
Accélérateurs et Technologie

Conférence SFP du 15-OCT-2024

Arnaud Lucotte

Directeur Scientifique Accélérateurs, détecteurs R&D et technologies

Stratégie et Programme de recherche « accélérateurs »

Implications dans les projets internationaux au cœur de notre discipline

Physique des particules sur collisionneurs : LHC, FCCee, Belle2 SuperKEK

Physique des neutrinos : PIP-II/DUNE

Physique nucléaire et hadronique : ESS @ Lund, NFS, S3 et DESIR @ GANIL, EIC @ BNL

Applied Physics: réacteurs pilotés par accélérateurs (MYRRHA), production radionuclides pour la santé

Soutien aux activités de recherche et de R&D : infrastructures et plateformes

Inscription de nos infrastructures de recherche dans la feuille de route nationale : GANIL Labellisation de nos plateformes dans un réseau national ouvert aux utilisateurs extérieurs

SupraTECH, ALTO, MOSAIC, GENESIS, AIFIRA, CYRCE, ARRONAX

Mise en place d'une politique de R&D intensifiée autour des grands projets
Ciblée sur des technologies « durables » (accélérateurs, détecteurs et matériaux)
Soutenue par postes CR / IT sur profil R&D accélérateurs (CR, IR permanents et CDD, Doctorants)

Articulation nationale : ministère, région, partenaires académiques (CEA, ...)

Très Large Infrastructures de Recherche (IR*) : GANIL, ESS, DUNE/PIP-II + IR* EIC en préparation Equipements d'Excellence & CPER : EquipEX DESIR/S³ @ GANIL, ThomX, PACIFICS et NEWGAIN Laboratoires d'excellence : dépendant du site et universités

IN2P3

Stratégie et Organisation

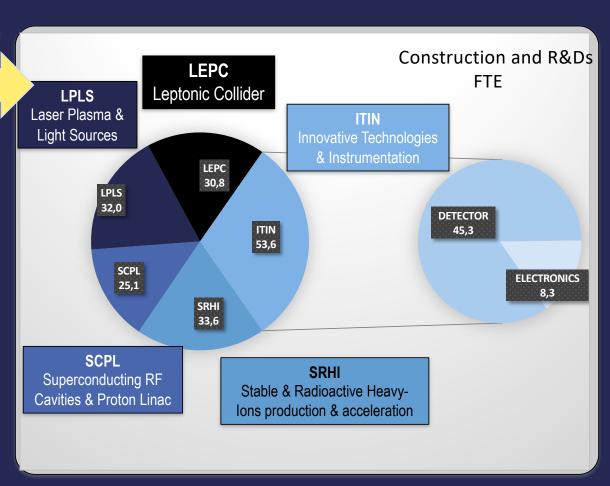
Programme de recherche : accélérateurs & technologie

IN2P3Stratégie et Organisation

4 Programmes de Recherche

- 22 Master Projets
 - ~ 180 ETP / opération
 - ~ 160 ETP / const. + R&D
- Annual Budget
 - ~ 30 M€ -- opération
 - ~ 40 M€ -- const./R&D's

Infrastructures Nationales


- ❖ GANIL / Caen
- ❖ LMA, CC-IN2P3 / Lyon
- LSM / Modane
- Omega / Palaiseau
- LSPM / Marseille

Infrastructures Accélérateurs

- Orsay / IJCLab
- Grenoble / LPSC
- ❖ Bordeaux / IP2I
- Strasbourg / IPHC

2 Groupements de Recherche

- GDR « Accélérateurs »
- GDR « Instrumentation »

Infrastructures « accélérateurs » à l'IN2P3

IN2P3 Stratégie et Organisation

4 Programmes de Recherche

- 22 Master Projets
 - ~ 180 ETP / opération
 - ~ 160 ETP / const. + R&D
- Annual Budget
 - ~ 30 M€ -- opération
 - ~ 40 M€ -- const./R&D's

Infrastructures Nationales

- ❖ GANIL / Caen
- ❖ LMA, CC-IN2P3 / Lyon
- LSM / Modane
- Omega / Palaiseau
- ❖ LSPM / Marseille

Infrastructures Accélérateurs

- Orsay / IJCLab
- Grenoble / LPSC
- ❖ Bordeaux / IP2I
- Strasbourg / IPHC

2 Groupements de Recherche

- ❖ GDR « Accélérateurs »
- GDR « Instrumentation »

GDR Physique des Accélérateurs : SCIPAC

IN2P3Stratégie et Organisation

4 Programmes de Recherche

- 22 Master Projets
 - ~ 180 ETP / opération
 - ~ 160 ETP / const. + R&D
- Annual Budget
 - ~ 30 M€ -- opération
 - ~ 40 M€ -- const./R&D's

Infrastructures Nationales

- ❖ GANIL / Caen
- ❖ LMA, CC-IN2P3 / Lyon
- ❖ LSM / Modane
- ❖ Omega / Palaiseau
- LSPM / Marseille

Infrastructures Accélérateurs

- Orsay / IJCLab
- Grenoble / LPSC
- ❖ Bordeaux / IP2I
- Strasbourg / IPHC

2 Groupements de Recherche

- GDR « Accélérateurs »
- GDR « Instrumentation »

SCIPAC

Science for Particle Accelerators

Heavy Ion Accelerators

Hadron Beams Accelerators

Electron Accelerators

Laser Plasma Acceleration

Transversal expertise

Environ 350 personnes (CEA+CNRS IN2P3, INP...)

