Innovate for Sustainable Accelerating Systems WP2: Low Level RF Controls

Holger Schlarb, Julien Branlard, Andrea Bellandi, Axel Neumann,...

15. April 2024

Ideally what we would like to have:

MainWindow
ACCELERATOR LLRF
SYSTEM OK
AMPLITUDE 31.5 MeV
PHASE 0.0 deg

And meets:

- Advanced automation Ampl. & Phase stability
- **Operates reliably**
- Is maintainable & upgradable
- Adopts parameter changes e.g. $I_{h}(t)$
- **Compensates environmental changes**
- Identifies faults in the system
- **Minimizes DC power consumption!**

LLRF control tasks:

Impact of cavity tuning...

Courtesy: J. Branlard

Impact of cryogenic ...

40 Hz/mBar for 1.3 GHz cavities

62 Hz/mBar for 3.9 GHz cavities

Regulation loop EuXFEL

The European XFEL Accelerator : one RF station

- 10 MW klystron to power 32 cavities
- one accelerating field RF control FB loop
- remote frequency tuning (motor / piezo) / cavity
- remote phase and external coupling tuning / cavity

- average coupler peak power 102 kW (140 kW) for low (high) runs
- average gradient 18.5 MV/m (22.5 MV/m) for low (high) runs
- average detuning +/- 10 Hz
- average $Q_{ext} = 4.6e6$ average $Q_0 = 1e10$

WP2: Low Level RF controls Reduce energy consumption @ EuXFEL

Courtesy: J. Branlard

Field detector development ...

- ➔ Higher performance
- ➔ Better diagnostics
- → Lower latency

2) RFSoC (~ 2026 as AMC)

Phase Shifter Attenuator ost Processin υл LNA Combiner Bandpass Signal Splitte Signal Source Source Analyzer Ultra LN-noise RF-MO essential -1101671 as 1819 as 2.14 as 1.97 as 3291 as 3.38 as 9.66 as -120 -130 -140 -150 -150 -150 -160 -170 -180 -190 -CSI Noise Floor Post-IQ-Detection 60 dB System Noise Floor 10 as -210 -205 dBc/Hz -220 10^{2} 10^{5} 10^{6} 10^{3} 10^{4} Offset Frequency [Hz]

3) Carrier Suppression Interferometer

Ref.: S. Springer et al., doi: 10.1109/TIM.2022.3170975

iSAS motivation & challenges WP2

Impact of Q 100 $V_{cav} = 20.0 \text{ MV}$ $P_g = \frac{V_c^2}{4\frac{r}{6}Q_L}$ $r/Q = 1037.0 \Omega$ 80 P_{FWD} [kW] 60 40 $P_a=20.9kW$ 20 $P_a = 2.4 \text{kW}$ n $Q_L = 4.6e + 06$ 10⁷ $Q_l = 4.0e + 07$ 10⁶ 108 Load quality factor Q₁

WP2.2: Optimizing & tuning Q_L WP2.3: Microphonics control

Cav. Tuner ~ 300 kHz/mm 1 nm \rightarrow 1 deg phase change Excellent strain meters! EuXFEL $\delta \theta_p < 0.01$ deg

Equivalent to 10 pm

➔ RF feedback overhead

\mathbf{Q}_{L} range of interests:

WP2: Low Level RF controls Introduction Q₁ low

Lorentz force detuning...

Cavity equation:

 $\dot{V}_{I} = \omega_{1/2} \left[-V_{I} + yV_{Q} + V_{g,I} \right]$ $\dot{V}_{Q} = \omega_{1/2} \left[-V_{Q} - yV_{I} + V_{g,Q} \right]$

Detuning:

 $\Delta \omega = \omega_{1/2} y$

Non-linear coupling:

 $y = y_{\star} + K_{lfd} V_{acc}^2$

 $k_{lfd}\approx \text{-1 Hz/(MV/m)^2}$

20 MV/m → 400 Hz huge!!!

Lorentz force detuning...

