)
scalbn (d x, i exp)

nextafter(d x,
numeric_limits
numeric_limits

numeric_limits

numeric_limits
numeric_limits

dy)
::iradix
::epsilon ()

s:digits

in_exponent
ax_exponent

nearbyint (d x)

rint(d x)
floor (d x)
ceil (d x)

sign (x, y)
exponent (x)
fraction (x)

set_exponent (x, i)

nearest (x, s)
radix (x)
epsilon (x)
precision (x)
digits (x)
range (x)

minexponent (x)
maxexponent (x)
spacing (x)
rrspacing (x)

nint (x)

floor (x)
ceiling (x)

ieee_copy_sign (x, y)

ieee_logb (x)

ieee_scalb (x, i)

ieee_next_after (x, y)

ieee_rint (x)

ieee_rem (x, y)

F'Copy_Sign (value, sign)
F'Exponent (x)
F'Fraction (x)

F'Scaling (x, adjustment)

F'Adjacent (x, towards)
F'Machine_Radix
F'Model_Epsilon

F'Machine_Mantissa
F'Machine_Emin
F'Machine_Emax

F'Rounding (x)
F'Floor (x)
F'Ceiling (x)
F'Remainder (x, y)

Unfortunately the C/C++ API doesn't vectorise well.

You might need to extract exponent and mantissa in non standard way for performance

dnesday March 27 2024

(J

Y=a+b="c¢ A=a+b—c

with
a=20.1 b=0.2 c=0.3

V. Lafage (University Paris-Saclay) o Wednesday March 27 2024 14 /56

@
” 0.1+ 0.2 # 0.3?

with

a

b

c

=

A

£p32 0.100000001
1p64. 0.10000000000000001
£p80 0.100000000000000000001

1p16 0.099976

0.200000003
0.20000000000000001
0.200000000000000000003
0.19995

0.300000012
0.29999999999999999
0.300000000000000000011
0.30005

0.300000012
0.30000000000000004
0.300000000000000000011
0.29980

0
5.551--10717
0

2.4414--1074

@
M 0.1+ 0.2 # 0.3?

with

a b c = A
£p32 0.100000001 0.200000003 0.300000012 0.300000012 0
1p64. 0.10000000000000001 0.20000000000000001 0.29999999999999999 0.30000000000000004 5.551--10717
£p80 0.100000000000000000001 0.200000000000000000003 0.300000000000000000011 0.300000000000000000011 0
1p16 0.099976 0.19995 0.30005 0.29980 2.4414--10*
= D ¢ B: some decimal are not binary
= binary conversion needs some rounding
é = 0.2y, = 0.001100, - © 13421773 x 2726 = 0.2 + 2,98 x 107
God created the integers, all else is the work of man.

KRONECKER

iversity Paris—Sa- o Wednesday March 27 2024

® .
ih Decimal vs. bina

D={{Bp,n €2 peN}=2[1/10] (decimal)
B= {2%’" €Z,pe N} = Z[1/2] (binary)

BcD
(-]

but D¢ B: £ €D, £ ¢B=0.1+0.2#0.3 ({=0.0011005..) = not good for financial computations..

closure:

V(z,y)€B2, z+yeB,

V(z,y) B2, zxyeB

commutativity V(z,y) € B2, x+y=y+x,

V(z,y)€B2, zxy=yxz

associativity:

V(z,y,2) €B3, z+(y+z)=(z+y) +z

Y(z,y,z) €B3, xx(yxz)=(xxy) xz

distributivity:

Y(@,y,2) €EB3, xx(y+z)=zxytaxz

total order:

V(z,y,2)€B3, z<yady<z=o<z o (tansitivity) ;
V(z,y)eB2, z<yandy<z=axz=y (antisymmetry) ;
VeeB, xz<azx (reflexivity) ;

Y(z,y)€B2, x<yory<wz (totality).

topology:
B C D C Q are dense in R = arbitrarily close approximations to the real numbers

. -
” Decimal vs. bin

@ closure:
Viz,y)€F2, a4yl
V(x,y) e F2, xxy¢gl
= rounding and extension F = F U {+Inf} U {NaN} U {O_} overflow, underflow, inexact
@ commutativity V(z,y) €F2, z+y=y+z,
V(z,y)eF?, zxy=yxaz
@ associativity:
V(z,y,2) €3, z+(y+2)#(z+y)+2
Y(z,y,z) €F3, xx(yxz)#(zxy)xz
@ distributivity:
V(z,y,2)€F3, zx(y+z)¢zxyt+zxz
@ total order:
V(z,y,2)€F3, z<yry<z=z<z (transitivity) ;
V(z,y)eF2, z<yAy<z=xz=y (antisymmetry) ;
VeelF, z<xz (reflexivity) ;
2
Yz, y) e, z<yry<z (NaN).

