# N=40 : from lol to lol

#### Frédéric Nowacki

# ISOL-France Workshop VI

27–29 mai 2024 IPHC Fuseau horaire Europe/Paris

















#### Separation of the effective Hamiltonian Monopole and multipole

Multipole expansion:



Spherical mean-field
 H<sub>monopole</sub>: Evolution of the spherical single particle levels

A. Poves and A. Zuker (Phys. Report 70, 235 (1981))





# Correlations

- Energy gains
- Pairing (SU2)

- semi-magic (n-n) (p-p) p-n in H.O. or  $\Delta i = 2$
- *Quadrupole (SU3/p-SU3/q-SU3)* p-n in H.O. or

#### Separation of the effective Hamiltonian Monopole and multipole

#### Multipole expansion:



#### Separation of the effective Hamiltonian Monopole and multipole

Multipole expansion:

 $H = H_{monopole} + H_{PP} + H_{QQ}$ 

Spherical mean-field
 H<sub>monopole</sub>: Evolution of the spherical single particle levels

A. Poves and A. Zuker (Phys. Report 70, 235 (1981))



#### H<sub>multipole</sub>:

- Correlations
- Energy gains
- Pairing (SU2)

- semi-magic (n-n) (p-p) p-n in H.O. or  $\Delta i = 2$
- *Quadrupole (SU3/p-SU3/q-SU3)* p-n in H.

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$ 

ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$ 

ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



ments

$$Q_0 = 2q^{20} = (2n_z - n_x - n - y)$$

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$ 

ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$ 

#### ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>



 $Q_0 = 2q^{20} = (2n_z - n_x - n - y)$ 

ments

PHYSICAL REVIEW C 92, 024320 (2015)

#### Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,<sup>1</sup> A. Poves,<sup>2,3</sup> F. Nowacki,<sup>1</sup> and S. M. Lenzi<sup>4</sup>

ments



### **Development of deformation at N=8,20,40,70**

F. Nowacki, A. Obertelli and A. Poves

Progress in Particle and Nuclear Physics 120 (2021) 103866



Fig. 40. Schematic view of the valence spaces at N = 8, 20, 40 and 70. The intruder configurations that develop quadrupole collectivity are highlighted.



# Island of inversion at N=40, an old story: 1996

The Physics around the doubly-magic <sup>78</sup>Ni Nucleus



A. Poves



ў(0ph-2ph) = 5.70 9(0ph-Yph) = 8.30

| $Q = -9.0 \ b^2$<br>BEZ = 19.8 $b^{y}$            | CS < 1%<br>$W(dS_{2}) = 1.1$                                                                             |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $\frac{\mathcal{E}(Y^+)}{\mathcal{E}(z^+)} = 2.7$ | $\begin{bmatrix} \underline{\mathcal{E}(Y^4)} \\ \overline{\mathcal{E}(Z^4)} = (3.2)(3.4) \end{bmatrix}$ |
|                                                   | in The intender                                                                                          |

A SITUATION THAT REMINDS WHAT IS KNOWN AT N=20 FFS.

#### More recent experimental information

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 051304(R) (2010)

#### Collectivity at N = 40 in neutron-rich <sup>64</sup>Cr

 A. Gade, <sup>1,2</sup> R. V. F. Janssens, <sup>3</sup> T. Baugher, <sup>1,2</sup> D. Bazin, <sup>1</sup> B. A. Brown, <sup>1,2</sup> M. P. Carpenter, <sup>3</sup> C. J. Chiara, <sup>3,4</sup> A. N. Deacon, <sup>5</sup>
 S. J. Freeman, <sup>5</sup> G. F. Grinyer, <sup>1</sup> C. R. Hoffman, <sup>3</sup> B. P. Kay, <sup>3</sup> F. G. Kondev, <sup>6</sup> T. Lauritsen, <sup>3</sup> S. McDaniel, <sup>1,2</sup> K. Meierbachtol, <sup>1,7</sup> A. Ratkiewicz, <sup>1,2</sup> S. R. Stroberg, <sup>1,2</sup> K. A. Walsh, <sup>1,2</sup> D. Weisshaar, <sup>1</sup> R. Winkler, <sup>1</sup> and S. Zhu<sup>3</sup>
 <sup>1</sup>National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 <sup>2</sup>Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

