
 1 / 35

Make your code more efficient (part 2)
Hadrien Grasland 2024-04-05

 2 / 35

Day 1 reminder

● Preparations before code optimization
– Set up version control (if you’re not using it already)
– Write more, finer-grained tests
– Define benchmark workloads + associated metrics
– Find the bottleneck, and what code is limited by it
– Check out the state of the art for this problem

 3 / 35

Homework wrap-up

● The limiting step of this program is searching entries in a list
– For each queried element, the whole list is searched

● Simplified model : search for occurences of M elements in a
list of length N, it takes time T to examine one list element
– Time to search for one element : N * T
– Time to search for all elements : M * N * T

● We can do better than this by using better algorithms

 4 / 35

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4.Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language

 5 / 35

Performance mantras*

1.Don’t do it: Do you really need to do this?

2.Do it, but don’t do it again: Can you keep/reuse the result?

3.Do it less: Can you do it e.g. only during debugging?

4.Do it later: Can you e.g. amortize fixed costs by batching?

5.Do it when they’re not looking: Think about human wait time!

6.Do it concurrently: Remember computers can do parallel work

7.Do it cheaper: Most of today’s lecture!

* Stolen from Brendan Gregg’s beautiful collection of performance checklists.

https://www.brendangregg.com/methodology.html

 6 / 35

Example areas of application

● Memory allocation
– ns µs scale: Not that expensive, but avoid in tight loops→

– General idea: Reset and reuse previously created objects

● File I/O and console printouts
– Do you need to print/save/load all this data?
– Can you live with a subset of it most of the time? Always?
– Can you reduce the precision of stored data at some point?

● Compute precision does not have to be the same!

 7 / 35

Algorithm complexity primer

● Often, code has trouble scaling up to larger datasets
– Performs fine at small scale, too slow at large scale

● Standard approach when facing this kind of issue
– Find one or more problem size metrics N, M...
– Determine how compute time scales with these
– Assume large problem size Neglect low-order terms→

– e.g. linear search for M things in a list of size N is O(N*M)

 8 / 35

What algorithm complexity tells us

● O(1): Problem size doesn’t matter (e.g. querying array length)
● O(log(N)): It doesn’t have a big impact (e.g. binary search)
● O(N): Standard complexity if you need to use all inputs
● O(N*log(N)): Difference with O(N) usually doesn’t matter
● O(N²): Major slowdown at larger problem sizes
● O(N^3), O(2^N), O(N!), etc.: Painful at large problem sizes

● Of course, sometimes you don’t have a choice
(e.g. can’t multiply NxN matrices in O(N²) time)

 9 / 35

Limits of algorithm complexity

● Assumes asymptotically large problem size
– Low-order terms may be important at your problem size
– High-order terms may not matter so much

● Does not express many important algorithmic features
– Constant resource usage multipliers
– Early exit optimizations (e.g. filter early, strongest filter first)
– Threshold effects (e.g. running out of CPU cache)
– Code complexity and maintainability

 10 / 35

Example: List search

● Searching something in a list of N elements can be…
– O(N) with linear search (look up each element in order)
– O(log(N)) with binary search (sort elements by search key)
– O(1) with hashing (derive array index from search key)

● …but there are other implications
– If element list varies, need trees for sorting (slower)
– Hashing can be a lot more expensive than comparison
– Varying key requirements + different data structures

Practical: Algorithmic optimizations
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/algorithmic-optimizations.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/algorithmic-optimizations.html

 12 / 35

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language

 13 / 35

Why do we care ?

● Hardware performance characteristics are not homogeneous
– Latency improves much more slowly than throughput
– Memory hierarchy: slow and large vs fast and small
– Some HW/OS features only available via weird system APIs

(e.g. asynchronous I/O, madvise, GPU…)
– Shared resources slower/less predictable than private ones

● Big gain if bottleneck becomes something HW does well!

 14 / 35

Scope

● Could talk about DRAM, CPU, storage, network, GPU…
– Not enough time: will focus on x86* CPUs and DRAM speed

● Will discuss…
– Memory optimizations
– Logic optimizations
– Arithmetic optimization
– Vectorization
– Multithreading

* Any CPU that inherits design from the Intel 8086, i.e. all current Intel and AMD CPUs.