- R&D SPIRAL2 DESIR, NEWGAIN, S3 et ALTO
- ☐ Ion sources (GANIL/ALTO, ECR, FEBIAD, res. laser, ...)
- ☐ Target-Source Ensemble (targets, ovens...)
- ☐ Beam lines, RFQ, ion traps ...
- ☐ SuperConducting R&D (cavities/CM, multipactor...)
- ☐ RF Structures (RFQ, couplers, HOM, FRT)
- ☐ Dynamic vacuum & materials (ch. And temp. treatment)
- ☐ Beam dynamics, design and reliability (AI)
- ☐ Beam dynamics
- Positron Sources
- ☐ Nanometric beam handling & stabilisation
- ☐ Luminometry
- ☐ Compton production Gammas, polarimetry
- ☐ Photogun, injectors
- ☐ Laser Plasma Acceleration : multi-staging, plasma
- □ Simulations
- ☐ Beam Diagnostics & instrumentation
- ☐ Magnets
- ☐ Supraconducting high gradient Magnets
- ☐ Calculation and simulations
- ☐ Diagnostics, instrumentation
- ☐ Artificial Intelligence, retroaction loop, etc...
- ☐ Vacuum and matérials
- ☐ Laser & optics

GDR Instrumentation des deux infinis : DI2I

IN2P3Stratégie et Organisation

4 Programmes de Recherche

- 22 Master Projets
- ~ 180 ETP / opération
- ~ 160 ETP / const. + R&D
- Annual Budget
 - ~ 30 M€ -- opération
 - ~ 40 M€ -- const./R&D's

Infrastructures Nationales

- ❖ GANIL / Caen
- ❖ LMA, CC-IN2P3 / Lyon
- LSM / Modane
- Omega / Palaiseau
- ❖ LSPM / Marseille

Infrastructures accélérateurs

- Orsay / IJCLab
- Grenoble / LPSC
- ❖ Bordeaux / IP2I
- Strasbourg / IPHC

2 Groupements de Recherche

- ❖ GDR « Accélérateurs »
- GDR « Instrumentation »

DI2I

Instrumentation for 2 inifinities

WP: Gaseous Detectors

WP: Semiconductors

WP: Cryogenic Detectors

WP: Calo & Photo-detectors

WP: Integrated Circuits DAQ

High rate, dedicated ASIC, high time resolution, Rad. Hardness, trigger architecture

- ☐ Fast Timing (ps)
- ☐ Al integrated in FPGA (triggering etc...) and DAQ
- □ Real time analysis

Environ 150 CR et IT

Energy, spatial and time resolution, High flux, Particle ID, Active target

- Low energy thresholds
- ☐ Low density wires
- Gas mixtures (eco)
- Electronics for fast timing

Energy, spatial, time resolution, high rates + techno (130/65/28)

- □ Photodetection with CMOS, MAPs, DeMAPS, LGADs, high granularity, fast timing, rad. Hardness
- ☐ Fabrication of high purity Ge detectors, low energy thresholds (DM)
- ☐ Ultra low T, high frequencies BiCMOS
- ☐ Wide band-gap SC : diamond, SiC
- \square Compound SC : CdTe, HgTeCd for X, IR and γ

Heat, light and ionization det., cryo-array of bolometers

- ☐ Ge and Zn monolithic detectors (cryoCube, Q-array)
- ☐ Bolometers pixel array for mm, IR, X detection with TES, KIDs

Granularity, energy, spatial and time resolution, high rates,

- ☐ Micro-channel plates PMTs (ToF PET)
- ☐ SiPM (CTA), low operating voltage
- ☐ Rad. Hard, ultra-fast crystal calorimeters
- ☐ Timing resolution (pile-up environment)
- ☐ Photosensors with improved UV sensitivity
- ☐ Micro(Nano)Channel Plate for ultra-high space & time resolutions : polymer-nano-tubes

Programme de Recherche SCPL

Super Conducting Radio Frequence accelerator & Proton Linac

Accélérateurs Supraconducteurs & Linac Proton (SCPL)

Objectifs scientifiques

Concevoir et réaliser des accélérateurs Supraconducteurs en régime RF de haut gradient

- Etudes Matériaux, multi-couches, films minces, dopage, procédés chimiques et thermiques traitement de surfaces
- Etudes des mécanismes d'émissions de champ, limitation de l'effet multi-pacting, incluant simulations

Concevoir et réaliser des ensembles accélérateurs de faisceaux de hadrons de haute intensité

Etudes de fiabilité, contrôles en ligne (IA), contrôle des distributions cryogéniques etc..

Programmes : installations européennes et futurs collisionneurs

Développement, Construction, validation d'accélérateurs SRF

- SESS @ Lund (G. Olry)
- ❖ MYRRHA @ Mol (L. Perrot & G. Olivier, F. Bouly)
- ❖ PIP-II @ FNAL (D. Longuevergne & P. Duchesne)

