

Studying structure near the neutron emission threshold using the detector TETRA at ALTO

Emile Cantacuzène

David Verney

Team FIIRST

Outline

I. Structure near the neutron emission threshold

II. Experimental setup

III. Analysis of ⁸²Ga and ⁸⁴Ga - First results

IV. Perspectives

Beta-delayed neutron emission

Beta-delayed neutron precursors

- $Q_{\beta-n} = Q_{\beta} S_n$: Available energy for neutrons
- P_n : Probability for the daughter nucleus to emit at least one neutron after the beta decay

cf. "Further Observations on the Splitting of Uranium and Thorium" Roberts et al. (1939)

The statistical models

Emittor

cf. "The essential decay of pandemonium: β-Delayed neutrons" Hardy et al. (1977) cf. "Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation–Hauser-Feshbach model" Kawano et al. (2008)

ISOL France 2024

- Better results for integrated properties in N = 50 region
- No overestimation of the population of levels under S_n

cf. "Pygmy Gamow-Teller resonance in the N = 50 region: New evidence from staggering of β -delayed neutron-emission probabilities" Verney et al. (2017) cf. 'Evidence of non-statistical neutron emission following β -decay near doubly magic 132Sn" Heidemann et al. (2023)

PRL accepted : cf. 'Compound-nucleus and doorway-state decays of β -delayed neutron emitters 51,52,53K" Xu et al. (2024)

I. Structure near the neutron emission threshold

II. Experimental setup

III. Analysis of ⁸²Ga and ⁸⁴Ga - First results

IV. Perspectives

N-RI-22 : Experimental setup

ALTO - LEB

TETRA decay station

Beam production using ISOL technique

- Photofission
- Laser ionization
- Mass separation

 $^{3}\text{He} + n \rightarrow \ ^{3}\text{H} + p + 765 \text{ keV}$

Around 5400 barns at thermal energies

Calibration isotope : ⁸²**Ga**

⁸⁴Ga data analysis

Beta-2n data analysis

Sources of 2-n background

- Fortuitous counting (grows with counting rate)
- Natural background (constant)

$Q_{\beta-2n} < 0 \; MeV$

Only background 2-n counting

cf. "Beta-delayed two-neutrons and three-neutrons emission" Jonson et al. (1981)

2000

2500

500

1000

1500

⁸⁴Ga 2-neutron activity

3000 Time (ms)

Outline

I. Structure near the neutron emission threshold

II. Experimental setup

III. Analysis of ⁸²Ga and ⁸⁴Ga - First results

IV. Perspectives

Geant4 TETRA simulation

• Thermal neutrons physics list included

- The efficiency per ring changes with the neutron energy distribution
- Can a link between ring efficiency ratios and mean neutron energy be made?

Different neutron energy distributions

Example of simulated Maxwellian neutron source

cf. "Evaluation and Application of Delayed Neutron Precursor Data" Michaele Clarice Brady

ISOL France 2024

TETRA efficiency per ring

Experimental ring ratios

ISOL France 2024

Coming up

MONSTER @ ALTO

- Structure installation in Juin 2024
- Experiment MONSTER + BEDO planned in Autumn 2024 for ⁸³Ga, ⁸⁴Ga and ⁸¹Zn

Laboratoire de Physique des 2 Infinis

Ciemat

Thank you for your attention !