RAPID COMMUNICATION

#### PHYSICAL REVIEW C 81, 061301(R) (2010)

#### Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. Ljungvall,<sup>1,2,3</sup> A. Görgen,<sup>1</sup> A. Obertelli,<sup>1</sup> W. Korten,<sup>1</sup> E. Clément,<sup>2</sup> G. de France,<sup>2</sup> A. Bürger,<sup>4</sup> J.-P. Delaroche,<sup>5</sup> A. Dewald,<sup>6</sup> A. Gadea,<sup>7</sup> L. Gaudefroy,<sup>5</sup> M. Girod,<sup>5</sup> M. Hackstein,<sup>6</sup> J. Libert,<sup>8</sup> D. Mengoni,<sup>9</sup> F. Nowacki,<sup>10</sup> T. Pissulla,<sup>6</sup> A. Poves,<sup>11</sup> F. Recchia,<sup>12</sup> M. Rejmund,<sup>2</sup> W. Rother,<sup>6</sup> E. Sahin,<sup>12</sup> C. Schmitt,<sup>2</sup> A. Shrivastava,<sup>2</sup> K. Sieja,<sup>10</sup> J. J. Valiente-Dobón,<sup>12</sup> K. O. Zell,<sup>6</sup> and M. Zielińska<sup>13</sup> <sup>1</sup>CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France <sup>2</sup>GANIL, CEA/DSM-CNRSIN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France

3 CONCH CONCERNMENT FOLIAS OF

### SM framework



Island of inversion around <sup>64</sup>Cr

- S. Lenzi, F. Nowacki, A. Poves and K. Sieja
- Phys. Rev. C82, 054301, 2010



#### LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections
- g<sub>9/2</sub>-d<sub>5/2</sub> gap now constrained to 2.5 Mev in <sup>68</sup>Ni

#### Calculations:

- Up to 14ħω excitations across Z=28 and N=40 gaps
- Matrix diagonalizations up to 2.10<sup>10</sup>
- m-scheme code ANTOINE (non public parallel version)
- DNO-SM for most deformed cases (D. D. Dao Strasbourg)

# Discrete Non-Orthogonal Shell Model

#### **Generator Coordinate Method**: $|\Psi_{\text{eff}}\rangle = \sum_{i} f_{i} |\Phi_{i}\rangle$

- 1) Deformed Hartree-Fock (HF) Slater determinants
- 2) Restoration of rotational symmetry
- 3) Mixing of shapes:

# $|\Psi_{\rm eff}\rangle$ = + + + - ·

#### Intrinsic/Laboratory Description

• Deformation structure of nuclear states:  $\{J^{\pi}_{\alpha}\}, q = (\beta, \gamma)$ 

$$\mathcal{M}^{(J)}_{lpha}(q, {\cal K}) = \sum_{q', {\cal K}'} [\hat{N}^{1/2}]^{(J)}_{{\cal K}'{\cal K}}(q', q) \, f^{(J)}_{lpha}(q', {\cal K}')$$



♦ Probability of a configuration  $(\beta, \gamma)$ :

$$\mathcal{P}_{\alpha}^{(J)}(q) = \sum_{K} \left| \mathcal{M}_{\alpha}^{(J)}(q,K) \right|^2$$

• particle-hole interpretation:



• K-quantum numbers:

$$P_{\alpha}^{(J)}(K) = \sum_{q} \left| M_{\alpha}^{(J)}(q,K) \right|^2$$

M-scheme

# **Discrete Non-Orthogonal Shell Model**

Generator Coordinate Method:  $|\Psi_{
m eff}
angle = \sum_{i} f_{i} |\Phi_{i}
angle$ 

 $d_{3/2}$ 

s1/2 d5/2 d5/2 d5/2 d5/2



 $\mathcal{P}_{\alpha}^{(J)}(\mathcal{K}) = \sum_{q} \left| \mathcal{M}_{\alpha}^{(J)}(q,\mathcal{K}) \right|^{2}$ 

