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Day 1 reminder

● Preparations before code optimization
– Set up version control (if you’re not using it already)
– Write more, finer-grained tests
– Define benchmark workloads + associated metrics
– Find the bottleneck, and what code is limited by it
– Check out the state of the art for this problem
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Homework wrap-up

● The limiting step of this program is searching entries in a list
– For each queried element, the whole list is searched

● Simplified model : search for occurences of M elements in a 
list of length N, it takes time T to examine one list element
– Time to search for one element : N * T
– Time to search for all elements : M * N * T

● We can do better than this by using better algorithms
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Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4.Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language
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Performance mantras*

1.Don’t do it: Do you really need to do this?

2.Do it, but don’t do it again: Can you keep/reuse the result?

3.Do it less: Can you do it e.g. only during debugging?

4.Do it later: Can you e.g. amortize fixed costs by batching?

5.Do it when they’re not looking: Think about human wait time!

6.Do it concurrently: Remember computers can do parallel work

7.Do it cheaper: Most of today’s lecture!

* Stolen from Brendan Gregg’s beautiful collection of performance checklists.

https://www.brendangregg.com/methodology.html
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Example areas of application

● Memory allocation
– ns  µs scale: Not that expensive, but avoid in tight loops→

– General idea: Reset and reuse previously created objects

● File I/O and console printouts
– Do you need to print/save/load all this data?
– Can you live with a subset of it most of the time? Always?
– Can you reduce the precision of stored data at some point?

● Compute precision does not have to be the same!
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Algorithm complexity primer

● Often, code has trouble scaling up to larger datasets
– Performs fine at small scale, too slow at large scale

● Standard approach when facing this kind of issue
– Find one or more problem size metrics N, M...
– Determine how compute time scales with these
– Assume large problem size  Neglect low-order terms→

– e.g. linear search for M things in a list of size N is O(N*M)
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What algorithm complexity tells us

● O(1): Problem size doesn’t matter (e.g. querying array length)
● O(log(N)): It doesn’t have a big impact (e.g. binary search)
● O(N): Standard complexity if you need to use all inputs
● O(N*log(N)): Difference with O(N) usually doesn’t matter
● O(N²): Major slowdown at larger problem sizes
● O(N^3), O(2^N), O(N!), etc.: Painful at large problem sizes

● Of course, sometimes you don’t have a choice
(e.g. can’t multiply NxN matrices in O(N²) time)
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Limits of algorithm complexity

● Assumes asymptotically large problem size
– Low-order terms may be important at your problem size
– High-order terms may not matter so much

● Does not express many important algorithmic features
– Constant resource usage multipliers
– Early exit optimizations (e.g. filter early, strongest filter first)
– Threshold effects (e.g. running out of CPU cache)
– Code complexity and maintainability
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Example: List search

● Searching something in a list of N elements can be…
– O(N) with linear search (look up each element in order)
– O(log(N)) with binary search (sort elements by search key)
– O(1) with hashing (derive array index from search key)

● …but there are other implications
– If element list varies, need trees for sorting (slower)
– Hashing can be a lot more expensive than comparison
– Varying key requirements + different data structures



Practical: Algorithmic optimizations
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/algorithmic-optimizations.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/algorithmic-optimizations.html


  12 / 35

Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language



  13 / 35

Why do we care ?

● Hardware performance characteristics are not homogeneous
– Latency improves much more slowly than throughput
– Memory hierarchy: slow and large vs fast and small
– Some HW/OS features only available via weird system APIs

(e.g. asynchronous I/O, madvise, GPU…)
– Shared resources slower/less predictable than private ones

● Big gain if bottleneck becomes something HW does well!
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Scope

● Could talk about DRAM, CPU, storage, network, GPU…
– Not enough time: will focus on x86* CPUs and DRAM speed

● Will discuss…
– Memory optimizations
– Logic optimizations
– Arithmetic optimization
– Vectorization
– Multithreading

* Any CPU that inherits design from the Intel 8086, i.e. all current Intel and AMD CPUs.
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The memory wall
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Some numbers

● atlas1.ijclab.in2p3.fr: A modern/fast compute node
with two AMD EPYC 7702 64-core CPUs
– Compute throughput: 2 sockets x 64 cores x 2 GHz x

2 FMA/cy x 16 f32 ops*/FMA = 8.2 x 1012 f32 ops / second
– DRAM bandwidth: 2 sockets x 204,8 GB/s = 409,6 GB/s

= 1.0 x 1011 f32 transferred / second

● Interpretation: For each f32 you read from DRAM, if you’re not 
doing 80 f32 computations, you’re limited by memory speed.