@ topology:
B C D C Q are dense in R = arbitrarily close approximations to the real numbers
but
[F: floating point numbers, finite parts of B (or D) are dense nowhere

" Roundin

Vo e R, I(x_, x,) € F2|x_ <z < x, (closest representable neighbours)

_ X_+xy
. *- s ,
r T T T 1
% ulp % ulp
lulp

= correct rounding requires at least 2 extra bits beyond target accuracy (cf guard bit, round bit,
“sticky” bit)

or even more (table maker’s dilemma)

correct rounding, faithful rounding, happy-go-lucky rounding

rounding is non-linear but completely deterministic!

Wednesday March 27 2024 17

® .
lh Conversion

@ D ¢ B: every decimal is not a binary
= conversion to binary relies on rounding

£ =0.2,9 = 0.001100, - © 13421773 x 2726 = 0.2 + 2,98 x 107°

4 byte float 25.4E0 =25.399999619 -

8 byte double 25.4D0 = 25.39999999999999858 -

10 byte long-double 25.4T0 = 25.399999999999999999653 -

16 byte quadruple 25.4Q0 =25.3999999999999999999999999999999877 -
2 byte half 25.4_2=25.406--

@ B C D: every binary is a decimal
However, converting a binary, usually from a computation, usually for display or storage, is
not toward the exactly corresponding decimal: it would require too many meaningless
decimal digits.
1 =0.0015 =0.125,38 0.1 -~
= conversion to decimal also relies on rounding

® .
M Decimal conver

= use decimal floating points: _Decimal32, _Decimal64,
_Decimal128 (starting from C23)

= program in SQL or COBOL...

= change scale:
count integer hundredth if you need 2 exact places

= fixed point instead of floating point

V. Lafage (University Paris—Sa_ o Wednesday March 27 2024

.” pi i

exact £p32 fp64 £p16*
sin 7 0 -8.7422777e-8 1.2246467991473532e-16 9.6750e-4
cos 1 -1.000000 -1.000000000000000 -1.000
sin %rr % 0.5000000 0.4999999999999999 0.4998
cos % > 0.5000000 0.5000000000000001 0.5005
sin % @ 0.8660254 0.8660254037844386 0.8657
cos % @ 0.8660254 0.8660254037844387 0.8662
sin0=0 <« sin(0.0)=0
sinm=0 but sin(pi)#0 no finite representation...
pi=m—m, sinpi = Sin‘rrf’)’]:sinnran

™
=€

2

|n| < we/2,=|sinpi| <

.ﬁ pi i

If it is a problem
= use half-turn trig functions: sinpi, cospi,..(starting from C23...)

= use degrees trig functions: sind, cosd,..(all good Fortran compilers..+ F23)

Wednesday March 27 2024 21 /56

'.h Addition

N
> 1/n~InN+y

n=1

Table — Harmonic sum

fp N up sum down sum theoretical sum
fp1l6 250 6.063 6.098 6.098

fpl6 500 7.039 6.793 6.793

fpl6 1000 7.086 7.477 7.484

fpl6 2000 7.086 8.188 8.180

fpl6 4000 7.086 8.789 8.875

fpl6 8000 7.086 9.797 9.563

fpl6 16 000 7.086 9.797 10.26

fpl6 32000 7.086 9.797 10.95

fp32 32000 10.95073 10.95072 10.95071

fp32 3200000 15.55911 15.55588 15.55588

'.h Addition

program harmonique_fpl6
use, intrinsic :: iso_fortran_env, only: sp => REAL32, dp => REAL64
implicit none
integer (8), parameter :: pr = sp , nbmax = 3200000
integer (8) :: idx
real (pr) :: somme_croissante = 0, somme_decroissante = 0
real (pr), parameter :: euler = 0.57721566, &
somme_theorique = euler + log (real (nbmax, sp))

do idx = 1, nbmax
somme_croissante = somme_croissante + 1.0_pr / real (idx, pr)
end do

do idx = nbmax, 1, —1
somme_decroissante = somme_decroissante + 1.0_pr / real (idx, pr)
end do

write (*, *) nbmax, somme_croissante, somme_decroissante, somme_theorique
end program harmonique_fpl6

Wednesday March 27 2024

M Hierarchy of ope

@ arithmetic: +, —, x, /, integer powers

algebraic: a2 fractional powers and roots of polynomials

@ elementary (transcendental) functions:
exp, In, sin, cos, irrational powers, all circular and hyperbolic trigonometry

@ higher transcendental functions a.k.a. special functions:
BESSEL, AIRY, Polylogarithm, elliptic integral, EULER I" function, RIEMANN (function,...