#### Shape transition at N=40



| <sup>68</sup> Ni | 0.98 | 0.10 | 0p0h(51%) |
|------------------|------|------|-----------|
| <sup>66</sup> Fe | 3.17 | 0.46 | 4p4h(60%) |
| <sup>64</sup> Cr | 3.41 | 0.76 | 4p4h(70%) |
| <sup>62</sup> Ti | 3.17 | 1.09 | 4p4h(48%) |

#### Shape transition at N=40



|                  | /    | /    |           |
|------------------|------|------|-----------|
| <sup>68</sup> Ni | 0.98 | 0.10 | 0p0h(51%) |
| <sup>66</sup> Fe | 3.17 | 0.46 | 4p4h(60%) |
| <sup>64</sup> Cr | 3.41 | 0.76 | 4p4h(70%) |
| <sup>62</sup> Ti | 3.17 | 1.09 | 4p4h(48%) |

#### Shape transition at N=40

<sup>62</sup>Ti



3.17 1.09 4p4h(48%)

# Triple-band observation in <sup>62</sup>Cr



FRIB/MSU/GRETINA Experiment

# Triple-band observation in <sup>62</sup>Cr



### Triple-band observation in <sup>62</sup>Cr



# Spectroscopy and moments of <sup>61</sup>Cr

TABLE I. Top: spin-parity, excitation energy and magnetic moment of the ground and first two excited states of  $^{64}Cr$ determined in this work from experiment (left) and from shell-model calculations (right, see text for details). Bottom: ground state proton and neutron occupations computed with our shell-model calculations.

|                   | Exp.                    |                 |           | Th.       |                  |                  |
|-------------------|-------------------------|-----------------|-----------|-----------|------------------|------------------|
| $I^{\pi}$         | $E_x$ [keV]             | $\mu \ [\mu_N]$ |           | $I^{\pi}$ | $E_x$ [keV]      | $\mu \; [\mu_N]$ |
| $1/2^{-}$         | 0                       | +0.540(13)      | 1         | $/2^{-}$  | 0                | +0.558           |
| $(3/2^{-})$       | 70.8(9.3) <sup>a</sup>  |                 | 3         | $/2^{-}$  | 283              | +1.27            |
| $(5/2)^{-}$       | 97.7(24.9) <sup>a</sup> | -               | 5         | $/2^{-}$  | 397              | +0.342           |
| $^{61}$ Cr $g.s.$ | $f_{7/2}$               | $p_{3/2}$       | $f_{5/2}$ | $p_{1/}$  | $_{2}$ $g_{9/2}$ | $d_{5/2}$        |
| Proton            | 3.33                    | 0.29            | 0.33      | 0.0       | 4 -              | ~                |
| Neutron           | 8.0                     | 3.78            | 2.49      | 1.0       | 7 1.46           | 0.19             |

<sup>a</sup> Value from Ref. 36



# Spectroscopy and moments of <sup>61</sup>Cr

TABLE I. Top: spin-parity, excitation energy and magnetic moment of the ground and first two excited states of  $^{64}Cr$ determined in this work from experiment (left) and from shell-model calculations (right, see text for details). Bottom: ground state proton and neutron occupations computed with our shell-model calculations.

|        | Exp.        |             |                 |           |           | n         |                             |
|--------|-------------|-------------|-----------------|-----------|-----------|-----------|-----------------------------|
|        | $I^{\pi}$   | $E_x$ [keV] | $\mu \ [\mu_N]$ |           | Ι" Ε      | -len      | $\mu \left[ \mu _{N} ight]$ |
|        | $1/2^{-}$   | 0           | +0.540(13       | EX        | pe        | 0         | +0.558                      |
|        | $(3/2^{-})$ | 70.8(9,3)   | DE              | 3,        | /2-       | 283       | +1.27                       |
|        | $(5/2)^{-}$ | <b>NSU</b>  | -               | 5,        | $/2^{-}$  | 397       | +0.342                      |
| col    | $a_{g.s.}$  | $f_{7/2}$   | $p_{3/2}$       | $f_{5/2}$ | $p_{1/2}$ | $g_{9/2}$ | $d_{5/2}$                   |
| als Co | Proton      | 3.33        | 0.29            | 0.33      | 0.04      | -         | ~                           |
| Cru    | Neutron     | 8.0         | 3.78            | 2.49      | 1.07      | 1.46      | 0.19                        |