* Multiplication or addition, by convention. So FMA (fused a*b+c) counts as 2 operations.
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Avoiding the memory wall

● CPUs provide small, fast chip-local memories called caches.
Keeping the example of AMD EPYC 7702, each socket has...
– 256 MB L3, shared bw cores, latency 39 cy, bwidth 32B/cy
– 512 KB/core L2, latency 12 cy, bandwidth 32B/cy
– 32 KB/core L1i+L1d, specialized for code/data,

latency 4-8 cy, bandwidth 2x32B/cy read + 32B/cy write

● As long as most of your data fits in L1d cache, you can get 
away with doing only one computation per memory load!
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CPU cache properties

● Automatic: Every memory read or write gets through caches

● Granularity: Even if you ask for 1 byte, CPU will get 64 bytes*
– Data used together should be at neighbouring addresses

● LRU policy: Old data is evicted to make room for new data
– Reuse previously loaded data as soon as possible

● Beware large strides (accesses to widely spaced addresses): 
Cause trouble with associativity, TLB, 4K aliasing…

* This number is x86 specific and could change someday.
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Latency hiding

● Even the L1d cache has a few cycles of latency
● CPUs try to handle this by processing N instructions in parallel
● This nice plan may be foiled in various situations:

– You rely excessively on high latency caches, DRAM
– You have lots of indirections (e.g. arrays of pointers)
– More generally, you have long dependency chains

(each instruction uses the result of the previous instruction)
– Lots of branches (if/else, switch, …) with irregular conditions
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Dependency chains in practice

● More of a concern with C++, Numba, … not with CPython
● If, you need to, say, sum a bunch of floats, avoid this pattern:
float acc = 0.0;
for (size_t i = 0; i < N; ++i) acc += input[i];

● Prefer something like this* (assuming M divides N):
std::array<float, M> accs { 0.0, 0.0, …, 0.0 };
for (size_t i = 0; i < N; i += M) {
  for (size_t j = 0; j < M; ++j) accs[j] += input[i+j];
}
// ...and then sum accs...

* If you use STL algorithms, this is how std::reduce tries to differ from std::accumulate
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Logic optimization

● Conditionals (if, switch, etc.) are not free
– CPU can only process 1/cy, can do most other ops 2+/cy
– Condition must be predictable, failure is costly (15-20cy*)
– Use them sparingly in loop + group by condition if you can
– Consider “branchless” techniques if all else fails

● Virtual methods (from C++ OOP) can be costly
– Prevent inlining  More latency, more instructions…→

– Fine in high-level code, ban them from tight compute loops

* As measured on the relatively old Haswell architecture, may have changed a bit since.

https://www.7-cpu.com/cpu/Haswell.html
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Arithmetic optimization

● Floating-point ops aren’t born equal. Measured throughputs*:
– ADD, SUB, MUL, FMA: 2 ops/cycle
– DIV, SQRT: 0.25-0.33 ops/cy (6-8x slower)
– EXP, LOG: 0.17-0.2 ops/cy (10-12x slower)
– SIN, COS: 0.09-0,1 ops/cy (20-22x slower)
– ATAN: 0.05 ops/cy (44x slower)

● Consequences: Keep it simple, reuse inverses, and prefer 
trigonometric identities over computing sin(atan2(x, y))

* Measured on 2015 hardware, the situation may have evolved a bit since then.
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Should compilers optimize floats?

● FP numbers are not real numbers e.g. (a + b) + c != a + (b + c)

● Any operation reordering changes roundings, and thus results
– Already a problem if you rely on strict equality for validation

● Some reorderings are unsafe (overflow, underflow, cancelation)
– Compilers may not have enough context to tell what is safe

● So unless you use special languages (e.g. Fortran)
 or compiler flags (e.g. GCC’s -ffast-math), this is your job.
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Vectorization

● Good news: 1 CPU instruction processes N numbers at once
– 2 x f64 or 4 x f32* with SSE (all modern x86 CPUs)
– 4 x f64 or 8 x f32 with AVX (~80-90% of WLCG CPUs)

● Bad news: Code that uses it requires a lot of work
– Only beneficial for “simple” operations (e.g. ADD, FMA, …)
– You must do the same thing with each input
– Very sensitive to how you lay out data in memory
– Reconciling performance with HW portability is hard

*  Notice how using simple precision, where appropriate, not only halves your memory 
bandwidth usage but also doubles your arithmetic throughput.
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How to vectorize?