- IJCLab -

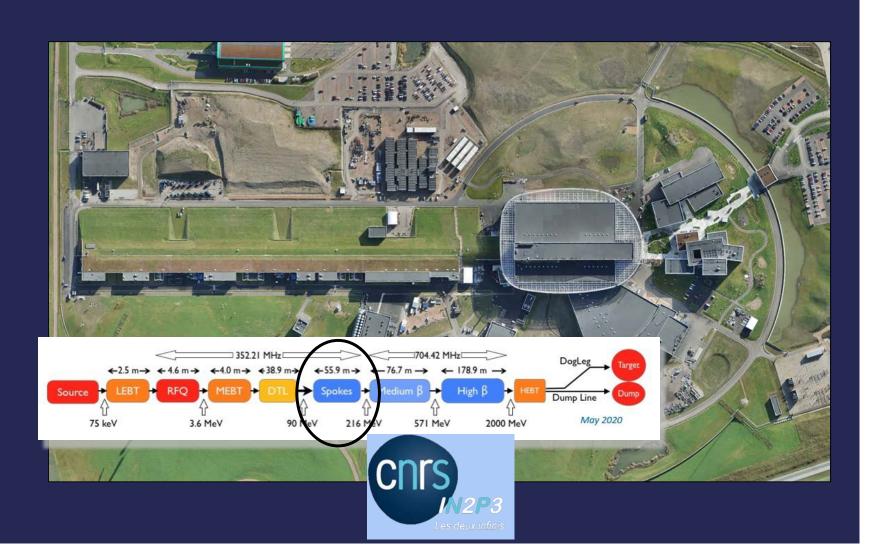
- IJCLab, LPSC, IPHC -
 - IJCLab –

Activités de R&D's SRF : des matériaux aux procédés

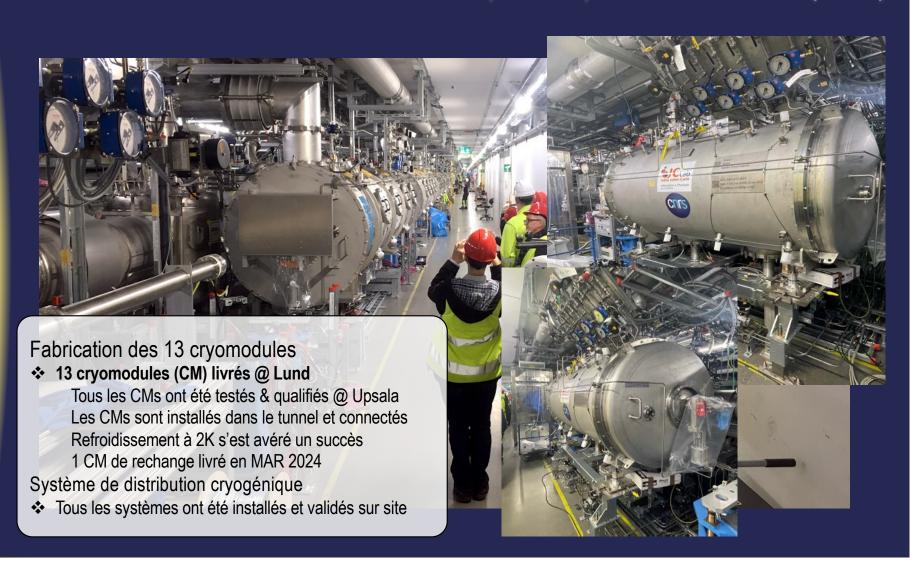
Master Projet SRF (D. Longuevergne)

- IJCLab, LPSC -

- Traitement thermique innovant (SRF-Heloise)
- Polissage métallographique (SRF-PACCAS)
- Dépots anti-Multipacting et characterization (SRF-MULTIPAC)
- ❖ Décontamination des cavités utilisant le nettoyage par plasma (SRF-DECAP)
- ❖ Etude de matériaux supradoncuteurs à HT_C alternatif (SRF-SURICAT)


Master Projet I.FAST (W. Kaabi)

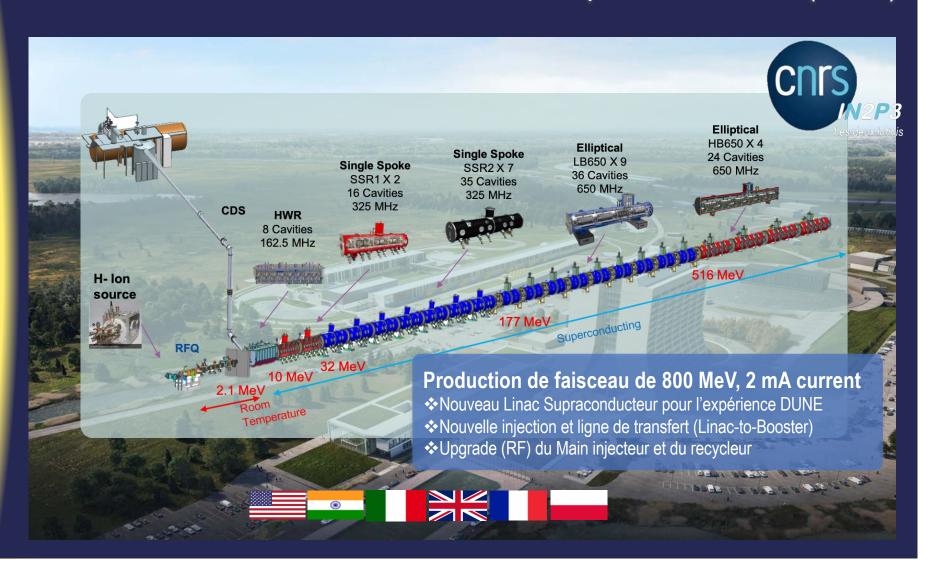
-- IJCLab, LLR -


European Spallation Source (ESS)

ESSSuperconducting
Proton Linac

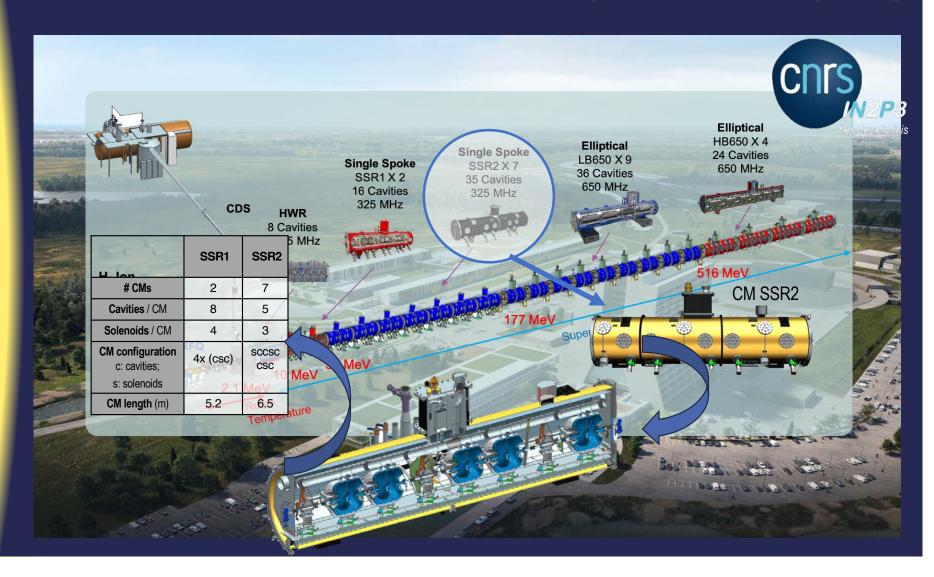
European Spallation Source (ESS)