Cavity equation:

$$\dot{V}_{I} = \omega_{1/2} \left[-V_{I} + yV_{Q} + V_{g,I} \right] \dot{V}_{Q} = \omega_{1/2} \left[-V_{Q} - yV_{I} + V_{g,Q} \right]$$

Detuning:

$$\Delta \omega = \omega_{1/2} y$$

Non-linear coupling:

 $y = y_{\star} + K_{Ifd} V_{acc}^2$

 $k_{lfd}\approx -1~Hz/(MV/m)^2$

20 MV/m → 400 Hz huge!!!

Introduction

WP2: Low Level RF controls

Q_L high & CW

Tricky to operated at high gradient:

- Often SEL \rightarrow GDR for ramping up used
- Non-linear phase change w.r.t detuning
- Operation only with RF-FB on
- LP ... careful piezo FF needed
- Mechanical osc. \rightarrow interrupts operation
- May exhibit cav cav. cross-talk

High Duty-Cycle Program @EuXFEL

WP2: Low Level RF controls EuXFEL High Duty-Cycle program

WP2: Low Level RF controls EuXFEL High Duty-Cycle program

Original CW upgrade proposal (canonical upgrade)

European

WP2: Low Level RF controls

Example: EuXFEL L3, CW / LP operation

Transfer efficiency $RF \rightarrow Beam$

Remark: EuFEL I_{beam} often changes [0..100%] → P varies ≈ x 3 → adopt SSAM drain voltage

WP2: Low Level RF controls EuXFEL HDC: Coupler heating & Quench limit

Tests at CMTB to investigate the suitability of series cryomodules for CW/LP operation

Checking heating (and thermal equilibrium) of fundamental input power couplers

Checking **quench limit** as a function of duty factor

WP2: Low Level RF controls EuXFEL HDC: Coupler heating & Quench limit

Tests at CMTB to investigate the suitability of series cryomodules for CW/LP operation

Checking heating (and thermal equilibrium) of fundamental input power couplers

Checking **quench limit** as a function of duty factor

On average, for DF of up **25%**, cavities can reach **> 85%** of the pulsed quench limit

Courtesy: J. Branlard

	C1	C2	C3	C4	C5	C6	C7	C8	
DF [%]	Emax [MV/m]	Emax [MV/m]	<emax> [MV/m]</emax>						
1.3	30	32.5	36	34	34	31	34	28	32.5
6				25.1					
12.5 18.2			28.1	23.2					
25	27.5	32.3	21.3	20.7	32.6	30.8	28.2	26.6	27.5
50	21.2	30.2	19.5	19.7	28.5	26.5	27.2	27.2	25
100	12.2	22.6	19.4	17.2	21.1	18.4	21.4	20.9	19.2

WP2 Program

WP2: Low Level RF controls DESY, HZB, CNRS Convener: Holger Schlarb (DESY)/ Julien Branlard (DESY) Main contacts with other partners: Axel Neumann (HZB), Christophe Joly (CNRS)

Task 2.1: Coordination of R&D on LLRF – M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners– M13-M48

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

SRF test stands & access to SRF accelerators is essential! 3 new hires @ DESY / + 2 openings @HZB/@DESY

bERLinPro

EuXFEL

FLASH


```
AMTF@DESY
```


HoBiCaT@HZB

CMTB@DESY

SRF Photoinjector Test Stand (Ts4i)

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

• Identify optimal loaded-quality factor (QL) to achieve efficient field control for various operation scenarios.

• Evaluate methods for changing QL (at the cavity coupler and waveguide level).

• Investigate benefits of advanced ML-based combined RF and mechanical feedback controllers.

• Demonstrate **RF-efficient control** in continuous wave (CW) and long pulse (LP) operation.

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

• Evaluate methods for changing QL (at the cavity coupler and waveguide level).

3-stub tuner at HoBiCaT@HZB

+ simulation have been performed

Introduce an additional waveguide Q tuner

extend tuning range x10

Existing motorized coupler tuner : usual tuning range $Q_L = [1e6 - 1e7]$

Q tuner at the AMTF

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

- Characterize microphonics and detuning during cavity operation.
- Characterize environmental disturbances and transfer to the cavity perturbation.
- Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36 Characterize microphonics and detuning during cavity operation.

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

• Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.