● Leave it to someone else’s library whenever you can!

● If you must do it, prefer using a hardware abstraction layer
– Compiler “vector extensions” from clang + GCC
– Libraries: MIPP, xsimd, Vc, libsimdpp, someday std::simd…

● Other approaches that I would advise against:
– Shape code so compiler autovectorizes it (hard, brittle)
– Use SSE/AVX instructions directly (hard, not portable)

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html#Vector-Extensions
https://github.com/aff3ct/MIPP/
https://xsimd.readthedocs.io/
https://github.com/VcDevel/Vc
https://github.com/p12tic/libsimdpp
https://en.cppreference.com/w/cpp/experimental/simd/simd
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Multithreading

● In larger experiments, you may not need to parallelize
– Running N independent jobs in parallel is very easy
– If that’s already an Nx speedup, you’re done!

● Do it if you must reduce latency or spare a shared resource
– CPU L3 cache, DRAM capacity & bandwidth…
– Storage, network, …

● Beware: Hard to get right + make fast, especially in Python*

* In CPython, multiple threads cannot execute Python code simultaneously.
To work around this, you must use multiple processes, which makes communication hard.



Practical: Low-level optimizations
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/low-level-optimizations.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/low-level-optimizations.html
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Our optimization strategy

1.Prepare for change

2.Find the bottleneck

3.Study the state of the art

4. Improve the algorithm

5.Cater to hardware/OS needs

6.Know your programming language
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Python

● Easy to get started with
● Tons of libraries available, quite easy to adopt a new one
● But official implementation (CPython) slow to execute code
● Other impls face lang design issues, low library/tool support

● Consequences:
– Most of your effort should be spent studying library docs
– Programs should be bottlenecked by long-lasting calls to 

libraries written in another language (C/++, Fortran, …)
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C++

● More low-level control, compiler optimizes a lot more
● But by the creator’s admission, no one fully understands it

– Everyone has their “good part”. That doesn’t work in teams.
● Dependency management is a pain  Lower code reuse→

● Consequences:
– Learning it is a big investment, may or may not pay off
– Better for exotic problems with few/no/poor existing libs
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C++-specific: Know your compiler

● By default, most compilers don’t build for max performance

● GCC/clang options you should be familiar with:

– O3: Optimize as much as allowed by other rules

– march=xyz: Build for CPU xyz, not every CPU since 2003
● -march=native: Build to run on the same machine

– ffast-math: Treat floats as real numbers (dangerous)
● Use it to find potential optimizations, don’t leave it on

https://simonbyrne.github.io/notes/fastmath/
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Other options?

● Beware! How will you convince your team it’s a good idea?

● But for personal enlightenment, try learning…
– Julia: High-level like Python, different perf tradeoffs.
– Rust: Rebuilding C++ with 20+ years of hindsight.
– Fortran*: If array compute is all you need, it’s very good at it.

● Languages are just the beginning, mastering big libraries 
(numpy, SYCL…) is a lot of work too.

* I am talking about modern Fortan here (>= 90), which is quite different from the Fortran <=77
 that you’ll find in old and dusty numerical codebases.
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Conclusion

● Prepare before you optimize :
– Version control, testing, benchmarking, profiling
– Find perf-critical problem, study state of the art for it

● Then speed up that bottleneck:
– Start with human/algorithm intelligence for max benefits
– Then sync up with hardware needs for the last factors

● Programming languages are all about compromises.
– Pick the right tool for the right job.



Final homework : Image sharpening
https://grasland.pages.in2p3.fr/make-your-code-more-efficient/image-sharpening.html

https://grasland.pages.in2p3.fr/make-your-code-more-efficient/image-sharpening.html


Thanks for your attention!
If you need help with a perf problem, feel free to get back in touch!
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