ESSSuperconducting
Proton Linac



European Spallation Source (ESS)

ESSSuperconducting
Proton Linac



Proton Improvement Plan (PIP II)

PIP ||
Superconducting
Proton Linac

Proton Improvement Plan (PIP II)

PIP II
Superconducting
Proton Linac

PIP II

Superconducting Proton Linac

Proton Improvement Plan (PIP II)

Phase 1 : prototypage et validation de chaine de production (2021-24)

Cavités Radio-Fréquence : 6 unités

- Suivi & validation des procédés de fabrication auprès de ZANON avec FNAL
- ❖ Préparation d'une cavité complète @ IJCLab
- Qualification des 6 cavités auprès du cryostat vertical @ IJCLab
- ❖ Mise en place du re-conditionnement (chimique, thermique, cleaning) @ IJCLab

Accordeurs (tuners) : 3 unités

❖ Qualification de 4 tuners dans le CV @ IJCLab

Coupleur de puissance : 4 unités

❖ Test et livraison de 4 couplers à FNAL

Phase 2: production (2024-2028)

Test et Validation des composants à IJCLab

Qualification des 33 cavités SSR2 (5x6 CM + 3 spares)

Cavités équipées : 33 unités

- Suivi de fabrication et conditionnement, interventions auprès des industriels
- ❖ Tests et validation des 33 unités in CV1250 @ IJCLab
- ❖ Re-conditionnement si besoin @IJCLab (< 25%)

Cryostat Vertical de SupraTECH (CV1250)

- Mise à niveau et structuration de SupraTech, Amélioration du liquéfacteur d'Helium
- ❖ Installation, commissioning et utilisation du CV1250 @ IJCLab

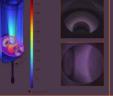
Proton Improvement Plan (PIP II)

Tuners (synchroniseurs)

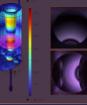
Validation en CV à froid Validation moteurs + piezo Cycle de vieillissement

Coupleurs de puissance

Livraison des 3 coupleurs @ FNAL ensembles « antenne, céramique, manchette » testés avec succès



Qualification des 5 cavités


- Robotisation du procédé de nettoyage haute pression
- Nouveau procédé de nettoyage avec plasma à l'étude av FNAL

PIP II Superconducting **Proton Linac**

Accelerator-Driven System: MYRRHA et MINERVA

0.03 MeV 1.5 MeV 17 MeV MEBT ~11m RT-CH section **100 MeV** IN2P3 MHz 48 cav., I= Les deux infinis SC-CH cavity Phase SC-CH cavity [34 cav., 63.9 m] [60 cav., 100.8 m] Beam dump **600 MeV** 704.4 MHz ELLIPTICAL LINAC β=0.705 Reactor Phase 3 7

design of the test cryomodule for the

elliptical cavity

700 MHz Solid State RF amplifier

5 element elliptical cavity

elliptical cavity envelope with cold tuning

mechanism

Phase

MYRRHA

Superconducting **Proton Linac**

Accelerator-Driven System: MYRRHA

ADS: Une implication de longue haleine de l'IN2P3

- Construction de la source de neutrons GENEPI (Generator of Intense Pulsed Neutrons)
- ❖ Dynamique faisceau pour les lignes moyenne et haute énergie MEBT3 & HEBT -- LPSC, IJCLab, IPHC
- Diagnostics pour la HEBT -- IJCLab
- Profileur faisceaux -- LPSC
- Système LLRF pour l'injecteur RFQ IJCLab --
- Cryogenic valve box, cryomodule vessel (IJCLab)
- RF power amplifier (SCK), LLRF (IJCLab)

MINERVA: La phase MYRRHA 100 MeV

Test & Validation des composants SRF à IJCLab

- Conception, assemblage et qualification des 6 cavités pré-series à 2K
- ❖ Assemblage and intégration, test et caractérisation RF, re-conditionnement

Cold Tuning System : 6 pre-series + 47 series

- ❖ Assemblage et integration
- Qualification du CTS

Couplers: 6 pre-series, +49 series

Design et qualification à 80 KW

MYRRHA

Superconducting Proton Linac

R&D's : des matériaux aux procédés SRF

Les enjeux matériaux : lignes faisceaux

Propriétés

Résistance mécanique Conductivité thermique Conductivité électrique Compatibilité UHV Résistance aux radiations Soudabilité, formabilité

Matériaux

Cuivre Aciers Inox Alliage Al

Indicateurs de performances

Limitation du multi-pacting nuages d'électrons
Limitation de la désorption molécules adsorbées
Maitrise de la pression
dynamique

Améliorations des propriétés

Dépots NEG alliages Ti-V-Zr Dépots C-amorphes Couches minces TiN

Nouveaux procédés et matériaux

Couches ultra-minces
couches 10-50 nm
Nouvelles compositions
Nouveaux composites
Nouveaux procédés
Fabrication Additive

SCPL R&D

Supraconducting Proton linac

Les enjeux matériaux : cavités SRF

Propriétés

Résistance mécanique Conductivité thermique Conductivité électrique Supra en régime RF Formabilité

Matériaux

Niobium

Indicateurs de performances

Facteur de qualité Q₀
Gradient champ
accélérateur
Limitation du multi-pacting
Augmenter T_C

Améliorations des propriétés

Traitements thermiques optimisés
Traitement chimiques
(Aspage, infusion, etc..)

