Make your code more efficient (part 2) Hadrien Grasland

Day 1 reminder

- Preparations before code optimization
 - Set up **version control** (if you're not using it already)
 - Write more, **finer-grained tests**
 - Define **benchmark** workloads + associated metrics
 - Find the **bottleneck**, and what code is limited by it
 - Check out the **state of the art** for this problem

Homework wrap-up

- The limiting step of this program is **searching entries in a list**
 - For each queried element, the whole list is searched
- Simplified model : search for occurences of M elements in a list of length N, it takes time T to examine one list element
 - Time to search for one element : N * T
 - Time to search for all elements : M * N * T
- We can do better than this by using **better algorithms**

Our optimization strategy

- 1. Prepare for change
- 2. Find the bottleneck
- 3. Study the state of the art
- 4. Improve the algorithm
- 5. Cater to hardware/OS needs
- 6. Know your programming language

Performance mantras*

- **1. Don't do it:** Do you really need to do this?
- 2. Do it, but don't do it again: Can you keep/reuse the result?
- **3. Do it less:** Can you do it e.g. only during debugging?
- **4. Do it later:** Can you e.g. amortize fixed costs by batching?
- **5. Do it when they're not looking:** Think about human wait time!
- 6.Do it concurrently: Remember computers can do parallel work
- 7. Do it cheaper: Most of today's lecture!

* Stolen from Brendan Gregg's beautiful collection of performance checklists.

Example areas of application

Memory allocation

- ns \rightarrow µs scale: Not that expensive, but avoid in tight loops
- General idea: Reset and reuse previously created objects

• File I/O and console printouts

- Do you need to print/save/load all this data?
- Can you live with a subset of it most of the time? Always?
- Can you reduce the precision of stored data at some point?
 - Compute precision does not have to be the same!

Algorithm complexity primer

- Often, code has trouble scaling up to larger datasets
 - Performs fine at small scale, too slow at large scale
- Standard approach when facing this kind of issue
 - Find one or more problem size metrics N, M...
 - Determine how compute time scales with these
 - Assume large problem size \rightarrow Neglect low-order terms
 - e.g. linear search for M things in a list of size N is O(N*M)

What algorithm complexity tells us

- **O(1):** Problem size doesn't matter (e.g. querying array length)
- O(log(N)): It doesn't have a big impact (e.g. binary search)
- O(N): Standard complexity if you need to use all inputs
- **O(N*log(N)):** Difference with O(N) usually doesn't matter
- O(N²): Major slowdown at larger problem sizes
- O(N^3), O(2^N), O(N!), etc.: Painful at large problem sizes
- Of course, sometimes you don't have a choice (e.g. can't multiply NxN matrices in O(N²) time)

Limits of algorithm complexity

- Assumes asymptotically large problem size
 - Low-order terms may be important at your problem size
 - High-order terms may not matter so much
- Does not express many important algorithmic features
 - Constant resource usage **multipliers**
 - Early exit optimizations (e.g. filter early, strongest filter first)
 - Threshold effects (e.g. running out of CPU cache)
 - Code complexity and **maintainability**

Example: List search

- Searching something in a list of N elements can be...
 - O(N) with **linear search** (look up each element in order)
 - O(log(N)) with **binary search** (sort elements by search key)
 - O(1) with **hashing** (derive array index from search key)
- ...but there are **other implications**
 - If element list varies, need trees for sorting (slower)
 - Hashing can be a lot more expensive than comparison
 - Varying key requirements + different data structures

Practical: Algorithmic optimizations

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/algorithmic-optimizations.html

Our optimization strategy

- 1. Prepare for change
- 2. Find the bottleneck
- 3. Study the state of the art
- 4. Improve the algorithm
- 5. Cater to hardware/OS needs
- 6. Know your programming language

Why do we care ?

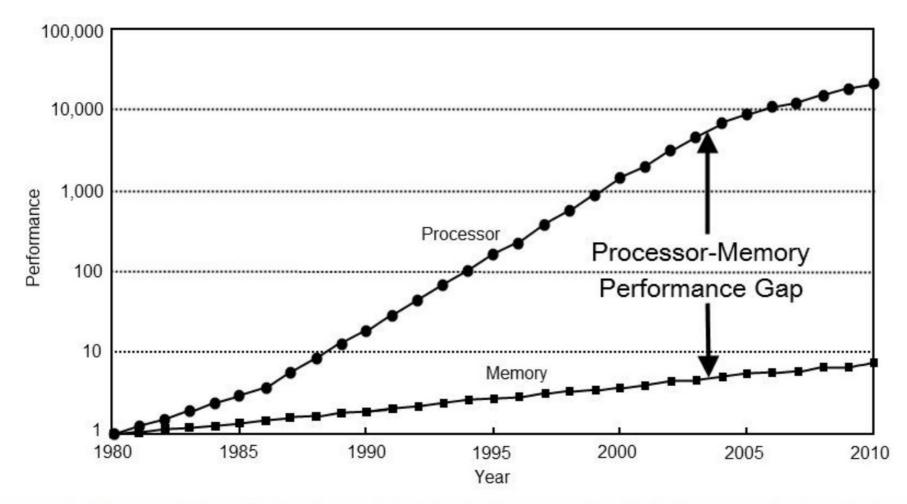
- Hardware performance characteristics are not homogeneous
 - Latency improves much more slowly than throughput
 - Memory hierarchy: slow and large vs fast and small
 - Some HW/OS features only available via weird system APIs (e.g. asynchronous I/O, madvise, GPU...)
 - Shared resources slower/less predictable than private ones
- Big gain if bottleneck becomes something HW does well!