 15 / 35

The memory wall

 16 / 35

Some numbers

● atlas1.ijclab.in2p3.fr: A modern/fast compute node
with two AMD EPYC 7702 64-core CPUs
– Compute throughput: 2 sockets x 64 cores x 2 GHz x

2 FMA/cy x 16 f32 ops*/FMA = 8.2 x 1012 f32 ops / second
– DRAM bandwidth: 2 sockets x 204,8 GB/s = 409,6 GB/s

= 1.0 x 1011 f32 transferred / second

● Interpretation: For each f32 you read from DRAM, if you’re not
doing 80 f32 computations, you’re limited by memory speed.

* Multiplication or addition, by convention. So FMA (fused a*b+c) counts as 2 operations.

 17 / 35

Avoiding the memory wall

● CPUs provide small, fast chip-local memories called caches.
Keeping the example of AMD EPYC 7702, each socket has...
– 256 MB L3, shared bw cores, latency 39 cy, bwidth 32B/cy
– 512 KB/core L2, latency 12 cy, bandwidth 32B/cy
– 32 KB/core L1i+L1d, specialized for code/data,

latency 4-8 cy, bandwidth 2x32B/cy read + 32B/cy write

● As long as most of your data fits in L1d cache, you can get
away with doing only one computation per memory load!

 18 / 35

CPU cache properties

● Automatic: Every memory read or write gets through caches

● Granularity: Even if you ask for 1 byte, CPU will get 64 bytes*
– Data used together should be at neighbouring addresses

● LRU policy: Old data is evicted to make room for new data
– Reuse previously loaded data as soon as possible

● Beware large strides (accesses to widely spaced addresses):
Cause trouble with associativity, TLB, 4K aliasing…

* This number is x86 specific and could change someday.

 19 / 35

Latency hiding

● Even the L1d cache has a few cycles of latency
● CPUs try to handle this by processing N instructions in parallel
● This nice plan may be foiled in various situations:

– You rely excessively on high latency caches, DRAM
– You have lots of indirections (e.g. arrays of pointers)
– More generally, you have long dependency chains

(each instruction uses the result of the previous instruction)
– Lots of branches (if/else, switch, …) with irregular conditions

 20 / 35

Dependency chains in practice

● More of a concern with C++, Numba, … not with CPython
● If, you need to, say, sum a bunch of floats, avoid this pattern:
float acc = 0.0;
for (size_t i = 0; i < N; ++i) acc += input[i];

● Prefer something like this* (assuming M divides N):
std::array<float, M> accs { 0.0, 0.0, …, 0.0 };
for (size_t i = 0; i < N; i += M) {
 for (size_t j = 0; j < M; ++j) accs[j] += input[i+j];
}
// ...and then sum accs...

* If you use STL algorithms, this is how std::reduce tries to differ from std::accumulate

 21 / 35

Logic optimization

● Conditionals (if, switch, etc.) are not free
– CPU can only process 1/cy, can do most other ops 2+/cy
– Condition must be predictable, failure is costly (15-20cy*)
– Use them sparingly in loop + group by condition if you can
– Consider “branchless” techniques if all else fails

● Virtual methods (from C++ OOP) can be costly
– Prevent inlining More latency, more instructions…→

– Fine in high-level code, ban them from tight compute loops

* As measured on the relatively old Haswell architecture, may have changed a bit since.

https://www.7-cpu.com/cpu/Haswell.html

 22 / 35

Arithmetic optimization

● Floating-point ops aren’t born equal. Measured throughputs*:
– ADD, SUB, MUL, FMA: 2 ops/cycle
– DIV, SQRT: 0.25-0.33 ops/cy (6-8x slower)
– EXP, LOG: 0.17-0.2 ops/cy (10-12x slower)
– SIN, COS: 0.09-0,1 ops/cy (20-22x slower)
– ATAN: 0.05 ops/cy (44x slower)

● Consequences: Keep it simple, reuse inverses, and prefer
trigonometric identities over computing sin(atan2(x, y))

* Measured on 2015 hardware, the situation may have evolved a bit since then.

 23 / 35

Should compilers optimize floats?

● FP numbers are not real numbers e.g. (a + b) + c != a + (b + c)

● Any operation reordering changes roundings, and thus results
– Already a problem if you rely on strict equality for validation

● Some reorderings are unsafe (overflow, underflow, cancelation)
– Compilers may not have enough context to tell what is safe

● So unless you use special languages (e.g. Fortran)
 or compiler flags (e.g. GCC’s -ffast-math), this is your job.