Active Noise Cancellation (ANC)@FPGA

typically x 3-6 suppression
 + broadband FB desired

Ref.: R. Rybaniec *et al.,* doi:10.1109/RTC.2016.7543112 Ref.: A. Bellandi *et al.,* doi:10.18429/JACoW-LINAC2022-THPOPA21

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

- Develop schemes to adjust SSA parameters for efficient RF generation.
- Investigate RF control parameters for energy-efficiency optimization using ML
- Develop fault diagnosis and anomaly detection using ML approaches
- Develop fault counter measures for sustainable cavity operation
- Develop a digital twin and surrogate models to improve energy efficiency.

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

Thanks for attention

 $\bullet \bullet \bullet$

Looking forward to a fruitful collaboration

WP2: Low Level RF controls DESY, HZB, CNRS Convener: Holger Schlarb (DESY)/ Julien Branlard (DESY) Main contacts with other partners: Axel Neumann (HZB), Christophe Joly (CNRS)

Task 2.1: Coordination of R&D on LLRF – M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners– M13-M48

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

• Identify optimal loaded-quality factor (QL) to achieve efficient field control for various operation scenarios.

- → Can be carried out using numerical simulation (achievable stability vs. power)
- → Test at CMTB/AMTF/HoBiCaT (without beam)
- → Test at SRF guns, Ts4i & BerLinPro (with beam), other options?
- Evaluate methods for changing QL (at the cavity coupler and waveguide level).
- → Test and simulations are ongoing at HoBiCaT & AMTF / (3-stub tuner or phase shifter design)
- Investigate benefits of advanced ML-based combined RF and mechanical feedback controllers.
 → Started investigation to model transfer function PZT → RF (M. Herrmann @ DESY)
 → New position will be open at HZB.
- Demonstrate RF-efficient control in continuous wave (CW) and long pulse (LP) operation.
 → depends on results 2.2.1-3, but is already regularly investigated e.g. at CMTB

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

- Characterize microphonics and detuning during cavity operation.
- → Measurements and characterization at several facilities feasible
- \rightarrow Strongly depending on the facility, vary over time and operation setups
- → Long term microphonics at XFEL/FLASH (Y. Sun & A. Bellandi & H.S. @DESY)
- → Evaluation at HoBiCaT & future SRF gun test stands
- Characterize environmental disturbances and transfer to the cavity perturbation.
- → First test using ext. geophones at CMTB (PhD thesis Uni. Lodz)
- → More sophisticated sensor techniques envisioned (Distributed Fiber Optic Sensing)
- Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.
- → Improve LLRF diagnostics on detuning (e.g. Luenberger Observer, PhD, B. Richter)
- \rightarrow Advanced feedforward technique is worked on (A. Bellandi)
- \rightarrow Surrogated models will be tested

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners– M13-M48

- Integrate a ferro-electric fast reactive tuner (FE-FRT) with a digital LLRF system
- → Hardware development 2026/27 within WP1
- → Simulation on effect and operation range can be carried out
- \rightarrow When type and actuation is defined, digital interface can be defined
- Demonstrate microphonics compensation using a FE-FRT at a horizontal test stand
- \rightarrow Depends on WP1 outcome
- → Develop smart tuning algorithm to combine FE-FRT and mechanical tuner

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

- Develop schemes to adjust solid state amplifier (SSA) parameters for efficient RF generation.
- → Cryoelectra GmbH presentation last year at DESY/ Continue discussion on digital interface
- → Achievable drain voltage slew rate to be determined/update rates ... level of few tens of ms
- Investigate RF control parameters for energy-efficiency optimization using ML methods
 Started...e.g. Bayesian optimization of LFD compensation in LP operation (PhD student)
- Develop fault diagnosis and anomaly detection of LLRF systems using ML approaches
- → Started...e.g. Quench Detection, Microphonics Detuning Anomalies, ...
- → StartedFault diagnostics on digital HW e.g. PCIe failure & restarts, SEU on FPGAs...
- → Implementation of real-time anomaly detection on FPGA (N. Omidsajedi)
- Develop fault counter measures (i.e., fast detection and reaction) for sustainable cavity operation
 On HW level some are implements/ wait for fast algorithm to be developed
- Develop a digital twin and surrogate models of LLRF systems to improve energy efficiency.
- → Modelling of entire system/software, combine achievements from other sub-WP2 packages
- \rightarrow hardware in the loop first test ongoing (B. Dursum)