<sup>&</sup>lt;sup>a</sup> Value from Ref. [36]



# N=40 at N=Z



- p shell: <sup>16</sup>O spherical/doubly magic
- sd shell: <sup>40</sup>Ca spherical/doubly magic
- pf shell: <sup>80</sup>Zr deformed nucleus
- Low-lying states in H.O. N=Z=8: CS, 4p4h, 8p8h
- Low-lying states in H.O. N=Z=20: CS, 4p4h,8p8h
- Low-lying states in H.O. N=Z=40: 4p4h ? 8p8h ? 12p12h ?

# Ab-initio predictions ?

#### Ab Initio Progress: How Heavy Can We Go?

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!



Jason Holt 2023

**%TRIUMF** 

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







- ZBM3 valence space: extension of JUN45 to pseudo-SU3 + Quasi-SU3
- New effective interactions:
  - Realistic TBME + Monopole "3N" constraints"
  - ab-initio N3LO (2N) interaction
- SM + DNO-SM for most deformed cases

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







|                  |                                  |                             |                            | B(E2)(e <sup>2</sup> .fm            | l <sup>4</sup> ) |     |
|------------------|----------------------------------|-----------------------------|----------------------------|-------------------------------------|------------------|-----|
| nucleus          | Np-Nh*                           | ZRP                         | PHF                        | Exp.                                | DNO-SM*          | SM  |
| <sup>84</sup> Mo | 4p-4h<br>8p-8h                   | 1104<br>1891                | 1193<br>1732               | <b>1740</b> <sup>+580</sup><br>-430 | 1765             | -   |
| <sup>86</sup> Mo | 0p-0h<br>2p-2h<br>4p-4h<br>6p-6h | 542<br>1030<br>1416<br>1858 | 196<br>871<br>1179<br>1655 | 707(71)                             | 980              | 731 |

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







|                  |                 |                |      | B(E2)(e <sup>2</sup> .fm     | <sup>4</sup> ) |     |
|------------------|-----------------|----------------|------|------------------------------|----------------|-----|
| nucleus          | Np-Nh*          | ZRP            | PHF  | Exp.                         | DNO-SM*        | SM  |
|                  |                 |                |      |                              |                |     |
| <sup>84</sup> Mo | 4p-4h           | 1104           | 1193 | 1740 <sup>+580</sup><br>-430 | 1765           | -   |
|                  | op-on           | 1091           | 1732 | -430                         |                |     |
|                  | 0p-0h           | 542            | 196  |                              |                |     |
| <sup>86</sup> Mo | 2p-2h           | 1030           | 871  | 707(71)                      | 980            | 731 |
| NIO              | 4p-4h           | o-4h 1416 1179 | 500  | 701                          |                |     |
|                  | 6p-6h 1858 1655 |                |      |                              |                |     |

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







|                  |                |              |              | B(E2)(e <sup>2</sup> .fm            | l <sup>4</sup> ) |     |
|------------------|----------------|--------------|--------------|-------------------------------------|------------------|-----|
| nucleus          | Np-Nh*         | ZRP          | PHF          | Exp.                                | DNO-SM*          | SM  |
| <sup>84</sup> Mo | 4p-4h<br>8p-8h | 1104<br>1891 | 1193<br>1732 | <b>1740</b> <sup>+580</sup><br>-430 | 1765             | -   |
|                  | 0p-0h          | 542          | 196          |                                     |                  |     |
| <sup>86</sup> Mo | 2p-2h<br>4p-4h | 1030<br>1416 | 871<br>1179  | 707(71)                             | 980              | 731 |
|                  | 6p-6h          | 1858         | 1655         |                                     |                  |     |

