
 1 / 23

Make your code more efficient (part 1)
Hadrien Grasland 2024-03-29

 2 / 23

Disclaimer

● This is an introductory course
– You can’t become an expert in 2 mornings
– But you can learn the general process + simple know-how
– Open to adding advanced courses: suggest topics!

 3 / 23

Why optimize programs ?

● Put computing resources* to better use
– Solve the same problem with less resources
– Solve more/bigger problems with the same resources

● Be nice to people (users, other developers, yourself)
– Here, key metric is interaction output delay→

– Frequent waiting feels unpleasant, breaks focus

* Not just about using hardware X for time T : resource-associated costs include
buying, maintenance, power, cooling, environmental footprint…

 4 / 23

Don’t count on hardware alone

● Hardware improvements likely to slow down soon
– CPU/GPU transistor fins getting ~4nm wide as of 2024
– Si lattice parameter is 0,5 nm 2D scaling close to end→

– 3D stacking bad for heat dissipation
– No industrial-grade replacement for Si FETs yet
– Similar situation for other hardware

● Do you know how much you would need to wait/spend ?

 5 / 23

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language

 6 / 23

Preparing for change

● Like all code changes, optimization is risky
– May break normal functionality (wrong results!)
– Today’s ideas may turn out to be useless/bad

● How do we prepare for this ?
– Version control : Have a way back → Another course
– Tests : Find out when you break things → Another course
– Benchmarks : Have a metric for success This course!→

https://indico.ijclab.in2p3.fr/event/10290/contributions/33101/
https://indico.ijclab.in2p3.fr/event/10290/contributions/33109/

 10 / 23

Benchmarks

● To speed things up, need to define slowness
– Known workload that you want to use less resources
– Resource usage metrics (e.g. execution time, RAM used…)

● Often, execution time is your starting point
– Advantage: That’s what you actually care about
– Drawback: Most sensitive to HW/OS config, interference
– Alternatives: Elapsed CPU cycles, bytes read/written…

 11 / 23

The perfect benchmark

● Easy to write, automated*, realistic: Same as tests
● Fast: Usually only interested in one benchmark at a time
● Precise: Metric is measured quite precisely (±5% is easy**)
● Reproducible: Multiple runs provide comparable results

● Exhaustive fine-grained benchmark coverage is not needed
– Start with slow real-world workload
– Find component(s) responsible and benchmark these

* Automated benchmark analysis is hard, but aim for single-command measurements.
** If you keep unrelated system background load low while running benchmarks.

 12 / 23

From macro to micro benchmarks

● Real-world workload may not be convenient to run
– Long execution times
– Big input data you can’t just commit in the repo
– Accesses external resources (database, CVMFS…)

● Micro-benchmarking means making a simplified workload
– Must still exercise the original source of slowness
– Beware smart compilers, libraries, OS, etc. may use a

different algorithm when processing simpler problems

 13 / 23

Processing multiple things

● Common scenario: Processing N tasks gets slower as N grows

● Need to clarify our needs
– Do we care about latency T(end, 1 task) – T(start, 1 task)?
– …or only throughput Ntasks / (T(end, job) – T(start, job))?
– Does resource usage grow linearly with N?

● Good idea to explore with exponential 2n input sizes
● Run benchmarks long enough to amortize transients*

* OS process startup overheads, CPU frequency scaling, CPU and disk cache warm-up…
 1s typically sufficient for CPU- or memory-bound work without initialization phase.

Practical: Microbenchmarking
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/microbenchmarking.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/microbenchmarking.html

 15 / 23

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language

 16 / 23

Think about the whole system

● Computers let you access
many resources
– Hardware (CPU, RAM…)
– Software (OS, database…)

● Each resource has limits
– Some of these limit your

code’s performance
– Need to find which ones!

 17 / 23

The USE method

● Enumerate system resources your program may use*
– Internal components, external services, interconnects...

● For each resource, check…
– Utilization (relative/absolute time spent servicing requests)
– Saturation (queued work that can’t be serviced yet)
– Errors (problems servicing requests)

● More from inventor: https://www.brendangregg.com/usemethod.html

* This step can be difficult for complex programs, you may want to call your local expert.

https://www.brendangregg.com/usemethod.html

 18 / 23

USE method advice

● Remember to check individual CPU cores, disks…
– Your program may not use all of them yet

● Think about interconnects (CPU-RAM, CPU-GPU, network…)
● Think about the outside world (shared storage, database…)

● With VMs, containers, multi-user systems…, also check
host metrics and user quotas (call admins for help!)

● Utilization >70% may already indicate a bottleneck

https://helpdesk.ijclab.in2p3.fr/
https://www.brendangregg.com/usemethod.html#SuggestedInterpretations

 19 / 23

Metrics all the way down

● Complex resources provide finer-grained usage metrics

● Using CPU as an example, can measure among other things…
– Clock rate (should be ≥ base clock for CPU-bound code)
– Instructions per cycle aka IPC (should usually be ≥ 2)
– Cache hit/miss at L1, L2, L3 + RAM bandwidth
– Number of branches, rate of misprediction

● Requires more expertise*, but provides very valuable insight!

* Actually the topic of a whole other course.

https://grasland.pages.in2p3.fr/tp-perf/html/

 20 / 23

Profiling

● You found a bottleneck! Narrow down which code faces it
– Process monitor: Which processes use most CPU time?
– CPU profiler: Within a process, which code uses most CPU?
– Memory profiler: Suspicious allocation/liberation patterns?
– Storage: Check out syscalls, kernel block device metrics
– Network: Break down traffic per connection

● Beware: Fine-grained tools are specialized for one resource
– Make sure that resource truly is your bottleneck!

 21 / 23

What if I can’t find the right tool?

● Use the performance equivalent of printf debugging!
– Check elapsed time in each function called by main()
– Recursively apply this method in functions using most time

● Beware of clock pitfalls
– Use fine-grained clocks (~ns for Linux monotonic clock*)
– Checking time is not free (~40ns on Linux)
– Expect small-scale outliers (~µs spent on OS interrupts)
– Checking clock in a loop can prevent loop optimizations

* The OS API behind C++’s std::chrono::steady_clock and Python’s time.perf_counter()

Practical: Finding the bottleneck
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/find-the-bottleneck.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/find-the-bottleneck.html

 23 / 23

The story so far

● Optimize to put resources to better use, be nice to people
– …or when you can’t just throw more HW at the problem

● Prerequisites for effective performance optimization
– Have an easy way back when you do it wrong
– Make sure you will notice breakage early on
– Set a reproducible benchmark + associated metric
– Narrow down which code needs most care and why

 24 / 23

Study the state of the art

● Did someone else solve the same problem before?
– Standard library of your programming language
– Common utility libraries (FFTW, BLAS/NumPy, HDF5…)
– Domain-specific external packages
– Computing publications, blogs, StackOverflow…

● Try their solution, measure if it performs better!
– If code can’t be reused as-is, study the

algorithms and data structures

 25 / 23

Day 1 wrap-up

● Now we’re ready to optimize our code
– We know which code needs care, and why
– We can confidently change it + assess outcome
– We have asserted we’re not reinventing the wheel

● Day 2 of the training will introduce how we optimize

● Homework:
– Finish exercises from previous practicals, ask questions
– Find the bottleneck of this program

https://indico.ijclab.in2p3.fr/event/9342/
https://mattermost.web.cern.ch/infinites-computations/channels/efficient-code
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/shakespeare-score.html

Thanks for your attention!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26

