

Double alpha

Search for double alpha decay Louis Heitz Double alpha @CERN collaboration

ISOL-France Worskshop 2024

28.05.2024

Outline

	Mo [.] & Theoret	tivations ical predictions			
				Experiment @ISOLDE Report & analysis status	
	Simulation Preliminary results				
				Conclusion & perspectives	
Double	OC e alpha	UNIVERS PARIS-SAC		683	VICLAD Irène Joliot-Curie

1

Motivations

F. Mercier, J. Zhao, J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar Phys. Rev. Lett. **127**, 01250

Motivations

First α decay model

Quantum tunneling explains empirical Geiger-Nutall law:

D. N. Poenaru and M. Ivascu

Two alpha, three alpha and multiple heavy-ion radioactivities

(Reçu le 25 mars 1985, accepté sous forme définitive le 30 avril 1985)

Institute for Physics and Nuclear Engineering, P.O. Box MG-6, R-76900, Bucharest, Romania

135 N

First prediction of 2α (as ⁸Be) decay...

...but Very long half-life

Motivations

Best candidates for 2α **decay ?**

Experimental campaigns

Decay chains & contaminants

Experimental setup

 α_1

Experimental setup... in real life

A few numbers

How to identify double α decay ?

 2α particles +...

Energy condition $E_1 + E_2 \sim Q_{2\alpha}$

A glance at energy spectra

How to identify double α decay ?

 2α particles +...

Energy condition $E_1 + E_2 \sim Q_{2\alpha}$

Contaminants To be identifed

Time condition
$$T_1 \sim T_2$$

not shown here

Spatial condition

 $\theta \sim 180^{\circ}$

Beam spot reconstruction

Beam Inspection DSSD : Too far from target to monitor beam spot

Beam spot determined with simulation

How to identify double α decay ?

 2α particles +...

Energy condition $E_1 + E_2 \sim Q_{2\alpha}$

Contaminants to be identifed

Time condition
$$T_1 \sim T_2$$

not shown here

Spatial condition

 $\theta \sim 180^{\circ}$

Qualitatively OK

How to identify double α decay?

Signal/Noise Bckgd, efficiency

Simulation status

SIMULATION

DATA

Conclusion

Thank you for your attention!

L. Heitz^{1,2}, E. Khan², Ch. Theisen^{1,†}, T. Chaminade¹, V. Alcindor², M.Assié², B. Blank³, D. Beaumel², J. Bequet¹, Y. Blumenfeld², D. Cotte^{1,(4)}, T.Davinson⁵, D. Desforges¹, T. Dickel⁶, J.-P. Ebran⁷, J.Giovinazzo³, C.Houarner⁸, K. Johnston⁴, M. Kowalska⁴, U. Köster⁹, I. Moore¹⁰, V.Morel⁸, L. Nies⁶, A. Ortega-Moral³, I. Pohjalainen¹⁰, P.M. Reiter⁵, T. Roger⁸, F.Saillant⁸, M. Simonov⁶, B. Sulignano¹, D. Thisse¹, L. Thulliez¹, G. Toccabens¹, M. Vandebrouck¹, H. Wilsenach⁶

¹Irfu, ²IJCLAB, ³Bordeaux, ⁴CERN, ⁵Edinburgh, ⁶GSI, ⁷CEA DAM, ⁸Ganil, ⁹ILL, ¹⁰Jyväskylä,

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement N°101057511

Double alpha

Back-up

Energy spectra : literature

The example of ²¹⁰Po measured by Rytz using a photographic plate.

Literature rather old :

²²⁰Ra weighted average of 7449 (10) from Hessberger 2000, 7455 (10) from Valli **1970** and 7460 (20) from Andreev

²¹⁴Po : measurement with a magnetics
spectrograph. Rytz. Helv.Phys.Acta 34, 240
(1961), again adjusted by Rytz in 1991.

In our background data, peaks not (yet) identified

Room to improve **alpha-decay data** in actinide region

2 alpha predictions

	Approach	Comments	Best B.R.
Poenaru - 1985	Super Asymetric Fission	Large BR. Close to ⁸ Be	~10 ⁻¹³
Tretyak - 2021	⁸ Be cluster	Very Large BR (T2alpha>10 ³³ yr)	• • •
Santhosh - 2021	Modified Liquid Drop Model	Large BR. Close to ⁸ Be, weird ²⁰⁹ Bi	Close to Poenaru
Mercier Zhao - 2021,2023	Time Dependant evolution, EDF	uncertainties hard to estimate	~10 ^{-6.5}
Denisov - 2022	Modification of Unified Model for Alpha Decay	Very small B.R.	~10 ⁻²

Half-life computation

Generic (phenomenological) formula for radioactive decays

Different models : different *s*, *P_s* (*EandB*)

B ~ reduced massE ~energy of the system