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment





J. Ha, F. Recchia et al., submitted to NATURE

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment





J. Ha, F. Recchia et al., submitted to NATURE

PRL 105, 032501 (2010)

week ending 16 JULY 2010

#### Three-Body Forces and the Limit of Oxygen Isotopes

Takaharu Otsuka, 1,2,3 Toshio Suzuki, 4 Jason D. Holt, 5 Achim Schwenk, 5 and Yoshinori Akaishi6

<sup>1</sup>Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan

<sup>2</sup>Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan

<sup>3</sup>National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA

<sup>4</sup>Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3, Tokyo 156-8550, Japan

<sup>5</sup>TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

<sup>6</sup>RIKEN Nishina Center, Hirosawa, Wako-shi, Saitama 351-0198, Japan

(Received 17 August 2009; published 13 July 2010)



FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from <sup>16</sup>O, including experimental values of the bound 16– 24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a G matrix and including FM 3N forces due to  $\Delta$  excitations, and (c) from low-momentum interactions  $V_{low_k}$  and including chiral EFT 3N interactions at N<sup>2</sup>LO as well as only due to  $\Delta$  excitations [25]. The changes due to 3N forces based on  $\Delta$  excitations are highlighted by the shaded areas. (d) Schematic illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the <sup>16</sup>O core.

PRL 109, 032502 (2012)

#### **Evolution of Shell Structure in Neutron-Rich Calcium Isotopes**

 G. Hagen, <sup>1,2</sup> M. Hjorth-Jensen, <sup>3,4</sup> G. R. Jansen, <sup>3</sup> R. Machleidt, <sup>5</sup> and T. Papenbrock<sup>1,2</sup>
 <sup>1</sup>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 <sup>2</sup>Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
 <sup>3</sup>Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway
 <sup>4</sup>National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 <sup>5</sup>Department of Physics, University of Idaho, Moscow, Idaho 83844, USA (Received 16 April 2012; published 17 July 2012)



FIG. 2 (color online). (Excitation energies of  $J^{\pi} = 2^+$  states in the isotopes <sup>42,48,50,52,54,56</sup>Ca (experiment: black circles, theory: red squares)

#### Shell closures and 2N forces only

#### PHYSICAL REVIEW C 74, 061302(R) (2006)

#### Shell-model phenomenology of low-momentum interactions

Achim Schwenk1,\* and Andrés P. Zuker2,†

<sup>1</sup>Nuclear Theory Center, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408, USA <sup>2</sup>Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France (Received 14 January 2005; revised manuscript received 20 September 2006; published 12 December 2006)



no Spin-orbite shell closures in <sup>12</sup>C, <sup>22</sup>O, <sup>48</sup>Ca, <sup>56</sup>Ni
too strong H. O. shell closures <sup>16</sup>O, <sup>40</sup>Ca, ... and <sup>80</sup>Zr !!!

# **N3LO NN calculations**



|                  | B(E2)(e <sup>2</sup> .fm <sup>4</sup> ) |                     |                     |                                      |        |      |  |  |
|------------------|-----------------------------------------|---------------------|---------------------|--------------------------------------|--------|------|--|--|
| nucleus          | NpNh*                                   | ZRP                 | PHF                 | Exp.                                 | DNO-SM | N3LO |  |  |
| <sup>80</sup> Zr | 4p-4h<br>8p-8h<br>12p-12h               | 587<br>1713<br>2663 | 637<br>1509<br>2396 | 1910(180)                            | 2325   | 0.03 |  |  |
| <sup>84</sup> Mo | 4p-4h<br>8p-8h                          | 1104<br>1891        | 1193<br>1732        | <b>1740</b> <sup>+580</sup><br>- 430 | 1740   | 174  |  |  |

# **N3LO NN calculations**



|                  | B(E2)(e <sup>2</sup> .fm <sup>4</sup> ) |                     |                     |                      |        |      |  |  |
|------------------|-----------------------------------------|---------------------|---------------------|----------------------|--------|------|--|--|
| nucleus          | NpNh*                                   | ZRP                 | PHF                 | Exp.                 | DNO-SM | N3LO |  |  |
| <sup>80</sup> Zr | 4p-4h<br>8p-8h<br>12p-12h               | 587<br>1713<br>2663 | 637<br>1509<br>2396 | 1910(180)            | 2325   | 0.03 |  |  |
| <sup>84</sup> Mo | 4p-4h<br>8p-8h                          | 1104<br>1891        | 1193<br>1732        | $1740^{+580}_{-430}$ | 1740   | 174  |  |  |