Correct rounding is guaranted by the standard for:

@ arithmetic

@ square root

@
M The Table Maker's Dile

transcendantal functions

@ .. costly

@ .. correct rounding not garanteed
Rounding is non-linear

= mixing various scales

= start runoff (butterfly effect)

to get correct rounding with n digits/bits... https://menbers.loria.fr/PZinnernann/uc/decinal32. html

exp(0.5091077534282133) = 1.663806007261509 5000000000000000 49 ...
16 digits 16 digits

exp(0.7906867968553504) = 2.204910231771509 4999999999999999 ...
16 digits 16 digits

Double rounding (rounding from high precision to intermediate precision, then to low precision)

can also give worse final rounding than expected.

University Paris—Sg_ . Wednesday March 27 2024

https://members.loria.fr/PZimmermann/wc/decimal32.html

®
M Catastrophic Cancellation? Co.

By way of exception in base 10 (not in binary)! mantissa: 3 decimal digits
For a =3.34 and b= 3.33

@ a6b=0.01 = cancellation (reducing relative accuracy)
but a benign one (the floating point result is exact: a ©b=a — b)
a? — b2 =0.0667 = 6.67 x 1072
a®aob®b =0.1=1.00x10"1
333 ulp, no digit is even correct: catastrophic cancellation

50% of relative error on the result, or

@ When does this occur?
@ How many digits are lost?

Plus, there is an overflow risk
= Let’s factorize this!

(a®b)® (a0 b)=6.67®0.01 =6.67x 1072 exact

= The Right Way™

University Paris—Sg_ . Wednesday March 27 2024

.” Cursed Cancella

= higher degree polynomials can degrade high resolutions (cf RuMP)

P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.” Cursed Cancellat

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29

Wednesday March 27 2024

27

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.” Cursed Cancellat

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)
[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
double: P =—-1.1805916207174113e + 021

Wednesday March 27 2024

2z

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.” Cursed Cancellati

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
double: P =-1.1805916207174113e + 021
long double: P = +5.76460752303423489188e + 17

Wednesday March 27 2024

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.M Cursed Cancellati

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29

double: P =-1.1805916207174113e + 021

long double: P = +5.76460752303423489188e + 17

quad: P =+41.17260394005317863185883490452018380

University Paris—Sa_ . Wednesday March 27 2024

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.M Cursed Cancellati

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29

double: P =—-1.1805916207174113e + 021

long double: P = +5.76460752303423489188e + 17

quad: P =+41.17260394005317863185883490452018380
fpi16: P = NaN

University Paris—Sa_ . Wednesday March 27 2024

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

.M Cursed Cancellatio

= higher degree polynomials can degrade high resolutions (cf RuMP)
P =333.75y% + 22(1122y? — yb — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617, y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
double: P =—-1.1805916207174113e + 021
long double: P = +5.76460752303423489188e + 17
quad: P =+41.17260394005317863185883490452018380
fpi16: P = NaN
exact: P ~ —0.827396059946821368141165095479816292
P — _ 54767
66192

How to control rounding errors?

University Paris—Sg_ . Wednesday March 27 2024

https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

(J
M Polynomial evaluatio

HORNER-RUFFINT
@ computational cost of all the exponentiation,

@ accuracy loss it represents.

p(z)=ag+axz+-+a, 2" +a,z"
ay(x—x1) XX (x—x,) (1)

ag + m(al +x(+zlap_1 +Ta,)))

@ gain in speed, (saving of operations)
@ also in accuracy, partly for the same reason,
@ guarantee of stability of the result and safety against intermediate overshoots

= “multiply-accumulate” machine instructions (fma).

+ compensation summation techniques, such as the summation algorithm of W. KAHAN

® .
dh Variance ...andalls

o A difference...
e ..of squares..
@ ..of sums..
@ ..and sums...
°

..of squares...

e two passes approach

arbitrary data shift towards some expected average value

e 1-pass online Welford's algorithm (one more division per iteration)

Wednesday March 27 2024 2

l'h Typical computa

dot product
convolution product (“backwards” dot product)
Fourier transform

matrix product is a matrix of dot products

turns out to be a sum of simple products (quadratic in essence).
= we expect to encounter problems similar to difference of squares and variance computation.
But here we can't use the factorisation trick...

mixed precision
fma (fused multiply accumulate)

fma used to extract exact product

combined with Kahan or other compensated sums

.ﬁ Quadratic

az?+br+c = 0 (a #0)
A = b?—4ac
—b+ VA
Ty = oo

2 possible catastrophic cancelation (« compensation calamiteuse»)

o —b& VA
=q = —b—sgn(b)VA =—sgn(b) (|b| + \/E)
To = 2716 = a;l
@ discriminant A = b2 — 4ac = fma

4 possible overflow:

@ b2 : spurious overflow (if |b| > 1019, A = Inf, |q| = Inf while [q| ~ 2 x 1019)

doi: 10.1145/609742.609746

'” Quadratic

B lac|
Q@ = b
F = %(1“/1740@2)
b 1
= F ©=—3F
. 1
sioc = +1 5(1+ 1-2Q)(1+2Q))
sic=—1 F= % (1+1ma(2Q,2Q,1))