Scope

- Could talk about DRAM, CPU, storage, network, GPU...
 - Not enough time: will focus on x86* CPUs and DRAM speed
- Will discuss...
 - Memory optimizations
 - Logic optimizations
 - Arithmetic optimization
 - Vectorization
 - Multithreading

* Any CPU that inherits design from the Intel 8086, i.e. all current Intel and AMD CPUs. 14/35

The memory wall



Computer Architecture: A Quantitative Approach by John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau

Some numbers

- atlas1.ijclab.in2p3.fr: A modern/fast compute node with two AMD EPYC 7702 64-core CPUs
 - Compute throughput: 2 sockets x 64 cores x 2 GHz x
 2 FMA/cy x 16 f32 ops*/FMA = 8.2 x 10¹² f32 ops / second
 - DRAM bandwidth: 2 sockets x 204,8 GB/s = 409,6 GB/s
 = 1.0 x 10¹¹ f32 transferred / second
- Interpretation: For each f32 you read from DRAM, if you're not doing 80 f32 computations, you're limited by memory speed.

* Multiplication or addition, by convention. So FMA (fused a*b+c) counts as 2 operations. ^{16 / 35}

Avoiding the memory wall

- CPUs provide small, fast chip-local memories called **caches**. Keeping the example of AMD EPYC 7702, each socket has...
 - 256 MB L3, shared bw cores, latency 39 cy, bwidth 32B/cy
 - 512 KB/core L2, latency 12 cy, bandwidth 32B/cy
 - 32 KB/core L1i+L1d, specialized for code/data, latency 4-8 cy, bandwidth 2x32B/cy read + 32B/cy write
- As long as most of your data fits in L1d cache, you can get away with doing only **one computation per memory load**!

CPU cache properties

- Automatic: Every memory read or write gets through caches
- Granularity: Even if you ask for 1 byte, CPU will get 64 bytes*
 - Data used together should be at neighbouring addresses
- LRU policy: Old data is evicted to make room for new data
 - Reuse previously loaded data as soon as possible
- **Beware large strides** (accesses to widely spaced addresses): Cause trouble with associativity, TLB, 4K aliasing...

* This number is x86 specific and could change someday.

Latency hiding

- Even the L1d cache has a few cycles of latency
- CPUs try to handle this by processing N instructions in parallel
- This nice plan may be foiled in various situations:
 - You rely excessively on high latency caches, DRAM
 - You have lots of **indirections** (e.g. arrays of pointers)
 - More generally, you have long dependency chains
 (each instruction uses the result of the previous instruction)
 - Lots of **branches** (if/else, switch, ...) with irregular conditions

Dependency chains in practice

- More of a concern with C++, Numba, ... not with CPython
- If, you need to, say, sum a bunch of floats, avoid this pattern:

```
float acc = 0.0;
for (size_t i = 0; i < N; ++i) acc += input[i];</pre>
```

• Prefer something like this* (assuming M divides N):

```
std::array<float, M> accs { 0.0, 0.0, ..., 0.0 };
for (size_t i = 0; i < N; i += M) {
   for (size_t j = 0; j < M; ++j) accs[j] += input[i+j];
}
// ...and then sum accs...</pre>
```

Logic optimization

- Conditionals (if, switch, etc.) are not free
 - CPU can only process 1/cy, can do most other ops 2+/cy
 - Condition must be predictable, failure is costly (15-20cy*)
 - Use them sparingly in loop + group by condition if you can
 - Consider "branchless" techniques if all else fails
- Virtual methods (from C++ OOP) can be costly
 - Prevent inlining \rightarrow More latency, more instructions...
 - Fine in high-level code, ban them from tight compute loops

Arithmetic optimization

- Floating-point ops aren't born equal. Measured throughputs*:
 - ADD, SUB, MUL, FMA: 2 ops/cycle
 - DIV, SQRT: 0.25-0.33 ops/cy (6-8x slower)
 - EXP, LOG: 0.17-0.2 ops/cy (10-12x slower)
 - SIN, COS: 0.09-0,1 ops/cy (20-22x slower)
 - ATAN: 0.05 ops/cy (44x slower)
- **Consequences:** Keep it simple, reuse inverses, and prefer trigonometric identities over computing sin(atan2(x, y))

* Measured on 2015 hardware, the situation may have evolved a bit since then.

