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Make your code more efficient (part 1)
Hadrien Grasland  2024-03-29
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Disclaimer

● This is an introductory course
– You can’t become an expert in 2 mornings
– But you can learn the general process + simple know-how
– Open to adding advanced courses: suggest topics!
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Why optimize programs ?

● Put computing resources* to better use
– Solve the same problem with less resources
– Solve more/bigger problems with the same resources

● Be nice to people (users, other developers, yourself)
– Here, key metric is interaction  output delay→

– Frequent waiting feels unpleasant, breaks focus

* Not just about using hardware X for time T : resource-associated costs include
buying, maintenance, power, cooling, environmental footprint…
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Don’t count on hardware alone

● Hardware improvements likely to slow down soon
– CPU/GPU transistor fins getting ~4nm wide as of 2024
– Si lattice parameter is 0,5 nm  2D scaling close to end→

– 3D stacking bad for heat dissipation
– No industrial-grade replacement for Si FETs yet
– Similar situation for other hardware

● Do you know how much you would need to wait/spend ?
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Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language
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Preparing for change

● Like all code changes, optimization is risky
– May break normal functionality (wrong results!)
– Today’s ideas may turn out to be useless/bad

● How do we prepare for this ?
– Version control : Have a way back  → Another course
– Tests : Find out when you break things  → Another course
– Benchmarks : Have a metric for success  This course!→

https://indico.ijclab.in2p3.fr/event/10290/contributions/33101/
https://indico.ijclab.in2p3.fr/event/10290/contributions/33109/
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Benchmarks

● To speed things up, need to define slowness
– Known workload that you want to use less resources
– Resource usage metrics (e.g. execution time, RAM used…)

● Often, execution time is your starting point
– Advantage: That’s what you actually care about
– Drawback: Most sensitive to HW/OS config, interference
– Alternatives: Elapsed CPU cycles, bytes read/written…
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The perfect benchmark

● Easy to write, automated*, realistic: Same as tests
● Fast: Usually only interested in one benchmark at a time
● Precise: Metric is measured quite precisely (±5% is easy**)
● Reproducible: Multiple runs provide comparable results

● Exhaustive fine-grained benchmark coverage is not needed
– Start with slow real-world workload
– Find component(s) responsible and benchmark these

* Automated benchmark analysis is hard, but aim for single-command measurements.
** If you keep unrelated system background load low while running benchmarks.
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From macro to micro benchmarks

● Real-world workload may not be convenient to run
– Long execution times
– Big input data you can’t just commit in the repo
– Accesses external resources (database, CVMFS…)

● Micro-benchmarking means making a simplified workload
– Must still exercise the original source of slowness
– Beware smart compilers, libraries, OS, etc. may use a

different algorithm when processing simpler problems
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Processing multiple things

● Common scenario: Processing N tasks gets slower as N grows

● Need to clarify our needs
– Do we care about latency T(end, 1 task) – T(start, 1 task)?
– …or only throughput Ntasks / (T(end, job) – T(start, job))?
– Does resource usage grow linearly with N?

● Good idea to explore with exponential 2n input sizes
● Run benchmarks long enough to amortize transients*

* OS process startup overheads, CPU frequency scaling, CPU and disk cache warm-up…
   1s typically sufficient for CPU- or memory-bound work without initialization phase.



Practical: Microbenchmarking
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/microbenchmarking.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/microbenchmarking.html
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Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language
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Think about the whole system

● Computers let you access 
many resources
– Hardware (CPU, RAM…)
– Software (OS, database…)

● Each resource has limits
– Some of these limit your 

code’s performance
– Need to find which ones!
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The USE method

● Enumerate system resources your program may use*
– Internal components, external services, interconnects...

● For each resource, check…
– Utilization (relative/absolute time spent servicing requests)
– Saturation (queued work that can’t be serviced yet)
– Errors (problems servicing requests)

● More from inventor: https://www.brendangregg.com/usemethod.html

* This step can be difficult for complex programs, you may want to call your local expert.

https://www.brendangregg.com/usemethod.html
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USE method advice

● Remember to check individual CPU cores, disks…
– Your program may not use all of them yet

● Think about interconnects (CPU-RAM, CPU-GPU, network…)
● Think about the outside world (shared storage, database…)

● With VMs, containers, multi-user systems…, also check
host metrics and user quotas (call admins for help!)

● Utilization >70% may already indicate a bottleneck

https://helpdesk.ijclab.in2p3.fr/
https://www.brendangregg.com/usemethod.html#SuggestedInterpretations
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Metrics all the way down

● Complex resources provide finer-grained usage metrics

● Using CPU as an example, can measure among other things…
– Clock rate (should be ≥ base clock for CPU-bound code)
– Instructions per cycle aka IPC (should usually be ≥ 2)
– Cache hit/miss at L1, L2, L3 + RAM bandwidth
– Number of branches, rate of misprediction

● Requires more expertise*, but provides very valuable insight!

* Actually the topic of a whole other course.

https://grasland.pages.in2p3.fr/tp-perf/html/
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Profiling

● You found a bottleneck! Narrow down which code faces it
– Process monitor: Which processes use most CPU time?
– CPU profiler: Within a process, which code uses most CPU?
– Memory profiler: Suspicious allocation/liberation patterns?
– Storage: Check out syscalls, kernel block device metrics
– Network: Break down traffic per connection

● Beware: Fine-grained tools are specialized for one resource
– Make sure that resource truly is your bottleneck!
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What if I can’t find the right tool?

● Use the performance equivalent of printf debugging!
– Check elapsed time in each function called by main()
– Recursively apply this method in functions using most time

● Beware of clock pitfalls
– Use fine-grained clocks (~ns for Linux monotonic clock*)
– Checking time is not free (~40ns on Linux)
– Expect small-scale outliers (~µs spent on OS interrupts)
– Checking clock in a loop can prevent loop optimizations

* The OS API behind C++’s std::chrono::steady_clock and Python’s time.perf_counter()



Practical: Finding the bottleneck
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/find-the-bottleneck.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/find-the-bottleneck.html
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The story so far

● Optimize to put resources to better use, be nice to people
– …or when you can’t just throw more HW at the problem

● Prerequisites for effective performance optimization
– Have an easy way back when you do it wrong
– Make sure you will notice breakage early on
– Set a reproducible benchmark + associated metric
– Narrow down which code needs most care and why
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Study the state of the art

● Did someone else solve the same problem before?
– Standard library of your programming language
– Common utility libraries (FFTW, BLAS/NumPy, HDF5…)
– Domain-specific external packages
– Computing publications, blogs, StackOverflow…

● Try their solution, measure if it performs better!
– If code can’t be reused as-is, study the

algorithms and data structures
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Day 1 wrap-up

● Now we’re ready to optimize our code
– We know which code needs care, and why
– We can confidently change it + assess outcome
– We have asserted we’re not reinventing the wheel

● Day 2 of the training will introduce how we optimize

● Homework:
– Finish exercises from previous practicals, ask questions
– Find the bottleneck of this program

https://indico.ijclab.in2p3.fr/event/9342/
https://mattermost.web.cern.ch/infinites-computations/channels/efficient-code
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/shakespeare-score.html


Thanks for your attention!
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