@ Low entropy formula
@ Importance of dimensional analysis (dimensionless numbers implementation)

MIDDLEBROOK, R.D., "Methods of Design-Oriented Analysis: The Quadratic Equation Revisited”,

https://doi.org/10.1109/FIE.1992.683365

https://doi.org/10.1109/FIE.1992.683365

2 T T T

T
F(x)
18 | 1/F(x)

1.6

1.4

1.2

1

0.8

0.6

0.4 | | | |

V. Lafage (University Paris-Saclay) - o Wednesday March 27 2024 33/

.t Quadratic vioie

F:%(1+\/1—4Q2) vQ € [0;1/4]
—8Q2

K= vQ € [0;1/4]
V1-4Q? (1+/1-4Q?)
Table — Quadratic roots
A —B/2 C true A true roots computed A computed roots
10.27 29.61 85.37 0.0022 2.88772.. 2.87859... 0.1000 2.914 2.852 dec4
10.28 29.62 85.34 0.0492 2.90290... 2.86075... 0 2.881 2.881 dec4
10.27 29.61 85.37 0.0022 2.88772.. 2.87859... 0.1000 2.883 fp16
10.28 29.62 85.34 0.0492 2.90290... 2.86075... 0 2.881 fpi6
94906265.625 94906267.000 94906268.375 1.89... 1.000000028975958... 0.0 1.000000014487979
1.0 1.000000014487979
94906266.375 94906267.375 94906268.375 1.0 1.000000021073424.. 2.0 1.000000025437873

1.0 0.999999995635551

@
M The art of nondimens

Dimensional analysis, split

scale parameters, or problem’s characteristic scales

.. dimensionless shape parameters (pure numbers)
lower formulas entropy

often many ways to do it

| 4 problem’s symmetries,

> limit computation complexity,

> limit computation exceptions.
if the math solution has no float representation, we should allow intermediate results not
to be representable as well

bring values close to unity
where the floating point density is highest!

Wednesday March 27 2024

.ﬁ CompToN Scatt

1 1
- 1 2 —— -
0 arccos[+mec <E1+E2 E2)}

Wednesday March 27 2024 36 /56

.ﬁ CompToN Scatt

1 1
= 1 2 - -
0 arccos[+mec <E1+E2 E2)}

@ 2 (same sign) substractions

1 1
6 =arccos |1 —m c? | — — 7)]
E, E|{+E,

Wednesday March 27 2024 36

.h CompToN Scatt

1 1
— ar 1 2(- =
6 = arccos [+mec (El E2 E2):|

@ 2 (same sign) substractions

1 1
0= 1— 2= - =—
arccos[mec <E2 El +E2>:|

@ basic algebra:

6 = arccos {1

_ m,c2E,]
Ey (Ey + Es)

.h CompTON Scatte

1 1
— ar 1 2(- =
6 = arccos [+mec (El E, Ez)}

2 (same sign) substractions

1 1
0 = arccos [1 —m,c? (— — 7”
¢ Ey, Ey+E;

basic algebra:
2
m.c“E
6 = arccos {1 - 571]
Ey (Ey + Es)
@ ..one remaining (same sign) substraction
basic trigonometry: cos2a = 1 —2sin” o < sin® § — 1=00s6 _ versin® _ hayersin g

Wednesday March 27 2024 36

.M CompToN Scatter

1 1
— ar 1 2(- =
6 = arccos [+mec (El E, Ez)}

2 (same sign) substractions

1 1
0 = arccos [1 —m,c? (— — 7”
¢ Ey, Ey+E;

basic algebra:
m,c?E
0 = arccos {1 - 571]
Ey (Ey + Ey)

@ ..one remaining (same sign) substraction

. . .2 .2 _ 1 .
basic trigonometry: cos2a =1 —2sin” o < sin® § = 129080 _ versind _ payersin g

m.c?E;

0 =2arcsiny| ——%———
2B, (By + B;)

@ ..no remaining (same sign) substraction

Wednesday March 27 2024 36

¢°b Compound in

A=P(1+%)nt

r

1:P(1+5)M—P

V. Lafage (University Paris-Saclay) - o Wednesday March 27 2024

V. Lafage (University Paris-Saclay) - o Wednesday March 27 2024 37/56

A=P0+%Vt
r=p(1+5)" -
r=pl(+)" -]
= Pleon ((145)) 1]
1= forp (e (15 7)) 1]

V. Lafage (University Paris-Saclay) - o Wednesday March 27 2024 37/56

37 /5l

<
o
o
a
~
N
=
[
2
]
=
>
)
o
a
[
i<
o
E-

— = =

| | |

R a, L — —~
: _ ! S w2 =g

— + e - ~—

“lg ¢ 5 —~ t Q,

—~ RS ES — —

+ NE —

— + < h

~— + + — = -

b ~ —_ — = &
c T T
— < I | =)
~ ~ & a s

Il I I

~ ~ ~

sity Paris-Saclay) -

Compoun

V. Lafage (Univer

»

t

Compoun

n

L

)]

T

n

))-1]

P [expml (nt loglp (

P [exp (ntln (1 +

I=
I=

37/

<
o
o
a
~
N
=
[
2
]
=
>
)
o
a
[
i<
o
E-

sity Paris-Saclay) -

V. Lafage (Univer

If loglp is not available (cf. GOLDBERG)

| (1 n) x floxz=1
n x - zIn(1+x
(14197—12 else.