WP2 – LLRF: plans to achieve milestones & deliverables

WP2	Low Level	RF Controls																													
2.1	Coordination of R&D on LLRF									Ш			Ш				Ш										Ш				
2.2	Efficient field control for high loaded-quality factor cavities																				N	4					Ш	D			
2.3	Vibration a	nalysis and detuning	control of cavities													Ш						N	M	D							
2.4	Integrated LLRF control using Ferro-Electric Fast Reactive Tuners																										м	D			
2.5	Energy effi	cient supervisory cont	trol and fault diagnosis																	I	м			D				м			D
										+		+				-	_		-		-	+-		-							
D_2	2.1 ML	based MC	Report on microphonics	sti	ıdy	y 8	άN	ЛL	,-b	ase	ed	m	itiş	gat	101	1		2		DF	ES	Y		R			Pl	J		36	
D2	2.2 SSA Report on interface study of LLRF with SSA										2]	DESY R				PU			36											
D2	D2.3 LLRF control Report on LLRF RF control studies											2]	DESY R				PU			48										
D2	2.4 FR7	Г based MC	Report on integration of	FF	E-F	R	Тi	n I	L	RF	7							2	HZB R					PU			48				
D2.5 Anomaly det. Report on anomaly detection & LLRF optimiz									niz	ati	on	l			2]	DF	ES	Y		R			PI	J	Τ	48	٦			
M2.1 Demonstration of energy-efficient SSA operation WP									P2			3()	Т	Test report/publication						٦										
	M2.2 Demonstration of datuming control took sizes								+		W	D)		┢	23	2	Test report/publication					<u> </u>									
	1v12.2 Demonstration of detuning control techniques									VV.	Γ 2		+	5.	,	Test report/publication						_									
	M2.3 Demonstration of RF control for CW/LP ops										W.	P2			36	5	Test report/publication														
	M2.4 Demonstration of ML and anomaly detection										W	P2			42	2	Test report/publication														
	M2.5 Demonstration of FE-FRT Microphonics compensation								n		W	P2			43	5	Т	est	re	epo	ort	t/p	uł	olic	cat	ior	1				

 \rightarrow Deliverables and Milestones are still fine and in reach

→ To support the WP2 program additional position will be open: 1) at DESY ~Q4/24 2) HZB soon

WP2 – LLRF: points of attention

- Changes in laboratory
 - Delay: SRF photoinjector test stand Ts4i likely not be available before 2026 (DESY)
 - Risk: CMTB may not be operable during FLASH2020+ shutdown 14 month (DESY)
 - \rightarrow LLRF tests for LP and CP operation delayed
 - → Mitigation: prepare AMTF test stands with SSA operation
 - Additional loads: FALCO, NRF gun test stand pulls resources (DESY)
- Risks:
 - Finding qualified personnel HZB (1 open position) / DESY (1 open position)
 - Other projects may pulls resources, QL test slowed down (DESY)
 - Heavy load on SW and FW developers may delay development
- New opportunities:
 - New LLRF field detection hardware improves detection possibilities and regulation capabilities

WP2 – LLRF: budget plans

WP	WP Subject	CNRS	CERN	ESS	DESY	VUB	CEA	HZB	INFN	UKRI	UL	EPFL	EU- budget kEUR	Matching personnel kEUR	Matching materials kEUR	Total budget kEUR
	Technology Areas															
WP.1	Ferro-Electric Fast Reactive Tuners							LEAD					989,3	784.0	277,8	2051.1
WP.2	Low-Level RF Controls				LEAD								498,9	612,0	204,0	1314,9
WP.3	Nb3Sn-on-Cu films for 4.2-K cavity operation								LEAD				871,4	616,0	232,0	1719,4
WP.4	HOM Dampers & Fundamental Power Couplers	LEAD											572,2	620,0	296,0	1488,2
	TOTAL FOR iSAS Technology R&D												2931,8	2632	1009,8	6573,6

 \rightarrow No deviations