Should compilers optimize floats?

- FP numbers are not real numbers e.g. (a + b) + c != a + (b + c)
- Any operation reordering changes roundings, and thus results
 - Already a problem if you rely on strict equality for validation
- Some reorderings are unsafe (overflow, underflow, cancelation)
 - Compilers may not have enough context to tell what is safe
- So unless you use special languages (e.g. Fortran) or compiler flags (e.g. GCC's -ffast-math), this is your job.

Vectorization

- Good news: 1 CPU instruction processes N numbers at once
 - 2 x f64 or 4 x f32* with SSE (all modern x86 CPUs)
 - 4 x f64 or 8 x f32 with AVX (~80-90% of WLCG CPUs)
- Bad news: Code that uses it requires **a lot of work**
 - Only beneficial for "simple" operations (e.g. ADD, FMA, ...)
 - You must do the same thing with each input
 - Very sensitive to how you lay out data in memory
 - Reconciling performance with HW portability is hard

* Notice how using simple precision, where appropriate, not only halves your memory bandwidth usage but also doubles your arithmetic throughput.

How to vectorize?

- Leave it to **someone else's library** whenever you can!
- If you must do it, prefer using a hardware abstraction layer
 - Compiler "vector extensions" from clang + GCC
 - Libraries: MIPP, xsimd, Vc, libsimdpp, someday std::simd...
- Other approaches that I would advise against:
 - Shape code so compiler autovectorizes it (hard, brittle)
 - Use SSE/AVX instructions directly (hard, not portable)

Multithreading

- In larger experiments, you may not need to parallelize
 - Running N independent jobs in parallel is very easy
 - If that's already an Nx speedup, you're done!
- Do it if you must **reduce latency or spare a shared resource**
 - CPU L3 cache, DRAM capacity & bandwidth...
 - Storage, network, ...
- Beware: Hard to get right + make fast, especially in Python*

* In CPython, multiple threads cannot execute Python code simultaneously. To work around this, you must use multiple processes, which makes communication hard.

Practical: Low-level optimizations

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/low-level-optimizations.html

Our optimization strategy

- 1. Prepare for change
- 2. Find the bottleneck
- 3. Study the state of the art
- 4. Improve the algorithm
- 5. Cater to hardware/OS needs
- 6. Know your programming language

Python

- Easy to get started with
- Tons of libraries available, quite easy to adopt a new one
- But official implementation (CPython) slow to execute code
- Other impls face lang design issues, low library/tool support
- Consequences:
 - Most of your effort should be spent studying library docs
 - Programs should be bottlenecked by long-lasting calls to libraries written in another language (C/++, Fortran, ...)

- More low-level control, compiler optimizes a lot more
- But by the creator's admission, no one fully understands it
 - Everyone has their "good part". That doesn't work in teams.
- Dependency management is a pain \rightarrow Lower code reuse
- Consequences:
 - Learning it is a big investment, may or may not pay off
 - Better for exotic problems with few/no/poor existing libs

C++-specific: Know your compiler

- By default, most compilers don't build for max performance
- GCC/clang options you should be familiar with:
 - **03**: Optimize as much as allowed by other rules
 - march=xyz: Build for CPU xyz, not every CPU since 2003
 - -march=native: Build to run on the same machine
 - **ffast-math**: Treat floats as real numbers (dangerous)
 - Use it to find potential optimizations, don't leave it on

Other options?

- **Beware!** How will you convince your team it's a good idea?
- But for personal enlightenment, try learning...
 - Julia: High-level like Python, different perf tradeoffs.
 - **Rust:** Rebuilding C++ with 20+ years of hindsight.
 - Fortran*: If array compute is all you need, it's very good at it.
- Languages are just the beginning, mastering **big libraries** (numpy, SYCL...) is a lot of work too.

* I am talking about modern Fortan here (>= 90), which is quite different from the Fortran <=77 $_{32/35}$ that you'll find in old and dusty numerical codebases.

Conclusion

- **Prepare** before you optimize :
 - Version control, testing, benchmarking, profiling
 - Find perf-critical problem, study state of the art for it
- Then **speed up** that bottleneck:
 - Start with human/algorithm intelligence for max benefits
 - Then sync up with hardware needs for the last factors
- Programming languages are all about **compromises**.
 - Pick the right tool for the right job.

Final homework : Image sharpening

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/image-sharpening.html

Thanks for your attention!

If you need help with a perf problem, feel free to get back in touch!