V. Lafage (University Paris-Saclay) - o Wednesday March 27 2024 38/ 5

l'b Area of triangle

area S as a function of lengths a, b and ¢ of edges

S=+plp—a)p—b)(p—c) (HERON of ALEXANDRIA, Stereometrica)
p= %b*'c half-perimeter
Symmetric, but numericaly unstable, for needle-like triangles (when large and small values meet
in the same formula)
KAHAN Re-labelling: a >b > c

i\/[a+(b+0)] [c—(a=b)][c+(a=b)][a+t(b-c)]

Apparent Symmetry is lost, but the formula is way more robust
Originating from a determinantal expression

V. Lafage (University Paris-Sacl

https://people.eecs.berkeley.edu/~wkahan/Triangle.pdf

.M Volume of the t

0 a? b2 2 1

1 a2 0 C2?2 B2 1

V= 388 2. c? 0 A% 1
¢2 B2 A2 0 1

1 1 1 1 0

X=(c—A+b)(A+b+c) r=(A-b+c)b—c+A)
Y=(a—B+c)(B+c+a) y=(B—c+a)(c—a+ B)
Z=(b-C+a)(C+a+bd) z=(C—a+b)a—b+C)

E=VaYZ n=+\yzZX (=VzXY A= zyz

1
V= To0ape VEF N+ =N+ E4n = QI+ CHA=CHA+E-1m)

Wednesday March 27 2024

t Testing precision with B A ST

for (unsigned nbTot = NBITERMIN; nbTot < NBITERMAX; nbTot++) {
float x = X0;
for (unsigned nblter = 0; nblter < nbTot; nblter++) x = sqrt (x);
float bottomRadix = x;
for (unsigned nblter = 0; nblter < nbTot; nblter++) x = x * x;
printf ("%d %f %fu(%+e) Y%f(%+e)\n", nbTot, X0, x, x—X0, bottomRadix, bottomRadix—1.0);

iter X0 X x — X0 btmRdx btmRdx — 1

10 2.000000 1.999958 (—4.184246e—05) 1.000677 (+6.771088e—04)
11 2.000000 2.000196 (+1.962185e—04) 1.000339 (+3.385544e—04)
12 2.000000 2.000196 (+1.962185e—04) 1.000169 (+1.692772e—04)
13 2.000000 2.000196 (+1.962185e—04) 1.000085 (+8.463860e—05)
14 2.000000 2.000196 (+1.962185e—04) 1.000042 (+4.231930e—05)
15 2.000000 1.996286 (—3.713965e—03) 1.000021 (+2.110004e—05)
16 2.000000 1.988545 (—1.145530e—02) 1.000010 (+1.049042e—05)
17 2.000000 1.988545 (—1.145530e—02) 1.000005 (+5.245209e—06)
18 2.000000 1.988545 (—1.145530e—02) 1.000003 (+2.622604e—06)
19 2.000000 1.988545 (—1.145530e—02) 1.000001 (+1.311302e—06)
20 2.000000 1.868132 (—1.318680e—01) 1.000001 (+5.960464e—07)
21 2.000000 1.648514 (—3.514862e—01) 1.000000 (+2.384186e—07)
22 2.000000 1.648514 (—3.514862e—01) 1.000000 (+1.192093e—07)
23 2.000000 1.000000 (—1.000000e+00) 1.000000 (+0.000000e+00)

@
M Elasticity and condition number VO

What is the relative sensitivity of a function with respect to input argument fluctuation?
= condition number or absolute value of elasticity

flzg)—f(x) flzg)—f(z)
IR o o O s O YA B XAV o
E=3 e | @) || din]
xT

K is dimensionless, a pure number (doubly logarithmic derivative)

Power law z — C x z™ (with C and n real constants) are the functions with uniform condition
number: Vz, k (z) = n.

log, x: number of accuracy bits lost in the best case, with correct rounding

fix—oal=skr= 2;”—2‘” = 2: no singularity, relative error doubles on each iteration
frz=aVr=>kr= %: no singularity, relative error is halved on each iteration (but can't really
get below %ulp)

Very few uncertainty caused by iterations of VA still the last half ulp is responsible for losing
100% of accuracy

then iterations of = — =2 amplify this generaly negligible error to a macroscopic one.