Traitement de surface

Matériaux alternatifs

Couches minces:
Nb₃Sn
MgB₂
NbN

Multi-couches SIS

Faisceaux d'ions stables et radioactifs (SRHI)

Objectifs scientifiques

- Concevoir et optimiser les sources d'ions intenses
- Concevoir et optimiser l'accélération, la sélection, le transport de faisceaux d'ions stables et radioactifs

Programme autour du GANIL et de ALTO

Développements, construction et préparation à l'exploitation

❖ SP2-S³ (B. Blanck, H. Savajols)

-- GANIL, IJCLab, IP2I, LPC -

❖ SP2-DESIR (B. Blank & F. Varenne)

-- GANIL, IJCLab, CENBG, LPCC -

SP2-NEWGAIN (MH Moscatello, I. Stefan)

- GANIL, IJCLab, IP2I, LPSC, CENBG, IPHC -

❖ SPES-booster et SPES-cooler (J. Angot) (G. Ban)

- LPSC, LPCC -

Programme de R&Ds « ions stables »

- ❖ Sources d'ions ECR, sources HF (60 GHz), simulation plasma ECR @ LPSC (SEISM, ECRIPAC)
- ❖ Production d'ions métalliques (fours HT inductifs et résistifs) @ IPHC, GANIL (FMI)

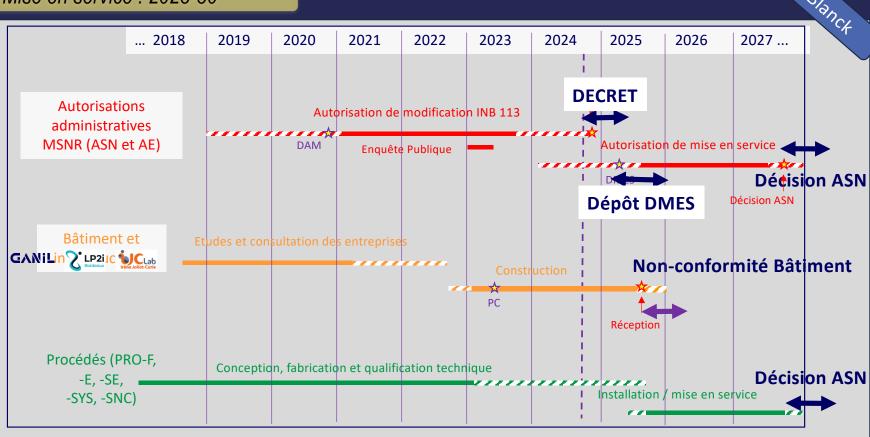
Programme de R&Ds « ions radioactifs »

- ❖ Cibles UCx pour la fission @ ALTO (STUC)
- * Ensemble Cible Source / Fusion-Evaporation @ GANIL (TULIP)
- Sources d'ions FEBIAD, Nier-Bernas pour GANIL & ALTO (MCM)
- ❖ Spectroscopie par Ionisation laser résonante à ALTO et GANIL (RIALTO, GISELE)
- ❖ Optimisation du transport de faisceau @ IPHC
- Charge Breeding au LPSC and GANIL (C.BREEDER)

Stable and Radioactive Heavy Ion beams

Superconducting Separator Spectrometer (S³)

Premier faisceau: Nov 2024 Commissioning: 2025-26

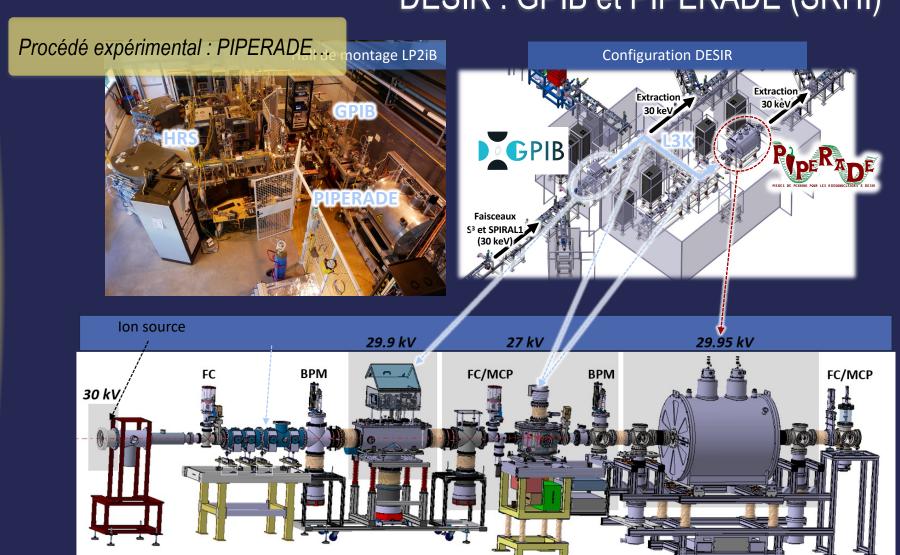

GANIL Stable and Radioactive **Heavy Ion beams**

DESIR: Calendrier

Installation procédés : 2025-27

Mise en service : 2028-30

DESIRStable and Radioactive
Heavy Ion beams


DESIR : Calendrier

DESIR

Stable and Radioactive Heavy Ion beams

DESIR : GPIB et PIPERADE (SRHI)

DESIR Stable and Par

Stable and Radioactive Heavy Ion beams

New GANIL Injector: NEWGAIN

NEWGAIN prévu en opération en 2032

Installation prévue : 20230 Mise en service : 2032

Construction d'un injecteur Q/A = 1/7

NEWGAIN

Financement et organisation

EquipEX NEWGAIN: 13.7 M€

5 Laboratoires: GANIL, LPSC, IP2IB, IPHC + CEA/IRFU

Supraconducting Ion Sources (CEA and LPSC)

RFQ (CEA/IRFU)

Transport Lines LEBT, MEBT

Equipment, vacuum, power supply
Infrastructure, Control Command

SC ION SOURCE

18-28 GHz, 4K, HT ovens, HV (80kV)

NEWGAINStable and Radioactive

Heavy Ion beams

Programme de Recherche LPLS Laser Plasma Acceleration and Light Sources

Sources de Lumière et Accélération Laser Plasma (LPLS)