 24 / 35

Vectorization

● Good news: 1 CPU instruction processes N numbers at once
– 2 x f64 or 4 x f32* with SSE (all modern x86 CPUs)
– 4 x f64 or 8 x f32 with AVX (~80-90% of WLCG CPUs)

● Bad news: Code that uses it requires a lot of work
– Only beneficial for “simple” operations (e.g. ADD, FMA, …)
– You must do the same thing with each input
– Very sensitive to how you lay out data in memory
– Reconciling performance with HW portability is hard

* Notice how using simple precision, where appropriate, not only halves your memory
bandwidth usage but also doubles your arithmetic throughput.

 25 / 35

How to vectorize?

● Leave it to someone else’s library whenever you can!

● If you must do it, prefer using a hardware abstraction layer
– Compiler “vector extensions” from clang + GCC
– Libraries: MIPP, xsimd, Vc, libsimdpp, someday std::simd…

● Other approaches that I would advise against:
– Shape code so compiler autovectorizes it (hard, brittle)
– Use SSE/AVX instructions directly (hard, not portable)

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html#Vector-Extensions
https://github.com/aff3ct/MIPP/
https://xsimd.readthedocs.io/
https://github.com/VcDevel/Vc
https://github.com/p12tic/libsimdpp
https://en.cppreference.com/w/cpp/experimental/simd/simd

 26 / 35

Multithreading

● In larger experiments, you may not need to parallelize
– Running N independent jobs in parallel is very easy
– If that’s already an Nx speedup, you’re done!

● Do it if you must reduce latency or spare a shared resource
– CPU L3 cache, DRAM capacity & bandwidth…
– Storage, network, …

● Beware: Hard to get right + make fast, especially in Python*

* In CPython, multiple threads cannot execute Python code simultaneously.
To work around this, you must use multiple processes, which makes communication hard.

Practical: Low-level optimizations
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/low-level-optimizations.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/low-level-optimizations.html

 28 / 35

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language

 29 / 35

Python

● Easy to get started with
● Tons of libraries available, quite easy to adopt a new one
● But official implementation (CPython) slow to execute code
● Other impls face lang design issues, low library/tool support

● Consequences:
– Most of your effort should be spent studying library docs
– Programs should be bottlenecked by long-lasting calls to

libraries written in another language (C/++, Fortran, …)

 30 / 35

C++

● More low-level control, compiler optimizes a lot more
● But by the creator’s admission, no one fully understands it

– Everyone has their “good part”. That doesn’t work in teams.
● Dependency management is a pain Lower code reuse→

● Consequences:
– Learning it is a big investment, may or may not pay off
– Better for exotic problems with few/no/poor existing libs

 31 / 35

C++-specific: Know your compiler

● By default, most compilers don’t build for max performance

● GCC/clang options you should be familiar with:

– O3: Optimize as much as allowed by other rules

– march=xyz: Build for CPU xyz, not every CPU since 2003
● -march=native: Build to run on the same machine

– ffast-math: Treat floats as real numbers (dangerous)
● Use it to find potential optimizations, don’t leave it on

https://simonbyrne.github.io/notes/fastmath/

 32 / 35

Other options?

● Beware! How will you convince your team it’s a good idea?

● But for personal enlightenment, try learning…
– Julia: High-level like Python, different perf tradeoffs.
– Rust: Rebuilding C++ with 20+ years of hindsight.
– Fortran*: If array compute is all you need, it’s very good at it.

● Languages are just the beginning, mastering big libraries
(numpy, SYCL…) is a lot of work too.

* I am talking about modern Fortan here (>= 90), which is quite different from the Fortran <=77
 that you’ll find in old and dusty numerical codebases.

 33 / 35

Conclusion

● Prepare before you optimize :
– Version control, testing, benchmarking, profiling
– Find perf-critical problem, study state of the art for it

● Then speed up that bottleneck:
– Start with human/algorithm intelligence for max benefits
– Then sync up with hardware needs for the last factors

● Programming languages are all about compromises.
– Pick the right tool for the right job.

Final homework : Image sharpening
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/image-sharpening.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/image-sharpening.html

Thanks for your attention!
If you need help with a perf problem, feel free to get back in touch!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35