Wednesday March 27 2024

@
M Elasticity and condition number

Kjog = K X Kg
Kpxg = Kft kg

Iifn =TLF{/f

: singularity @ = ¢ (catastrophic cancellation)

@ frxorz—c=>r=%
] f:x%lnaczwf(m):ﬁ: singularity x =1, f(x=1+h)=In(1+h)

h 1

~ h the i t f logl
(1+h)|n(1+h) o (1+h) ence € Importance O oglp

Kk (h) =

@ f:xz—oexpr—1=k(z)= eﬁs);pfl: indeterminate form z =0, « (h) Wo 1
—

hence the importance of expml

—si . . hcos &
o . zsmz: 2 ~
frx—=cosz—1=k(x)= Ggeorg: indeterminate form x =0, k (h) = Wl 1o 2

hence the importance of trigonometry

To bypass cleanly this « tower of roots» problem (even in single precision), one needs to change

the naive approach and use logip and expml = exercise: do it!

Wednesday March 27 2024

V. Lafage (University Paris-Sa

@
” Denormals

below 1.17 x 10738 for £fp32
below 2.22 x 107398 for fp64

below 6.09 x 1075 for £p16
(up to 5.96 x 1078)

Why?
= alllow for “gradual underflow”
Why not?
= 100x slower
(see Pierre AUBERT)
How?
» float difference around the minimum
normal threshold
» decreasing geometric progression

elapsed time per element [ns/el]

1000

100

sqrtbase 03 ——1
sart base denorm 001 03 +——
sqrt base denorm 01 O3 +—s—+
sqrt base denorm 025 03 +—=—
sqrt base denorm 05 03
sqrt base denorm 075 03 +—s—i
sqrtbase denorm 09 03 +—s—i

sart base denorm 103 +—a—

1000 2000 3000 4000 5000 6000 7000 8OO0 9000 10000

nb elements

https://cta-lapp.pages.in2p3.fr/COURS/PERFORMANCE_WITH_NAN/4-3-4-1-3051.html

@
” Function of a complex varia

R

/(// A\

[]
B

Dec. 16, 1991 reL

vvvvvv

|
(

\

e

Eluding Flow past a Disk: f: Z+— (Z—1/Z)/2and g: Wi W —iViW — 1V/iW + 1

Do not "simplify” g(W) to W —iV—W?2 — 1 nor to W — /W2 + 1 since they behave differently. Though
YW, f(g(W)) =W, V|Z| > 1, g(f(Z)) = Z only, and some |Z| = 1; otherwise g(f(Z))=—1/Z.
Deducing where these identities hold is tricky.

Borda’s Mouthpiece: W i 1+ W2 + W/ W2 + 1 +In(W?2 4+ WyW2 1)

as W runs on radial straight lines through 0 in the right half-plane, including the imaginary axis.

V. Lafage (University Paris—SacIay_ o @ HO) Wednesday March 27 2024

http://http.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps

L

s=p

Function of a complex vari

By(p, my, ma)

7m§+m%,zi

n
16772Q4’"/ d"q !
k2

(2m)n [qQ—m%+iE] [(q—p)Q—m%+iE
1 1 (l—w)m%-#acm%—z(l—cc)pQ—is
z 7/0 dx In oz
2
2o (%) ~fBl@y) - fp@)

s44/s2 —4p2(m% —i€)

2p2 , fplz) = |n(lfz)7z|n(lfzfl)71

= the (microscopic) difference of & induces a (macroscopic) difference of 27 on the imaginary part
= the analytic functions 1 of complex analysis are sharply discontinuous at the crossing of their branch cut

Discrete Stochastic A)

[Vignes’04]

DSA

Random
rounding

Classic arithmetic A1eB v — R

R =3.14237654356891

A @B, T — Ry

A3 ® B3

P R3

Ve

R1 =3.141354786390989
R» =3.143689456834534
R3 =3.142579087356598

@ each operation executed 3 times with a random rounding mode

@ number of correct digits in the results estimated using Student’s test with
the confidence level 95%
@ operations executed synchronously
= detection of numerical instabilities
Ex: if (A>B) with A-B numerical noise
= optimization of stopping criteria

PSA cache-misses and precision analysis with CADNA 12 May 2022

Wednesday March 27 20

implements stochastic arithmetic for C/C++ or Fortran codes
few code rewriting

all operators and mathematical functions overloaded

support for MPI, OpenMP, GPU, vectorised codes

supports emulated ou native half precision

in one CADNA execution: accuracy of any result, complete list of
numerical instabilities

CADNA cost

@ memory: 4

@ run time ~ 10

V. Lafage (University P_ o @ H© Wednesday March 27 2024

(J
” Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.

V. Lafage (University Paris-Saclay) I o Wednesday March 27 2024 49 /56

(J
‘ Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.
To execute CADNA, we essentially change the types.

Wednesday March 27 2024 49 /56

V. Lafage (University Paris-Saclay) -

@
M Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.

To execute CADNA, we essentially change the types.