Objectifs scientifiques

Explorer et étudier la possibilité d'accélération par laser-plasma

- Accélération d'électrons : Cellule plasma, Injecteur, démonstration de stabilité et reproductibilité, simulations,
- Accélération d'ions : Compréhension, caractérisation et (code de) simulations

Concevoir des accélérateurs pour production de faisceaux intenses de γ

❖ Sources de lumière intense

Enjeux des accélérateurs LP et sources de lumière

Activités de développement de sources de lumière intense

- ❖ ELI-NP F. Zomer IJCLab + european infrastructure (Italy, Romania, France, ..) –
- ❖ THOM-X
 H. Monard IJCLab High Flux Compton Source
- ❖ GammaFactory A. Martens IJCLab –

Activités de R&D Accélération Laser Plasma

- ❖ PALLAS (K. Cassou, IJCLab, LLR) Démonstrateur accélérateur LP multi-staging, 10Hz, 150 MeV
- ❖ ALP-e (A. Specka, LLR, IJCLab) R&D accélération laser plasma d'électrons / Apollon / simulation
- ❖ ALP-ions (M. Tarisien, LP2IB) R&D accélération laser plasma d'ions
- ❖ TWAC (C. Bruni, IJCLab) R&D sur l'accélération THz

Light sources and Laser plasma acceleration

Source-X compacte par Compton Inverse: Thom X

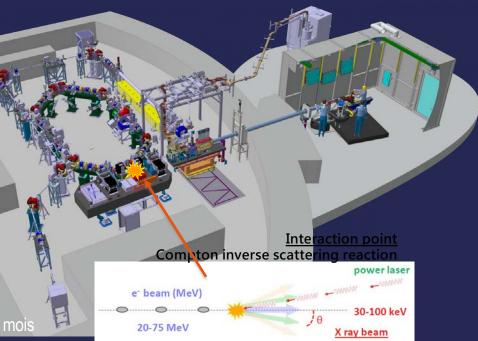
Caractéristiques visées du démonstrateur

- **♦** Flux: 10^{12} à 10^{13} γ/s
- ❖ Brillance: 10¹¹ ph/s/mrad²/mm²/0.1%bw
- Energie ajustable (30-90 keV)
- Surface des équipements : environ 300 m²

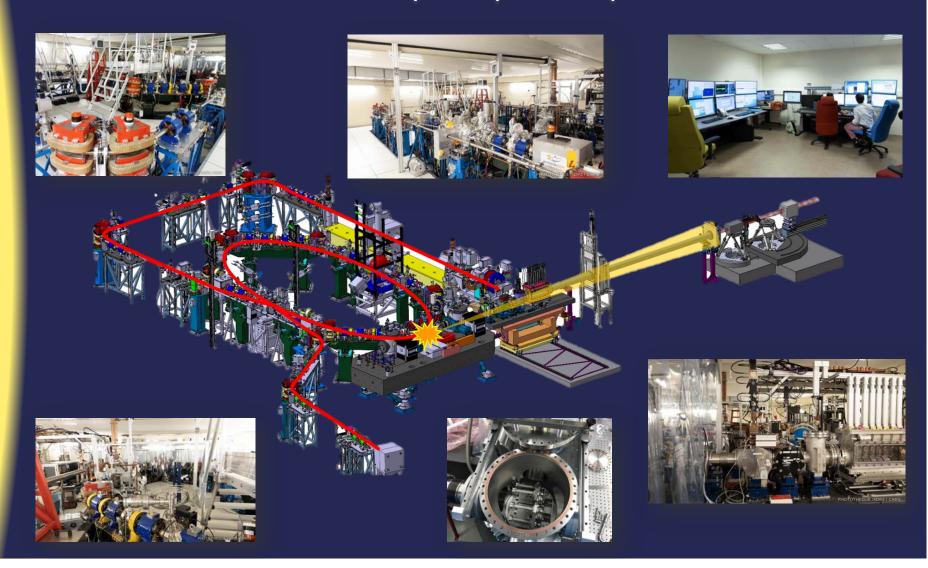
13 M€ investissement / EquipEX terminé : 31.12.2023

ThomX

Light Source & Laser Plasma Acceleration


Statut du projet

Démonstrateur installé en commissioning


- ❖ Premiers faisceaux X en JUL-2023
- Première mondiale!

Calendrier 2024-25

- ❖ Commisioning pour haut flux (> 10¹² visés) d'ici 15 mois
- Commisioning des équipements d'analyse des X
- Recherche de partenaires / utilisateurs en cours

Source-X compacte par Compton Inverse: Thom X

ThomX

Light Source & Laser Plasma Acceleration

Le Contexte Européen : EuPRAXIA

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Le programme Eu-PRAXIA vise la construction de deux sites majeurs accueillant un Accélérateur LP :

- electron-beam-driven plasma wakefield acceleration (INFN)
- ❖ laser-based plasma wakefield acceleration (TBD)

Il s'appuiera sur une petite dizaine de centres d'excellence en Europe (1 en France) dont le contour est en voie de définition

EuPRAXIA

Light Source & Laser
Plasma Acceleration

La position de la communauté dans EuPRAXIA

Sratégie CNRS basée sur 2 projets :

PALLAS

Injecteur laser-plasma 10 Hz, 150 MeV @ Orsay

- ❖Utilisation de LaserIX pour une installation laser-plasma
- ❖Développement de cible plasma (cellule plasma)
- ❖Validation du multi-staging et contrôle de LPI

LAPLACE

Développement du LPA et ses applications

- ❖Source à haut taux de répétition (100Hz)
- ❖Développements issus Laser à Electrons libres
- ❖ Validation qualité-faisceaux, etc...