MeV

,30<sup>γ (deg)</sup>

0.5

β

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment





J. Ha, F. Recchia et al., submitted to NATURE



J. Ha, F. Recchia et al., submitted to NATURE

# Isospin Symmetric Island of Inversion



### Summary

- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics.
- New "island of inversion" or "island of deformation" present for neutron-rich systems show up also at N=Z line with very deformed rotors dominated by Many-particles-Many-holes configurations.
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo and first fingerprint of 3N forces in deformed systems
- Around A~ 80, an "island of enhanced collectivity" show very deformed rotors dominated by Many-particles-Many-holes configurations.
- Ongoing NN + 3N(InI) ab-initio calculations

Special thanks to:

- D. D. Dao, K. Sieja
- G. Martinez-Pinedo, A. Poves, S. Lenzi
- A. Gade, O. Sorlin, A. Obertelli

# Ab-initio predictions ?

#### Ab Initio Progress: How Heavy Can We Go?

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!



Jason Holt 2023

**%TRIUMF** 



| /////////////////////////////////////// | 1 |
|-----------------------------------------|---|
| $^{56}_{28}{ m Ni}_{28}$                | - |

|                  | B(E2)(e <sup>2</sup> .fm <sup>4</sup> ) |                     |                     |           |        |  |  |  |
|------------------|-----------------------------------------|---------------------|---------------------|-----------|--------|--|--|--|
| nucleus          | NpNh*                                   | ZRP                 | PHF                 | Exp.      | DNO-SM |  |  |  |
| <sup>76</sup> Sr | 4p-4h<br>8p-8h<br>12p-12h               | 924<br>2189<br>2316 | 806<br>2101<br>2300 | 2390(240) | 1847   |  |  |  |
| <sup>80</sup> Zr | 4p-4h<br>8p-8h<br>12p-12h               | 587<br>1713<br>2663 | 637<br>1509<br>2396 | 1910(180) | 2325   |  |  |  |





|                  |                           | B(E2)(e <sup>2</sup> .fm <sup>4</sup> ) |                     |           |        |  |  |
|------------------|---------------------------|-----------------------------------------|---------------------|-----------|--------|--|--|
| nucleus          | NpNh*                     | ZRP                                     | PHF                 | Exp.      | DNO-SM |  |  |
| <sup>76</sup> Sr | 4p-4h<br>8p-8h<br>12p-12h | 924<br>2189<br>2316                     | 806<br>2101<br>2300 | 2390(240) | 1847   |  |  |
| <sup>80</sup> Zr | 4p-4h<br>8p-8h<br>12p-12h | 587<br>1713<br>2663                     | 637<br>1509<br>2396 | 1910(180) | 2325   |  |  |

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment







|                  |                           | B(E2)(e <sup>2</sup> .fm <sup>4</sup> ) |                     |           |        |  |  |
|------------------|---------------------------|-----------------------------------------|---------------------|-----------|--------|--|--|
| nucleus          | NpNh*                     | ZRP                                     | PHF                 | Exp.      | DNO-SM |  |  |
| <sup>76</sup> Sr | 4p-4h<br>8p-8h<br>12p-12h | 924<br>2189<br>2316                     | 806<br>2101<br>2300 | 2390(240) | 1847   |  |  |
| <sup>80</sup> Zr | 4p-4h<br>8p-8h<br>12p-12h | 587<br>1713<br>2663                     | 637<br>1509<br>2396 | 1910(180) | 2325   |  |  |

#### $\diamond$ Strongly deformed states at N = Z:

- Configuration mixing in <sup>72</sup>Kr
- Most deformed cases for <sup>76</sup>Sr, <sup>80</sup>Zr
- Shape transition between <sup>84</sup>Mo and <sup>86</sup>Mo NSCL/GRETINA Experiment

R.D.O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)



FIG. 3. Schematics of the  $B(E2\downarrow)$  values for the N = Z nuclei