This execution exposed multiple numerical instabilities that hide potential
massive loss of accuracy.

CADNA_C 3.1.11 software

CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.

There are 538393974 numerical instabilities
10409 UNSTABLE DIVISION(S)

40122229 UNSTABLE MULTIPLICATION(S)

267297 UNSTABLE BRANCHING(S)

448561143 UNSTABLE INTRINSIC FUNCTION(S)

266 UNSTABLE MATHEMATICAL FUNCTION(S)

49432630 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

2 f
th. = L. 2.
+'h Pr) h +o(h?)- TAYLOR

er1t@-1° > fle=wo+h)=flzo)t h

_
=0 at extremum

Forme Quadratique

: 1,0000018 s
1 00013
- -
- 1,0000008 H
trl 1,0000003 e
el "L, Lot
sasitasasasinan

2Ve

0,9999998

-0,0015 -0,001 -0,0005 0,0005 0,001 0,0015

Wednesday March 27 2024 0 /56

Neural Networ

Exploration of Machine learning for Polynomial Root Finding

< Los Alamos

Motivation

We are interested in application of Machine Learning (ML) for
improving numerical methods for solving partial differential equations
(PDES). One example of such an improvement s the optimization of
the parameters of artificial viscosity for Lagrangian and
arbitrary-Lagrangian-Eulerian methods. Another example is solving
the Riemann problem, which is at the core of many numerical methods
for computational gas and solid dynamics. To build confidence in ML
methods and understand their strengths and weaknesses we decided
o start by applying ML to solve simple quadratic equations of one
variable.

Consider a quadratic equation, ax® + bx + ¢ = 0, whose roots are r,
and rp. We would like to learn the function

(a.b,c) =+ (. ra)
without relying on our knowledge of the underlying processes. Instead
we will consider a number of observations observations (training set)

(d.b.¢) = (. 7h). (Y
From which we will try to predict
(@.0,0) = ({LH) = (dr). J=N+1.. N+K

The goal is to minimize
COST = 3_(~ 7)* + 3 (rh~ h)2.
7 7

Challenges

The quadratic equation was selected as a proxy for the following

reasons that are relevant to many complex practical problems:

= There are several branches in the solution: if a = 0, the quadratic
equation becomes a linear equation, which has one root ~ this is a

qualitative change from one regime to a different one; depending on

the discriminant the number of roots as well as the nature of the.

roots changes (real vs. complex).

Finding solution involves different arithmetic operations some of

‘which can be difficult to model by machine learning techniques. For

example, division and square root are a challenge for neural

networks to represent as activation functions.

Probably, the most significant challenge is that for a small range of

input parameters for which output values are increasingly large.

(T-5) Applied Mathematics & Plasma Physics, (XGP-4) Methods & Algorithms, (ISR-

Vitaliy Gyrya, Mikhail Shashkov, Alexei Skurikhin
Space Data Science & Systems
Machine Learning for Gomputational Fluid and Solid Dynamics

February 19-21, 2019

Feed-forward Neural Network [Adaptive sampling with GPR

NN Architecture: Adaptation procedure:

Input Layer: 3 nodes , , ? = Consider the pool of uniformly distributed parameters (a'.b'.c’).
Hidden Layer 1: 128 ReLU = Select an initia training set of points (50) at random. Generated
Hidden Layer 2 64 ReLU GPR based on these points.

Output Layer: 2 Linear 1\\ e 71 = For the given GPR consider the “uncertainty” o at all of the sample
Connectivitys: full points. Find the triples (/. /. ¢') with the largest uncertainty and add
NN Training: 1 | them to the training set.

Batch size: 200 ® ® = Generate a new GPR for the

Training epochs: under 500 updated training set.

Oprimizer: Adam (https:/arxiv.org/abs/1412.6980v8)

= Repeat steps 3-4 untill stopping
criteria s statisfied, e.g. training set
reached predefined size. - ~—

(Gauss Process Regression (GPR)

* Probabilistic Bayesian generalization of linear regression approach.

= Built in model of uncertainty estimator.

= Need to specify a covariance kernel.
Our choice of kernel M
ConstantKernel()+ 724 E '
Matern(length.scale 3/2)

2m
WhiteKernel(noiseievel - 1

Test & training sets

We considered a number of distributions for the coeffcients (. b, c). In
all these cased we assumed that

1. bel-1.1] [e=
and the roots (1. 75) are real, i.e. D = b2 — 4ac > 0.
We considered the following distributions for (a. b, ¢)

+ Uniform random distribution.

* Regular distribution for (a. b, ¢}, i.e. distribution on a grid.)
* Regular distribution for (1/a. b,), i.e. distribution on grid /
The sizes of the training and test sets were approximately equal and /{

were on the order of 40K to 50K data points. U e

—

GPR for large datasets [Conclusions

= For small data sets (2K points) GPR is more accurate

= GPR can utilize adaptive samplin

= GPR does not scale well to larger data sets (~2K points)

= NN scales well for large data sets and has better accuracy over
GPR (more that 5K points) .