Feuille de route française

Actuellement en cours de définition avec le CEA et le ministère

- Positionnement du CEA/CNRS dans le programme EuPRAXIA (phase d'Implementation)
- Discussion avec le ministère d'ici la fin de l'année
- Principaux laboratoires de l'IN2P3 et de l'INP (CNRS) IJCLab et LLR LOA, LULI, LPGP
- Principaux industriels

Thales, Amplitude, ImagineOptic, SourceLab, PHASICS, FastLite, FemtoEasy ...

PALLAS à l'IN2P3

Projet PALLAS

Injecteur laser-plasma électron 10 Hz, 150 MeV

- Conception et construction Injecteur laser plasma
- Plateforme IJCLab LaserIX (40 TW 10 Hz) Développement de cible plasma (cellule plasma) Test et validation du multi-staging et du contrôle
- ❖ Budget : AP IN2P3, PACIFICS, IJCLab, Orsay

Phasage du projet

Phase-1 (2020-2026)

- Construction de transport laser, compression, injection & focalisation, cible plasma (design cellule)
- Design et construction de la ligne de caractérisation faisceau
- Implémentation d'une section focalisante à la sortie du plasma vers la ligne faisceau électron
- Upgrade du Laser Driver (intensité), réglage LWFA & optmisation; contrôle rétroactif surligne électrons
- Amélioration/contrôle de la qualité du faisceau d'électrons à la sortie de cellule plasma

Phase-2 (2026-2030)

- ❖ Implémentation d'une ligne de transport pour injection dans une 2ème stage
- ❖ Contrôle du LPI + Simulation SMILEI PIC code (simulation LWFA, cible plasma, diagnostics faisceau)

PALLAS

Light Source & Laser Plasma Acceleration

PALLAS and EuPRAXIA

PALLAS Light Source & Laser Plasma Acceleration

Futur Collisionneurs (LEPC)

Objectifs scientifiques

Conception d'accélérateurs pour les futurs collisionneurs

- e-e+: production, stabilisation, nano-faisceaux, sources de positrons source, polarimetrie,
- Conception de cavités SRF, luminosity monitoring, dynamic pressure (hh) etc...
- Réutilisation de l'énergie (Energy Recovery Linac)

Structuration & organization

Future Lepton Colliders R&D's

FCC-NPC (A. Faus-Golfe)

- IJCLab, LAPP, LPSC –
- Production et stabilisation de nanofaisceaux, contrôle et positionnement
- Mesure de luminosité et comprehension des fonds aux points de collision
- Sources de positrons de haute intensité
- Polarimétrie laser
- Etudes de vide/pression dynamique et matériaux
- Etude de techniques anti-multipacting pour le SRF

Energy Recovery Linac (W. Kaabi)

- ❖ iSAS, PERLE : Cryomodule for ERL
- ❖ EIC* ... en discussion avec la direction de EIC

LEPCFuture Colliders

- IJCLab, LPSC -

Future Circular Collider: FCC-ee

Feuille de route vers le projet FCC (ee)

Axes de recherche en France

- Nanofaisceaux handling
- Stabilisation de nanofaisceaux et positionnement/suivi
- Luminométrie et fonds
- Sources de haute intensité de positrons
- Polarimétrie e+e- par système laster
- Vide dynamique et études de surface
- Etude de l'effet multipacting et nuage d'électrons
- Aimants HTS
- ... en lien avec la stratégie ESPP

Stratégie et Organisation

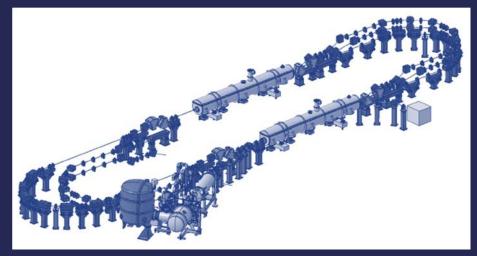
Réorientation progressive vers le projet FCC

- Personnels en croissance (15 FTE)
 - Priorité volontariste vers FCC
 - Adaptation lorsque pertinent des activités ILC/ATF vers FCC
- Activités nourries par les implications passées et présentes
 - SuperKEK B (luminométrie)
 - ATF-2 and ATF 3, CLIC (nano-faisceaux)
 - PSI (sources de positrons)

Energy Recovery Linac: PERLE

Objectif scientifique

Démonstration d'un ERL de puissance avec recirculation


- Un passage obligé pour les systèmes accélérateurs durables
 - Réutilisation de 90% de l'énergie RF
- Un des 5 piliers de la feuille de route européenne R&D de la ESPP
 - ❖ Concept ERL envisagé pour LHeC, FCC or even FCC-HH
 - Démonstrateurs européens : bERLinPro et PERLE
- ❖ Machines inscrites dans le paysage des installations existantes et à venir
 - ❖ S_DALINAC (Darmstadt), CBETA (Cornell), MESA (Mainz), CEBAF ...
 - ERL pour refroidissement par faisceau d'e pour EIC en 2030

Design

L'expérience PERLE (250/500 MeV)

- ❖ Schema actuel avec 2 LINACs SC
 - ❖ 4 x 5-cell 801.58 MHz LINAC SC CM
- Energie faisceau de 500 MeV
 - ❖ 3 arcs de re-circulation (160 MeV/tour)
 - Courant moyen : 20 mA
 - Puissance : 10 MW

Energy Recovery Linac: PERLE

Collaboration internationale

- CDR élaboré avec un ensemble de partenaires Jlab, Liverpool, CERN, Cornell ...
- ❖ Technical Detailed Report (TDR) de PERLE attendu pour 2025

Design Machine, beam dynamics, main systems design etc...

Focalisation sur l'optimisation de l'injection et le design des CryoModules (cavités,

HOM, coupleurs..)

