

Latest production and future beams at ALTO

Anahi Segovia Miranda

ISOL France 2024

27/05/2024

Outline

- ℜ ALTO Facility
- * TIS upgrade
- * RIALTO upgrade
- * Radioactive Ga and Ag production
- * Future beams
 - * Zn beam development

ALTO Facility (Accélérateur Linéaire et Tandem d'Orsay)

 10 μA Electron beam accelerated at 50 MeV on a target of 70g of UCx to produce neutron-rich radioactive nuclei by photofission of uranium.

Photofission

Interesting regions for fission fragments:

* Nuclei near neutron shell closures: N = 50 and N = 82.

Nuclei at the boundary of the deformation region with N > 60.

Photofission at ALTO

F. Ibrahim, D, Nuclear Physics A, 787(1):110–117, 200.

Front-end Robotisé pour ISOL ALTO (FRISAL)

- ℜ Refurbish (~20 years old)
- Upgrade of front-end to increase extraction voltage from 30 kV to 60 kV
- * Robotic handling (in progress)

Resonance Ionization laser ion source at ALTO (RIALTO)

Resonance Ionization laser ion source at ALTO (RIALTO)

Ionization of Ga and Ag

Ionization of Ga and Ag

Ionization of Ga and Ag

Ga yields at ALTO

*Expected values calculated by B. Roussière *Yield measured by J. Guillot

Radioactive Ga production 2023

Laser ON-OFF effect. Gamma-ray spectrum recorded with HPGe detectors at the TETRA station for ⁸⁰Ga with surface ionization ion source (purple) and with the laser ionization (pink). Factor 50 enhancement with lasers.

Courtesy of Emile Cantacuzene

11

Ag yields at ALTO

Radioactive Ag production

Laser ON-OFF effect. Gamma-ray spectrum recorded with HPGe detectors at the TETRA station for ¹²³Ag with surface ionization ion source (purple) and with the laser ionization (pink).

Future beams

Zn development

% Neutron-rich Zn program

* Monster (Autumn 2024)

Zn offline test

Conclusions

& Radioactive Ga and Ag production

- Production measurements for Ga and Ag
- Success of commissioning the new FRISAL Front-End and RIALTO upgrade

% Neutron-rich Zn program

• Monster (Autumn 2024)

Acknowledgments

Thank you for your attention

Ge

% Neutron-rich Ge program

New high-power Nd:YAG laser with UV output

Ag and Ga neutron-rich program at ALTO

Stable Ga

Stable Ag

@ P)	thon '	Turtle	Graph	ics										5	-		×
н																	Не
Li	Be											в	С	N	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Ср	Nh	FI	Мс	Lv	Ts	Og
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Dye lasers

A type of laser that uses an organic dye solution as the gain medium, allowing it to emit laser light across a wide range of wavelengths by selecting different dye materials.

Dye tuning and dye efficiency curve of a laser pumped by Nd:YAG laser at 355 nm and 532 nm

Silver ionization

Ag ionization scheme:

- ℜ 3 step-3 color scheme.
- \mathcal{B} Challenging second step.

Ga ionization

Ga ionization scheme:

- * 2 step-2 color scheme.
- * First step SHG and non-resonant ionization.

Saturation curves online

	$\mathbf{P}_{Sat} \; [\mathrm{mW}]$	$P_{Max Available}[mW]$
First step	1.5	73
Second step	3.5	100
Non-resonant step	n/a	20000

Stabilization for UV and Nd:YAG beams

0.75 1.00

Time (hours)

0.25 0.50

1.25

1.50

1.75

2.00

Ga yields at ALTO

*Expected values calculated by B. Roussière

Zn