* GPR performance degrades quickly (scaling ~ N°).

* Depending on the machine the threshold of tractable training sets
was between 5K and 50K sample points.

* More advanced techniques are needed for larger data sets.

¢°b Floating Point

float and double are identified as simple or even primitive types, but they are much richer than
it seems.

Object point of view: do these types fit into a hierarchy of classes?

= Violation of the LISKOV's substitution principle (LSP)

if S subtypes T, what holds for T-objects holds for S-objects.

If S is a subtype of T, objects of type T in a program can be replaced by objects of type S without changing any of the desirable
properties of that program (e.g. correct results)

A poorly encapsulated abstraction (leaky): we can measure the smallest positive non-zero float, the largest one, the machine

epsilon, the base: we can access the implementation details

Wednesday Mal

@
t « Why aiming for precision? » eesin

Not metrology: we do not seek “precision for precision’s sake”
The functional paradigm invites us to write computer function approaching mathematical functions, and we tend to focus on
the aspect of purity.
But a mathematical function also seeks totality (being defined on the largest domain of
definition):
the function should be calculable for any argument for which it is defined.

@ removing non-jump and non-essential discontinuity: = sme| 0= 1 (naively sin (0.0) / 0.0 = NaN)
z=

@ analytic continuation: factorial = T, or RIEMANN ¢ function

= maximal extension of function domain
= piecewise function definition, casuistry

Using IEEE-754 exceptional values, we can reach a “weak totality":
@ log (0.0) = -Inf (mathematically correct)
@ log (-1.0) = NaN (mathematically correct? more precisely NaRN)
Precision limitations lead to a gray zone in this kind of totality:
@ expf (88.72284) = + Inf (but mathematically it's 2128 = domainException)
@ expf (-103.972084) = 0.0f (but mathematically it's just below 27150 = domainException)
@ gammaf (35.0401001) = + Inf (but mathematically it's 2128)

OK with double, but not with float.

Not all Inf have the same meaning, not all NaN have the same meaning, c¢f null in SQL

@

= Implicit contract: the fonction will

@ (if the argument is inside the mathematical domain of the
mathematical function)

@ (if the type representation of the argument is inside the domain of the
function that has a representable image in the return type)

© return a result
Q this result is relevant(?)

@ (ideally the returned value is the representation of the image of the
mathematical function applied on the represented argument)

V. Lafage (University P_ o Wednesday March 27 2024

« Why aiming for pre

totality (mathematical) vs. representable totality

A representable solution resulting from representable arguments CAN go through a non-representable intermediate calculation.

IEEE-754 exceptional values are not the value of the function, relative error of 100%, as in catastrophic cancelation.
least surprise principle

— we agree to compute erroneous results, because we know that we cannot compute exact results: exact results are rarely

(= almost never) representable: T, e, V2, 1/3, 1/5 in base 2..
— On the other hand, we don’t want things to be very wrong: mathematical result 2 but the function returns NaN
If the calculation is badly carried out, we can end up with
— infinite roots, where they exist and can be represented
— to an absence of roots, where they exist and are representable
— to a presence of roots, where they do not exist

a difference of degree generates a difference of nature (catastrophe theory, bifurcation, chaos)

The relative size of the danger zone in the parameter space will be much larger in low precision.

Annex for a less costly nondimensionalization:

« You Could Learn a Lot from a Quadratic» doi:10.1145/609742.609746, shows how to nondimensionalize with binary, much

less costly in time and accuracy than divisions (and roots) in physicist nondimensionalization. Easy when knowing |IEEE-754

APL.

doi: 10.1145/609742.609746

a tak

M « precision? »

PRECISE _ PRECISE _ SLIGHTLY LESS

NUMBER * NUMBER = PRECISE NUMBER

PREGSE . PRECISE _ SLIGHTLY LESS

NUMBER ~ NUMBER ~ PRECISE NUMBER

PRECE | GARGAGE = GARBAGE

NUMBER
PRECISE -
NUMBER X GARBAGE = GARBAGE
_ LESSBAD
JGARBAGE = cagepace

2 UoRSE
(6ARBAGE)" = AgancE

1 Z(N PIECES OF STA’I'ISTICALLY) _ BETTER
N INDEPENDENT GARBAGE / ~ GARBAGE.

PRECISE _ MUCH JORSE
NUMBER ~ GARBAGE

GARBAGE - GARBAGE = 'MUCH LORSE

GARBAGE
PRECISE NUMBER MUCH \JORSE
o ——————— = GARBAGE, POSSIBLE

GARBAGE ~ GPRBAGE DuisioN BY ZERD

o - PRECIE
GARBAGE < O = \rper

https://xkcd.com/2295/

ersity Pars Saclay) (I

https://xkcd.com/2295/