Etudes de sureté pour installation des infrastructures

Financement de l'expérience

Financement pour 1 LINAC SC, 1 tour

- Financement INFRATECH iSAS (5M€) -- CM design & HOM -with ESS, CERN, DESY, HZB + INFN, CEA...+ industriels
- ❖ Financement IN2P3 en soutien de iSAS : 1 M€
- ❖ Financement CNRS: 3,0 M€ (Mission du Programme National « recherche à risque »)
- ❖ Financement régional : 2 M€ (Infrastructures)

Confuguration avec 2 LINAC SC, multi-tour à mettre en place

Définition de contributions (in-kind, autres) auprès de partenaires internationaux

Electron Ion Collider: EIC

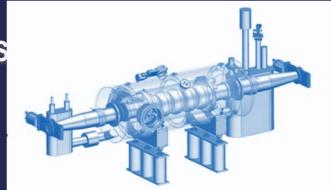
Contribution to EIC accelerator construction: the RCS Cryomodules

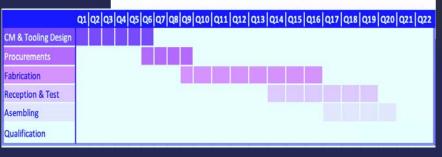
Volonté de contribuer à la construction d'un élément important du dispositif accélérateur

- ❖ Le Rapid Cycling Synchrotron utilisé dans le refroidissement du faisceau de hadron
- ❖ Utilise la synergie existante entre JLab/BNL sur des développements SRF communs

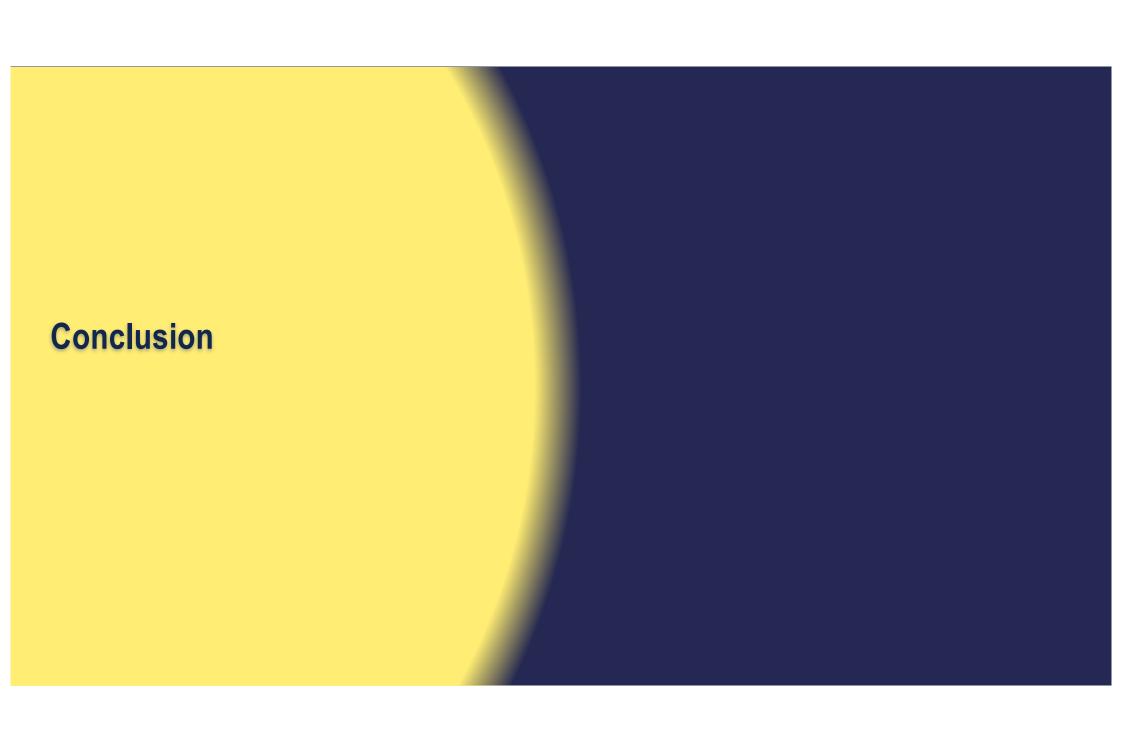
Projet soumis au ministère avec le CEA

- ❖ 40 M€ CEA/ IRFU et CNRS/IN2P3
- Detector + accélérateur (CEA : magnet, spin rotators)


Construction de 4 cryomodules SRF pour le RCS


591 MHz 5-cell cavities, power coupler and tuner from EIC designs

- Cryomodule and associated tooling designs by CNRS/IN2P3
- Fabrication of all components by CNRS/IN2P3
- Assembling and components testing by CNRS/IN2P3
- Qualification/validation of SRF components at 2K by CNRS/IN2P3
- Shipping and transfer to BNL by CNRS/IN2P3


Cost Estimate

Investments (M&S): 15.4 M€ Manpower : 360 m.m / 2.9 M€

Conclusion et Perspectives

IN2P3 Conclusion & perspectives

Stratégie élaborée à partir de nos prospectives et de la feuille de route européenne

- ❖ En vue de développer une implication dans les projets majeurs en PP et PN
- En vue d'accroitre les activités de R&D pour les enjeux majeurs du domaine (SRF, HTc, ERL)
 ... en assurant la structuration de la communauté et en apportant un soutien financier et RH significatifs

Des axes prioritaires de R&D clairement identifiés

❖ Basés sur des expertises et compétences reconnues

Autour d'infrastructures internationales (CERN, ESS, PIP-II, MYRRHA...)
Autour de projets internationaux (DUNE/PIP, FCC-NPC, EIC, FCC-hh..)
Dans le cadre de techniques et matériaux compatible avec la transition écologique

❖ S'appuyant sur un réseau de plateformes

Infastructures nationales, installations labellisées, plateaux techniques)

Orientés vers le futur de nos disciplines

Développer les implications dans les projets accélérateurs liés à FCC ee et hh, eh,

R&D dans le domaine SRF, Accélération Laser-Plasma et ERL

R&D dans le domaine de la production d'ions stables et radioactifs (breeders, sources, cibles, laser)

Explorer l'usage de l'IA dans les accélérateurs : opération, fiabilité, design, analyse données)